
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1314

Business Logic and Long Lived Transactions

Processing

Romani Farid Ibrahim

High Institute of Computer Science and Information - City of Culture and Science- 6 October City, Egypt.

Abstract: Many modern business applications are working as long lived transactions (LLTs) which should maintain database

consistency to be a valid transaction. LLT models usually based on using compensating transactions, and many papers claimed that

compensation process doesn’t reserve database consistency. In this paper, we concentrate on disconnection and consistency of mobile

transactions as an example of long-lived transactions. We extended the M-Shadow technique to handle both atomic mobile transaction

applications, and transactional workflow applications with or without compensation and maintain database consistency. M-Shadow uses

the notation of actionability and it is an optimistic concurrency control technique. It increases the transaction success probability even

with disconnection and raises the performance of the system.

Keywords: Concurrency Control, Mobile Database, Transaction, Workflow, Shadow paging, Saga, Caching, Compensation.

I. INTRODUCTION

 The values of all information systems are based on the

accuracy and consistency of their databases. Accessing data

anywhere-anytime-anyway it becomes real events, but this

should not violate database consistency. The mobile

database, or embedded database on a mobile device, is

starting to become an important player in all practical fields,

for example, business, traveling, police, military, medical,

etc. The data is entered approximately in its real time, no

delay between the events time and the entering time to the

database. Also many modern business applications are

working as long lived transactions (LLTs) which are

transactions hold on to database resources for relatively

long periods of time, significantly delaying the termination

of shorter and more common transactions [20]. LLT to be a

valid transaction should maintain database consistency.

As an example of long lived transactions, we concentrate

on mobile transactions, which is a transaction performed

with at least one mobile host takes part in its execution [21];

also, it may be defined with perspective of its structure as a

set of relatively independent (component) transactions,

which can interleave in any way with other mobile

transactions [8].

 As an example of applications that can be applied as

long lived transactions, we are considering mobile hosts are

laptop computers belonging to members of a big

salespersons team. The salesperson performs a transaction

that handles a customer big order which consists of groups

of independent sub-orders or groups of dependent sub-

orders which may include partially dependent sub-orders.

There are many types of transactions that are related to the

subject of LLTs, we mention some of them that are related

to our work as flat transactions, compensating transactions,

contingency transactions, nested transactions, saga

transactions, vital and non-vital transactions.

Flat transaction (or transaction) is defined as a means by

which an application programmer can package together a

sequence of database operations so that the database can

provide a number of guarantees, known as the ACID

(Atomicity, Consistency, Isolation, and Durability)[18].

Nested transaction is a collection of related subtasks, or

subtransactions, each of which may also contain any number

of subtransactions as a tree structure and only the leaf-level

subtransactions are allowed to perform the database

operations [15].

A compensating transaction is a transaction with the

opposite effect of an already committed transaction. It is

intended to undo the visible effects of a previously

committed transaction, e.g., cancel car is the compensating

transaction for rent car. A contingency transaction is

invoked upon the occurrence of some failure condition and

before commit of the transaction for which it is an

alternative. It is intended to accomplish a similar goal as the

original transaction, as opposed to the compensating

transaction which is intended to undo a committed (sub)

transaction [19]. A saga is a long-lived transaction that

consists of a set of relatively independent subtransactions

associated with them their compensating subtransactions.

To execute a saga, the system must guarantee that either all

of the subtransactions in a saga are complete or any partial

execution is undone with their compensating

subtransactions [20]. A vital transaction is a transaction

that must be executed successfully (i.e. it has to commit) for

its parent transaction to commit. A non-vital transaction

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1315

may abort without preventing the parent transaction from

committing [19].

Workflow is a collection of tasks organized to

accomplish some business process (e.g., processing

purchase orders over the phone, provisioning telephone

service, processing insurance claims). A task can be

performed by one or more software systems, one or a team

of humans, or a combination of these [25].

 We view a transaction as a program in execution in

which each write-set satisfies the ACID properties [3], and

the program that updates the database as a three folds

module (phases): reading phase, editing phase, and

validation and write phase. The main questions we attempt

to answer in this paper are: 1- if the data on the primary

server has been changed while the mobile unit (MU) is

disconnected or working offline, how can the transaction

continue its work? 2- What are the effects of business logic

on the transaction structure? 3- If the compensation is used

how the database consistency is achieved?

 We extended the M-Shadow technique which is

described in detail in [1], [2],[3] to be suitable for different

mobile transaction applications according to the nature of

business logic. M-shadow technique is an optimistic

concurrency technique constructed on the shadow paging

technique that is used in deferred database recovery and

other OS techniques. Shadow paging technique uses two

copies of data items, the shadow copy (original), and the

edited copy (current). When a transaction commits, the

edited copy becomes the current page, and the shadow copy

is discarded, otherwise, the edited copy is discarded and the

shadow copy is reinstated to become the current page once

more.

The rest of this paper is organized as follow: Section 2

describes the related work. Section 3 describes the

important points we considered to propose the extended

model. Section 4 introduces the extended M-Shadow

technique for atomic transaction applications, and for

transactional workflow applications with and without

compensation. Section 5 describes a summary of the

implementation and performance of the proposed technique

and the last section 6 concludes the paper and followed by

the references.

II. RELATED WORK

 Most of the work handling mobile transactions as

(Kangaroo [6], Moflex [9], Promotion [7], Reporting and

Co[8], Escrow techniques [22], etc.) assume that the

handoff process is under the mobile support station (MSS)

responsibility [10], and the mobile support stations has the

capability to transfer control and transaction history among

servers while handoff procedure as [6], [8], [9]. However,

this approach has many limitations, such as, if the mobile

unit moves relatively slow such that the probability of the

commitment protocol terminating at the same cell is high. If

it is fast moving then a frequent migration of the control

may increase the protocol latency and thus its vulnerability

[10]. In addition, if a big number of MUs move among

cells, so that most of the response time is spent in

transferring data among cells.

 Most of the used methods apply the concept of

compensation and many paper claimed that compensation

does not reserve database consistency [11] [12].

 Most of the papers assume rarely changing data

(Insurance data, Patients data, etc); the mobile unit has

replica or caching subsystem. And the mobile replica is

logically removed from the master copy of the object and is

only accessible by the transaction on the mobile unit [23],

so that they do not consider the case of changing data on the

primary server while the transaction processing. In addition,

they assume long disconnection or working offline and do

not consider short disconnection case.

III. IMPORTANT CONSIDERATIONS

In this section, we describe the important points we

considered to extend M-Shadow model to handle

transactional workflow mobile applications which are:

motivating example, transactions and grouping,

compensation and business logic, implementation of

compensation, the effects of attributes types on the

transaction behavior (actionability), and description of

validation test.

A. Motivating Example

As an example of applications that can be applied as

atomic mobile transaction application or as a transactional

workflow mobile application, we are considering mobile

hosts are laptop computers belonging to members of a big

salespersons team. The salesperson performs a transaction

that handles a customer big order which consists of groups

of independent sub-orders, or groups of dependent sub-

orders which may include partially-dependent sub-orders.

Figure 1 shows nine independent subtransactions

grouped in three independent groups, they represent nine

unrelated items of three sub-orders in a compound

transactional workflow.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1316

Because the nine items are unrelated, there is no effect of

any subtransaction on the previous committed

subtransactions, so that there is no need for using

compensation in this case, and if any number of

subtransactions or groups fails the remaining groups can

continue their work.

Figure 2 shows the nine subtransactions as three

dependent groups, this means that if any subtraction fails

(except the doubly circle subtraction S5 because it is a non-

vital subtransaction) the entire compound transaction should

fails.

We view this case of compound transaction according to

the business logic in two views: as atomic transaction and

there is no need for compensation, or as a transactional

workflow which will be similar to the saga model and

should compensate for the previous committed

subtransactions.

Figure 3 shows the nine subtransactions as three

dependent groups but the doubly circle group2 is a non-vital

group, this means that the compound transaction can

commit without group2 or with group2, but no

subtransaction of group2 can commit out of its group.

Also according to the business logic, we view this case in

two views: as atomic transaction or as a transactional

workflow.

B. Transactions and grouping

Transaction is defined as a means by which an

application programmer can package together a sequence of

database operations so that the database can provide a

number of guarantees, known as the ACID (Atomicity,

Consistency, Isolation, and Durability)[18].

We view a transaction as a program in execution in

which each write-set satisfies the ACID properties [3], and

the program that updates the database as a three folds

module (phases): reading phase, editing phase, and

validation and write phase. We classified transactions based

on their structures as simple transactions and compound

transactions[5]. Simple transaction is a transaction that can

not be divided into subtransactions and all ACID properties

are achieved. Compound transaction consists of two or

more simple transactions (called subtransaction) and theses

subtransactions may be nested, it can be ACID or non-

ACID. Examples of compound transactions are nested

transactions, sagas, long duration transactions (LLT),

kangaroo transaction, etc.

Simple transaction by nature is independent, but when it

is grouped with other subtransactions in a compound

transaction (CT), it has three cases:

 It does not lose its independency property, so it can

commit alone.

 It loses its independency property, and it has a

dependency relationship with its CT. IF it fails, the

CT fails, if the CT fails for any reason, the

subtransaction fails also.

 If it is a non-vital subtransaction, it can abort alone

and doesn’t effect on vital subtransactions of the CT

and the CT can commit without it.

By this analysis we view that the independent

transactions of saga model are lost their independency

because they are grouped in a saga compound transaction

and a dependency relationship is established among them,

so if one transaction fails the entire saga should fail and all

previous committed transactions should be compensated for

their effects on the database.

In this paper we classified applications according to the

division of their compound transaction to atomic compound

applications which their compound transaction isn’t

divisible and satisfies ACID properties, and, transactional

workflow (TW) applications which their compound

transaction is divisible and satisfies semantic ACID.

C. Compensation and Business Logic

A compensating transaction is a transaction with the

opposite effect of an already committed transaction. It is

intended to undo the visible effects of a previously

committed transaction, e.g., cancel car is the compensating

transaction for rent car. But many papers claimed that

compensation doesn’t reserve database consistency

[11],[12]. For example, suppose that the account initially

has $X, and then a withdrawal transaction of $Y (where X

>=Y) is executed and that the transaction will be

compensated later. If another transaction commits applying

an interest rate on the balance before the compensation has

been performed (i.e. when the account has $(X-Y). The

interest transaction was applied on a kind of dirty data, and

therefore database consistency will not be preserved.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1317

We view that compensation process can be an acceptable

solution if it doesn’t contradict with business logic that will

be evaluated as reserving of database consistency. Most

researchers assume that compensating transactions will be

written by the programmer who writes the application,

which means that the programming process will be doubled,

because for every function there is a compensating function,

so that this solution seems to be not a good solution. For

simplicity, we assume that compensation can be done on

numeric attributes or text attributes (non-numeric) and then

we will generalize for any data type.

1) Compensation for numeric attributes

Whatever the equations that will be applied on the

numeric attribute it will generate a numeric value that

changes the state of the attribute by increasing or decreasing

its value:

New value – old value = ± change value

We will store the change value (i.e. no recalculation for

any equation) which is the final effect of the transaction on

the attribute at commit time, not before image and after

image as it is implemented in database systems logs. In this

case, all numeric attributes will be additive, commutative

and compensated attributes, if we apply the change values

that are generated from the transaction and not the

transaction logic. When the compensation process is started

the change values will be added to the current values of

attributes, it should be logically succeeded and doesn’t

contradict with the business logic or the integrity constrains

of the database system. Also compensation transaction is a

transaction; this means that it should transform the database

from consistent state to another consistent state.

2) Compensation for non-numeric attributes

Examples of this case are transactions that cancel

reservation for rooms in a hotel, cancel renting a car, or

cancel reservation for airplane tickets. Usually these

transactions handle future events and are not additive or

commutative, and are related to specific date. This means

that any transaction happened after the reserving transaction

(ex, for the rooms) is a valid transaction because it doesn’t

violates the database constrains or business rules and

doesn’t contradict with other transactions, because it is for

different date. The compensation process in this case will

be restoring the old image (state) for that period, and will be

implemented as a new subtransaction. The logic will be:

If object.current_value = object.transaction_value then

 restore before image (old_value)

Else call interrupt handler (for human interaction).

For example, for reserving a room in a hotel the values of

attributes will be (O for old, N for new):

OState: empty Nstate: busy renter: abc from_date: 1-7-

2013 to_date: 8-7-2013

After compensation process the values of attributes will

be:

OState: busy Cstate: empty renter: null from_date: 1-7-

2013 to_date: 8-7-2013

If compensation is applied on text attributes; it can be

applied on any other type of attributes. For example, it can

be applied on image or sound attributes based on time

stamp of data items.

From the previous analysis, we view that compensation

can be applied on all data types for business applications,

and the problem isn’t in the compensation process itself, but

it is in the implementation of the compensation.

D. Implementation of compensation

Compensation is used in transactional workflow (TW)

applications only, because the business logic of atomic

transactional applications doesn’t need to use compensation.

The compound transaction of a transactional workflow

application is divisible and should be semantically ACID.

We have two cases with or without compensation.

Transactional workflow applications with compensation

mean that the business logic accepts the compensation

process without any logical error, we differentiate between

two types of failures; integrity constrains failure and

network failure. Integrity constrains failure means the

business logic is failed and causes the entire compound

transaction to abort and compensation process should be

started. Network failure can be happened because of

disconnection or any other reason, and causes the current

subtransaction to be restarted at reconnection time. This is

because the nature of compound transaction is divisible, this

means that the subtransaction can fail and restart many

times without causing abortion of its compound transaction.

Transactional workflow application without compensation

is a group of independent transactions. This means that

every subtransaction is complete by itself and its success or

failure doesn't depend or effect on any other subtransaction

in the compound transaction.

For transactional workflow application with

compensation we need to create a transactional workflow

log which stores the change values of numeric attributes and

stores the old values and new values for non-numeric

attributes. The current programming languages that handle

transaction processing should include procedures for

handling transactional workflow as begin-trans-work and

end-trans-work. The structure of the transactional workflow

will be something similar to the following structure.

Begin_trans_work name

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1318

Begin t1

End t1

………….

Begin tn

End tn

Commit_trans-work name // do nothing because each

subtransaction is committed or

Abort_trans-work name // which means start compensating

process by applying the changes that is stored in the

transactional workflow log,

End_ trans_work name

The flowing examples show the content of the

transactional workflow log for numeric and non-numeric

attributes.

Trans_work_id: TW5 trans_id: t3 DB: inventory table:

sold-amount object-id: 512 column: qty change_ value: 50

Trans_work_id: TW5 trans_id: t3 DB: inventory table:

balance object-id: 512 column: qty change_ value: -50

Trans_work_id: TW6 trans_id: t1 DB: hotel-reservation

table: reservation object-id: room2 old-value: busy new_

value: empty

In mobile transaction processing the transactional

workflow log can be simulated by storing the old values and

new values of data items as XML files until the end of the

transactional workflow on the mobile unit. At the

compensation process the change values can be recalculated

by subtracting old values from new values and applied in

reverse order.

For transactional workflow without compensation, the

compound transaction is divisible and there is no

relationship among its subtransaction, any subtransaction

can abort without any effects on previously committed

subtransactions. For example, assume according to the

business logic, it is allowed for customer to return items of

orders for any real reason (ex.; because it is defective item).

This case handle compound transaction already

implemented in the past, which differs in the meaning from

reserving a room in a hotel in the future, but it doesn’t differ

in its effect on the database. The seller creates a new

independent returning transaction which deletes the effects

of the previous committed transaction on the database, i.e.;

the seller compensates for the subtransactions of the

defectives items only without any effect on the other

subtransactions of the transactional workflow, this is

because the independency relationship among

subtransactions. This case differs from the saga model

which requires compensation for the entire saga.

The compound transaction of atomic transactional

application is not divisible by nature. The business logic

generates logical errors if the compensation process is

applied after some subtransactions have been committed. It

should be implemented using regular concurrency control

witch usually is based on locking techniques. Example of

this type of applications is the interest transaction that is

mentioned in section 3.3. Or it can be implemented as a

transaction workflow with additional constrains on the

transaction processing, by checking that the data item that

will be changed is not participated in any pending

transactional workflow. In this case, semantic ACID is

achieved. So that, we need to create a pending table that

keep track for current pending transactional workflows, its

structure should include: TW-id, DB-name, table-name,

record-id, and no need for storing attribute-name to

decrease the search time in the pending table and increase

the performance of the system. When a transactional

workflow finishes it’s processing (i.e.; reach the

End_trans_work command), it should be removed from the

pending table. But if the pending TW accesses shared data

items, it will decrease the performance of the entire system.

E. Actionability and Transactions Behavior

In this section we review the M-Shadow technique for

atomic transaction applications and its related concepts,

which will be modified to handle transactional workflow

applications. In M-shadow technique, transaction's

validation is not tightly coupled to the eventuality of

encountering modifications (done by other transactions) on

the values of one or more of its data items. Transaction

behavior at run time depends on some characteristics of its

set of data items. We use the notion of actionability

[1][2][3] to describe how a transaction behaves if a value-

change is occurred on one or more of its attributes during its

processing time and by other transactions. Other than Key

attributes (K), actionability classifies the data items used by

a transaction into five types: change-accept, change-aware,

change-reject, change-passing and location-time attributes.

Change-Accept (A): Any attribute retrieved during the

read phase to complete and explain the meaning of the

transaction. If it is potentially changed (by another

transaction) while the transaction is processing, it does not

have any effect on the transaction behavior.

Change-Reject (R): This type of attributes is subject of

periodical changes (e.g., Currency values, Tax rates, etc.).

The value of such attribute remains constant for long period.

But once it is changed during the transaction life time (by

another transaction), it affects severely the transaction

behavior.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1319

Change-Aware (W): This type of attributes is subject to

change more frequently by different concurrent transactions.

A modification on the value of this type of attributes may be

accepted if the new value still in the acceptance range.

Otherwise, the transaction aborts.

Change-Passing (P): this type of attributes is not

basically part of the transaction data, but the result of the

transaction processing is passed to this type of attributes.

For example, in an insurance company (or many other

applications) all different departments are related through

the financial department, so that, all insurance transactions

in all departments should pass their financial values to the

financial attributes. Usually this subtransaction is succeeded

because it only increases the financial attributes by the new

amounts and the previous change and the current values of

this type of attributes doesn’t effect on the transaction data

or behavior. But if the subtransaction that changes their

values is failed for any reason, it causes the main transaction

to fail.

Location-time (L): this type of attributes is for handling

Location dependent transaction processing.

The previous three types of attribute actionability (Change-

Accept (A), Change-Reject (R), and Change-Aware (W)) are

to be declared for each transaction type. If omitted, the

complete set of attributes will be handled as Change-Reject

type (the default actionability type), a case in which the M-

Shadow works like the traditional Shadow technique. Also,

they are retrieved at the read phase to be edited and to apply

the function of the transaction on it. It is also important to

note that a transaction may generate a new data item (G) as

a function of the three previous types of attributes. The M-

Shadow technique handles these attributes exactly as before:

 If a Change-Reject attribute(s) is modified during the

transaction processing, the complete transaction

aborts.

 But else, if a Change-Aware attribute(s) is the

modified attribute and the changes are within the

acceptance ranges, the transaction is recalculated and

continues, otherwise it aborts.

 But else, if a Change-Accept attribute(s) is the

modified attribute, the transaction continues and

writes values.

 Table (1) illustrates the applied validation rules. If the

Change-Accept attribute and the Change-passing attributes

are changed or not, it doesn't have any effect on the

transaction behavior that updates the Change-Aware

attributes. Also, Change-Accept attributes are very rarely

changing attributes, for example, item-description,

employee-name; Birth-Date, etc., are approximately fixed

value attributes.

Rule: If T1, T2 are concurrent transactions, T1 changes a

shared Change-Reject attribute and T2 changes a shared

Change-Aware attribute that belong to a normalized

database then:

 If T1 commits before T2 then T2 must abort.

 If T2 commits before T1 then T1 can continue its

processing.

The reasons behind using the actionability include:

 A transaction usually updates a part of the data set it

uses, the other part of the data elements is asked by

the transaction to control the transaction. These data

items are read only items and a change in such

elements should not prevent the execution of the

transaction.

 Our concern is on the transactions that update

Change-Aware attributes, which have acceptable

range. An encountered change in these attributes may

affect the outcomes of the transaction but not aborts

entirely its execution.

 The usage of mobile transactions is still limited to

salesperson and inventory applications which are, by

nature, applying short transactions with little

attributes. This fortunately complies well with the M-

Shadow concept.

F. Description of Validation Test

The validation test for atomic transactions compares the

original values of some data items with its current values on

the primary server, which succeeds in three cases:

 No change, which means that the original values are

equal to the current values on the primary server.

 Constrained change, which means that some Change-

Aware attributes has been changed by other

transactions during disconnection (working offline)

time but still these changes within the integrity

constraint acceptance range.

 Insignificant change, which means that some Change-

Accept attributes has been changed by other

transactions during disconnection (working offline)

time or during the execution of the transaction, but

these Change-Accept data items does not effect on

the current transaction.

The validation test fails in the following two cases:

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1320

 Significant change, in which we detect that some

Change-Reject data items have been changed during

the transaction processing and/or disconnections.

 Out-of-Constraints change, in which we detect that

one or more Change-Aware data items have been

updated in such a way that the global changes put the

stored values out of the acceptance ranges.

IV. THE M-SHADOW MODEL

This section describes the summery of the M-shadow

technique for handling atomic mobile transaction

applications and transactional workflow mobile applications

with or without compensation. The validation- write

procedure can be written as a part of the DBMS or as a

stored procedures at the primary server side.

A. Summary of the M-Shadow Technique Steps for

atomic mobile transaction applications

At Mobile Unit side:

1. Retrieve the current dataset from the primary

server (Reading phase)

2. Copy the retrieved dataset as a shadow copy.

3. The user edits the dataset on the shadow copy

[modify, add, delete] (Editing phase)

Begin write-set-transaction

4. Send the original read-set, the edited-set

(shadow copy changes), the read-query, and

the update query to the primary server

(subtransaction by subtransaction).

At Primary Server Side:

5. Implement the validation and write phase

(which can be implemented as a part of the

DBMS or as a stored procedure at the primary

server).

 Call validation-write-1 procedure (as a

part of the DBMS)

6. If one subtransaction fails (disconnection,

integrity constraints, etc.)

At Primary Server Side:

 Rollback the current and all the

previous write-set subtransactions of

the group.

At Mobile Unit side: because of

 Integrity constraints violation: Drops

its data-sets and clears the memory to

start a new transaction.

 Short disconnection: Try to reconnect.

 Long disconnection: The program

saves the data-sets (the original data-

set and the shadow data-set) as XML

files on the mobile unit secondary

storage.

When reconnection with the primary server is available

After short disconnection:

 The program reissues the dependent-write-set group

transaction as a new transaction as in step 4.

After long disconnection

 The program loads the XML files and starts a new

fully dependent write-set group transaction for the loaded

data-sets (shadow and original) as in step 4.

Commit or abort write-set transaction

 Validation-Write Procedure-1 (A General Validation

TABLE 2: TRANSFERRING AMOUNT FROM ACCOUNT X TO ACCOUNT Y.

Read-Phase:

K(X), A(X), W(X)o, K(Y), W(Y)o

10 , Abc, 5000 , 20 , 3000

Edit-Phase:

 K(X), A(X), G,

 F1(g)  Δ(W(X))

 Δ(W(X)) + W(X)o = W(X)s

 F2(Δ(W(X))) Δ(W(Y))

 Δ(W(Y)) + W(Y)o = W(Y)s

10 , Abc

F1(5000)  -400

5000-400 = 4600

F2(-400)  400

3000 + 400 = 3400

10,ashraf, 4600, 20, 3400

Validation and Write Phase:

Validation Test for account X:

Current Value at Primary Site:

K(X), A(X), W(X)

 Δ(W(X)) = W(X)s – W(X)o

 W(X)c = W(X)c + Δ(W(X))

If(check-constraints(W(X)c) then

 Accept W(X)c, G

 Commit (t)

 Else

 Rollback (t)

 End if

10,Abc, 7000

-400 = 4600 -5000

 6600 = 7000-400

check-constraints(6600)=

True

 Accept 6600 , F1(5000) , -

400

 Commit (t)

Validation Test for account Y:

Current Value at Primary Site:

K(Y), W(Y)c

20, 2000

 Δ(W(Y)) = W(Y)s – W(Y)o

 W(Y)c = W(Y)c + Δ(W(Y))

 If(check-constraints(W(Y)c) then

 Accept W(Y)c, G

 Commit (t)

 Else

 Rollback (t)

 End if

400 = 3400 -3000

2400 = 2000 + 400

check-constraints(2400)=

True

 Accept 2400 , F2(-400) , 400

 Commit (t)

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1321

Algorithm to Be Put as a Part of the DBMS)

Validation-Write-Phase (Record original, Record

shadow, String read-query, String update-query)

 In what follows we show the core functions of the

technique, which use the actionability rules to perform the

validation test. Its inputs are original data-set, shadow

dataset (shadow-rec), read-query, update query, and the

actionability types for attributes if they are not declared

while tables creation. If the validation test succeeds, the

transaction commits, otherwise the transaction aborts.

Aware-Update (integer flag)

{

For each change-reject-attribute(i) in shadow-rec

 If Current.R(i) <> Shadow.R(i) then

 Flag = -1

 Goto par-out

 End if

Next-For

 For each change-aware-attribute(i) in shadow-rec

 ΔW(i) = Shadow.W(i) - Original.W (i)

 Current.W(i) = ΔW(i) + Current.W(i)

 If (check-constraints(current.W(i)) = False) then

 Flag = -2

 Goto par-out

 Next-For

Par-out:

Return (flag) }

Table 2 shows an example to describe how the validation

and write phase can be applied, and assume linear

transactions for simplicity. The example shows a bank

transaction that transfers $400 from account X to account

Y. We use the notations of actionability, K denotes the Key

attribute, A denotes a Change-Accept attribute, R denotes

a Change-Reject attribute, W denotes a Change-Aware

attribute, G denotes a generated attribute, and the

subindexes o denotes the original value, s denotes the

shadow value and c denotes the current value at the primary

sever.

B. M-shadow technique for transactional workflow

mobile applications with compensation

Begin_ trans_workflow

At Mobile Unit side:

1. Retrieve the current dataset from the primary server

(Reading phase)

2. Copy the retrieved dataset as a shadow copy.

3. The user edits the dataset on the shadow copy [modify,

add, delete] (Editing phase)

4. Send the original read-set, the edited-set (shadow copy

changes), the read-query and, and the update query to

the primary server (subtransaction by subtransaction).

 At Primary Server Side:

 Call validation-write-2 procedure

(Stored Procedure at the primary

server)

5. If one subtransaction fails because of disconnection:

At Primary Server Side:

 Rollback the current write-set subtransaction only.

At Mobile Unit side:

 Short disconnection (the user doesn't close the

program which means all variables and data-sets still

available in the main memory): Try to reconnect.

 Long disconnection (the user wants to close the

program): The program saves the data-sets (the

original data-set and the remaining elements of the

shadow data-set) as XML files on the mobile unit

secondary storage to be retrieved at the reconnection

time.

When reconnection with the primary server is available:

After short disconnection:

 The program resends the write-set data for the

subtransaction, which the disconnection happened through

its update only. The primary server restarts the write-set

subtransaction as in step 4.

After long disconnection:

 The program loads the XML files and starts a new

independent write-set group transaction for the loaded data-

sets (original and shadow) as in step 3.

End_trans_workflow

Validation-Write Procedure-2 (Stored Procedure at the

primary server)

Sub Validation-Write (ti)

 {

Begin write-set subtransaction (ti)

 Hold exclusive lock (ti)

 Read data from active database for (ti) as current

 If change-reject data-item is changed then

 Rollback transaction (ti)

 Call compensation-handler

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1322

 Else

 Calculate Δ(x) = Shadow(x) - Original(x)

 Current (x) = Current (x) + Δ(x)

 Check-validity (Current (x))

If check-validity success then

 Write shadow data-set to the current database

 Write change-values to TWlog

 //Or save shadow data-set as compensation-set and

original data-set it as XML files for compensation purpose.

Commit Trans (ti)

 Removes the subtransaction shadow data-set from

the shadow copy}

 Else

 Rollback transaction (ti)

 Call compensation-handler()

 End if

 End if

If network failure then

 At reconnection, restart subtransaction

End IF

 }

Compensation Handeler()

{

For each commited-subtransactin (ti) in TW-log

 Hold exclusive lock (ti)

For each changed attribute

 If attribute is numeric then

 Current_value = current_value+ change value

 If check-validity fails

 Rollback (ti)

 Generate request report for human interaction

 Else

 Loop

 End if

Else If attribute is non-numeric then

 If Current_value <> TW-log-value then

 Rollback (ti)

 Generate request report for human interaction

 Else

 Current-value = old_value

 Loop

 End if

End if

Write the current values to the database

Commit }

C. M-Shadow technique for transactional workflow

mobile applications without compensation

Begin_ trans_workflow
The steps from 1 to 4 of TW with compensation are

repeated.

5. Implement the validation and write phase:

 Call validation-write-1 procedure (as a

part of the DBMS)

6. If one subtransaction fails :

At Primary Server Side:

 Rollback the current write-set

subtransaction.

At Mobile Unit side:

If failure because of:

 Integrity constrains:

o Remove the subtransaction shadow

data-set from the shadow copy.

o Send next subtransaction data to the

primary server.

 Short disconnection (the user doesn't close

the program which means all variables

and data-sets still available in the main

memory): Try to reconnect.

 Long disconnection(the user wants to

close the program): The program saves

the data-sets (the original data-set and the

remaining elements of the shadow data-

set) as XML files on the mobile unit

secondary storage to be retrieved at the

reconnection time.

When reconnection with the primary server is available:

After short disconnection:

 The program resends the write-set data for the

subtransaction, which the disconnection happened through

its update only. The primary server restarts the write-set

subtransaction as in step 5.

After long disconnection:

 The program loads the XML files and starts a new

independent write-set group transaction for the loaded data-

sets (original and shadow) as in step 4.

End_trans_workflow

D. Advantages and Limitations of the M-Shadow

technique

 The advantages of using the M-Shadow technique are:

1. Transaction structure is build according to the

business logic.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1323

2. Reserve database consistency in case of using

compensation.

3. Increase the performance of the system, by

increasing the success probability of transaction by

allowing transaction to continue its work even

after disconnection and changing data on the

primary server.

4. No transfer of logs or transaction history among

sites. Only external files (XML files) would be

saved on the mobile unit and will be deleted when

the transaction finished.

5. Recovery for active transactions at failure time,

which DBMS recovery manager does not do.

6. Decrease the programming time for applications,

because the DBMS performs the update process.

7. No need to load the mobile unit with DBMS,

replica and synchronization of replica.

8. No storage lost on the primary server or on the

mobile unit, because after the transaction

committed or roll backed, the program deletes the

XML files.

9. The primary server load would be more lite.

10. More control over the network disconnection,

especially in wireless networks which its property

is frequently disconnection.

11. All ACID properties are achieved in atomic

mobile transaction applications, and semantic

ACID is achieved in the transactional workflow

mobile applications.

 The limitations of the M-Shadow technique are: it is

designed for commercial applications that have a few shared

data items among transactions and the validation test is not

suitable for some real-time applications.

V. SUMMARY OF IMPLEMENTATION AND

PERFORMANCE EVALUATION

 To evaluate the effects of using the actionability types

and rules, we used the simulation program Benchmark

Factory for Databases, but it does not allow changing data

while the simulation process is running. So that, we

developed a prototype for the M-Shadow model with and

without actionability as an atomic mobile transaction

application and as a transactional workflow mobile

application, we stored the new values and old values of data

items as XML files and then recalculated the change values

from them at reconnection time or at compensation process,.

We found that, in atomic transaction mobile application

without actionability, the compound transaction that fails if

one of its vital subtransactions fails because of any data

change at the primary server; it succeeds when the

actionability types and rules are applied.

In transactional workflow mobile application without

actionability, the transaction that fails because of any data

change at the primary server; it succeeds when the

actionability types and rules are applied, that increases the

number of succeed transactions and the success rate. Also,

applying compensation is based on business logic and

reserves database consistency.

When implanting an atomic mobile transaction

application as transactional workflow mobile application

based on TW-log and pending table, the throughout of the

system is decreased.

 We implemented a sales application that uses the M-

Shadow technique using Visual Basic .Net and SQL Server

2005 because they support many new features as writing

and reading XML files. We assume that the replication

handling is solved as a distributed database problem using

the lazy replication technique among fixed hosts.

VI. CONCLUSION

 In this work, we classified business applications to

atomic transaction applications and transactional workflow

applications with/without compensation based on the nature

of business logic with maintaining of database consistency.

We concentrate on mobile transaction as an example of

long-lived transactions and extended the M-Shadow

technique to handle both atomic mobile transaction

applications and transactional workflow applications. M-

Shadow technique increases the transaction success

probability even with disconnection, and this by

consequence, raises the performance of the system.

Actionability classifies the data elements handled by a

transaction according to how much a change on these

elements affects the transaction behaviour. Also, applying

compensation is based on business logic and reserves

database consistency

 Future research will extend this work to support

complex business applications that include a big number of

shared data items and complex computations, and web

service applications. Parallel processing, real-time

environments, compensation for location based transactions,

alternatives for handling failure of compensating transaction

other than requesting human interaction and security of

mobile transactions will be investigated.

REFERENCES

[1] Romani Farid Ibrahim, “Adaptive Mshadow model for Handling

Mobile Database Transaction processing", International journal of

Advanced Research in Computer and Communication Engineering

(IJARCCE) , Volume 1 Issue 9, pp700–709, November 2012.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1324

[2] Romani Farid Ibrahim, Handling Disconnection in Mobile Database

Transaction, The 5th International Conference on Application of

Information and Communication Technologies (AICT2011), Azerbaijan,

Baku, 2011.

[3] Osman Hegazy, Ali El Bastawissy and Romani Farid Ibrahim,

Handling Mobile Transactions with Disconnections using a Mobile-

Shadow Technique, Proceedings of the 6th International conference of

Informatics and Systems (INFOS 2008), Faculty of Computers &

Information-Cairo University, March 2008.

[4] Osman Hegazy, Ali El Bastawissy and Romani Ibrahim, A

Programming Solution for Moving Mobile transaction, Proceedings of the

6th International Enformatika (IEC 2005), Budapest, Hungary, October

2005.

[5] Osman Hegazy, Ali El Bastawissy and Romani Ibrahim, Technique

for Handling Transactions that Move among Hosts in Mobile Databases,

Proceedings of the International Conference on Computational Intelligence

(ICCI 2004), Istanbul, Turkey December 2004.

[6] M. Dunham and A. Helal, A Mobile Transaction Model that

Captures both the Data and Movement Behaviour, Mobile Networks and

Application (MONET), pp149–162, 1997.

[7] Gary D. Walborn and Panos K. Chrysanthis, PRO-MOTION:

Management of mobile transactions, Proceedings of ACM symposium on

Applied computing April 1997.

[8] P. K. Chrysanthis, Transaction Processing in a Mobile Computing

Environment, Proceedings of the IEEE Worskhop on Advances in Parallel

and Distributed Systems, 1993.

[9] Yin-Huei Loh, Takahiro Hara, Masahiko Tsukamoto, Shojiro Nishio,

Moflex Transaction Model for Mobile Heterogeneous Multidatabase

Systems, Proceedings of the symposium on Applied computing, ACM,

March 2000.

[10] Nadia Nouali, Anne Doucet and Habiba Drias, A Two-Phase

Commit Protocol for Mobile Wireless Environment, Proceedings of the

16th Australasian Database Conference (ADC 2005), Australian

Computer Society, vol. 39, pp135–143, 2005.

[11] A. Elmagarmid, J. Jing, J. G. Mullen and J. Sharif-Askary,

Reservable Transactions: An Approach for Reliable Multidatabase

Transaction Management, Technical Report SERC-TR-114-P, Software

Engineering Research Centre, April 1992.

[12] Paul Greenfield, Alan Fekete, Julian Jang, Dean Kuo, Compensation

is Not Enough, EDOC 2003.

[13] Tim Edmonds, Steve Hodges and Andy Hopper, Pervasive

Adaptation for Mobile Computing, Proceedings of the 15th International

Conference on Information Networking, 2001.

[14] M. Satyanarayanan, Fundamental Challenges in Mobile Computing,

Proceedings of ACM Symposium on Principles of Distributed Computing,

1996.

[15] Thomas M.Connolly and Carolyn E.Begg, Database Systems- A

Practical Approach to Design, Implementation, and Management”,

Addison Wesley1999.

[16] Jose Maria Monteiro, Angelo Brayner and Sergio Lifschitz, A

Mechanism for Replicated Data Consistency in Mobile Computing

Environments, Proceedings of ACM symposium on Applied computing,

Seoul, Korea, pp 914-919, March, 2007.

[17] Vijay Kumar, Mobile Database Systems, John Wiley & Sons, pp

113- 197, 2006.

[18] Patrick O'neil and Elizabeth O'nell, Database Principles

Programming Performance, Academic press 2001.

[19] Elmagarmid,A.K, ”Database Transaction Models for Advanced

Applications“, Morgan Kaufmann Press, March,1992.

[20] Hector Garcia-Molina and Kenneth Salem, "SAGAS", Proceedings

of the ACM SIGMOD International Conference on Management of Data,

1987.

[21] Patricia Serrano-Alvarado_, Claudia L. Roncancio and Michel

Adiba, "Analyzing Mobile Transactions Support for DBMS", Proceedings

of the 12th International Workshop on Database and Expert Systems

Applications (DEXA’01) , 2001.

[22] Narayanan Krishnakumar and Ravi Jain, “Escrow techniques for

mobile sales and inventory applications”, Wireless Networks, August,

1997.

[23] Joanne Holliday, Divyakant Agrawal and Amr El Abbadi,

Disconnection modes for mobile databases, Wireless Networks, July,

2002.

[24] Zaihan Yang and Chengfei Liu, Implementing a flexible

compensation mechanism for business processes in Web service

environment, International Conference on Web Services (ICWS 2006),

IEEE Press, Salt Lake City, Utah, 753–760.

[25] Diimitrios Georgakopoulos, Mark Hornick and Amit Sheth, An

Overview of Workflow Management: from Process Modeling to Workflow

Automation Infrastructure, Distributed and Parallel Databases, Kluwer

Academic Publishers, 1995.

BIOGRAPHY

Romani Ibrahim received the B.A. in

computer and information system from

Sadat Academy for Management Science,

Egypt. M.Sc. degree in computer science

and Ph.D. degree in information systems

from Cairo University, Egypt. He works in

the High Institute of Computer Science and Information -

City of Culture and Science- 6 October City. Egypt. He is a

member of ACM. His research interests include distributed

and mobile database systems, transaction processing, data

warehousing and information security.

file:///D:\Application%20Data\WINDOWS\Application%20Data\Microsoft\Word\WINDOWSDesktoplast%20searchcitation.cfm%3fid=545045&coll=Portal&dl=Portal&CFID=8549086&CFTOKEN=65175421

	OLE_LINK1
	OLE_LINK2

