
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3798

Configuration of Real Time Linux on EP93XX

Platform

Geeta Patil
1
, Vaishali Ingale

2
, Ashwini Sapkal

3
, Rahul Desai

4

Asst Professor, Information Technology Department, Army Institute of Technology, Pune, Maharashtra, India

Abstract: This paper describes the porting of RTLinuxPro on EP93xx platform which contains ARM920T based processor.

This paper also discusses designing real-time application and executing them on this platform. RTLinuxPro is licensed

software from FSM Lab specifically designed for real time embedded applications.

Keywords: RTLinux, EP93XX, FSMLab, TFTP etc.

I. INTRODUCTION

FSMLab (Finite State Machine Labs Inc.) RTLinux (Real

Time Linux) is a small real time operating system that is

used for systems where precise timing, down to a few

microseconds or less, is needed [1]. For example, RTLinux

is used to run telescopes (at Kitts Peak), instruments (by

NASA and many others), machine tools (NIST), high speed

network switches (Huawei and Alcatel), and all sorts of

other things where “usually fast enough” is not good

enough.

RTLinux follows the POSIX 1003.13 standard and so its

API is pretty close to ordinary POSIX (Portable Operating

System Interface) threads/signals [2]. RTLinux kernel

applications look like threads and signal handlers running on

a tiny operating system close to the bare machine. Real-time

applications on RTLinux are almost always made up of two

parts: a real time kernel and the parts that do data logging,

non-real time networking, GUIs, data analysis or display,

and anything else that does not need precise timing. This

non-real time part runs in either Linux or BSD UNIX and

uses the ordinary programming interface of these systems.

One of the big advantages of RTLinux is that real time

programmers can use a simple, very efficient, threads/signals

environment for hard real time software, use a regular

operating system with many features for everything else, and

glue the parts together. A typical application might use a

standard database, a Perl-script, and a data analysis package

- all driven by a real time thread

Real time operating systems are systems, which respond to

any external unpredictable event in a predictable way and

with strict timing constraints. Real time operating systems

are required to be very deterministic.RTLinux uses a

patented process to run a general purpose operating system

like Linux or BSD Unix as its lowest priority thread and to

make sure that this general purpose operating system can

always be preempted (interrupted) whenever a real time

operation needs to run.

The RTCore OS is a small, hard real-time operating system

that can run Linux or BSD UNIX as an application server

[5]. This allows a standard operating system to be used as a

component of a real-time application. A typical RTCore

application consists of one or more real-time components

that run under the direct control of the real-time kernel and a

set of non real-time components that run as user-space

programs.

RTLinux is an extension of Linux to a Real time OS

originally developed by V. Yodaiken at the New Mexico

Institute of Mining and Technology. Now, RTLinux is

available as a community supported free version, called

RTLinux Free, as well as a commercial version from

FSMLabs, called RTLinux Pro. RTLinux almost runs on any

platform including x86, Power PC, Alpha, ARM etc.

RTLinux also works on i486. The MiniRTL release fits

RTLinux, Linux and some applications on a single floppy

disk and runs in 4M of memory. The RTLinux software for

x86 is available on internet for free download.

RTLinux supports hard real-time (deterministic) operation

through interrupt control between the hardware and the

operating system. Interrupts needed for deterministic

processing are processed by the real-time core, while other

interrupts are forwarded to the non-real time operating

system. The operating system (Linux) runs as a low priority

thread. First-In-First-Out pipes or shared memory can be

used to share data between the operating system and the

real-time core.

Three major attributes make RTCore work: It disables all

hardware interrupts in the GPOS. It provides interrupts via

interrupt emulation. It runs full featured non real-time Linux

(or BSD) as the lowest priority task. It is the idle task of the

RTOS, meaning that it is run whenever the real-time system

has nothing else to execute.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3799

The main problem in adding hard real-time capabilities to

GPOD is that the disabling of interrupts is widely used in the

kernel for synchronization purposes. The strategy of

disabling interrupts in critical code sequences (as opposed to

using synchronization mechanisms like semaphore or

Mutex), is quite efficient. It also makes code simpler, since it

does not need to be designed to be re-entrant. But disabling

the interrupts for long period results in lost events.

To maintain the structure of the GPOS kernel while

providing real-time capabilities, one must provide an

”interrupt interface” that gives full control over interrupts,

but at the same time appears to the rest of the system like

regular hardware interrupts. This interrupt interface is

essentially an interrupt emulation layer, and is one of the

core concepts in RTCore. Interrupt emulation is achieved by

replacing all occurrences of STI and CLI with emulation

code. This introduces a software layer between the hardware

interrupt controller and the GPOS kernel, allowing the real-

time kernel to handle interrupts as needed by real-time code,

but still allowing the general purpose OS to handle them if

there is a need.

Interrupts that are not destined for a real-time task must be

passed on to the GPOS kernel for proper handling when

there is time to deal with them. In other words, RTCore has

full control over the hardware and non real-time GPOS sees

soft interrupts, not the real interrupts. Hardware interrupt

interaction is simply emulated in the GPOS. This means that

there is no need to recode GPOS drivers, provided there are

no hard-coded instructions in binary-only drivers that bypass

the emulation.

Fig 1: RTLinux Kernel

Fig 2: EP93XX SBC

The EP93xx is a high-performance system-on-chip design

that includes a 200 MHz ARM9 processor and is ideal for a

range of industrial and consumer electronic applications [3].

The EP9302 features an advanced ARM920T processor

design with a memory management unit (MMU) that

supports Linux, Windows CE and many other embedded

operating systems [4]. The ARM920T's 32-bit

microcontroller architecture, with a five-stage pipeline,

delivers impressive performance at very low power.

Designers of industrial controls, internet radios, digital

media servers, audio jukeboxes, thin clients, set-top boxes,

point-of-sale terminals, biometric security systems and GPS

devices will benefit from the EP9302's integrated

architecture and advanced features. The basic block diagram

of EP9302 SBC [6] is as shown in Figure 3.

Fig 3: EP9302 SBC Block Diagram

The general flow of compiling and porting RTLinuxPro is as

shown in Figure 3.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3800

Fig 4: Deployment Flow chart

II. STARTING TFTP SERVER

Host Machine is the development workstation on which all

binaries are compiled. Binaries and file systems are built so

that they will run on the target machine. Target Machine is

the computer which runs the binaries and file system

compiled by the host machines. It could also be the host

machine itself. Host machine is our personal desktop while

our target is EP9302 SBC. File transfer service (tftp) should

be executed on host machine to transfer the file to target

board.

Fig 5: stating tftp server

III. DESIGNING ROOT FILE SYSTEM

Download utility is used to program the image "redboot.bin"

into the flash of the board to be used. It is also used to

program the Ethernet MAC address so that the Ethernet

interface can be used by RedBoot.

The Linux kernel expects several important files to exist in a

root file system when it boots. In embedded systems, these

files are stored in ramdisk. There are two limitations on the

size of a ramdisk. If the compressed ramdisk image is stored

in partition in on board Flash memory and the compressed

ramdisk.gz is bigger than this partition, the boor loader will

not program it to on board flash. The compressed ramdisk

image is decompressed into RAM. The bigger your

uncompressed ramdisk is, the less RAM you have remaining

for the kernel and user programs. This limitation depends on

the amount of RAM installed and the amount needed by the

kernel and your software to run. Enter the command "df" to

see how much free space you have in your ramdisk.

The basic file system structure contains minimum set of

directories /dev, /bin, /etc, /lib, /sbin, Basic set of utilities sh,

ls, cp, mv, etc, Minimum set of config files: rc, inittab, fstab,

etc., Devices /dev/hd*, /dev/tty*, /dev/fd0, etc and Runtime

library to provide basic functions used by utilities.

Once RedBoot (with networking) is running on the board,

Linux can be loaded and run. The images to be loaded by

RedBoot must be placed into the area used by the tftp server

on your host machine. The boot-loader loads the zImage and

the root file system from on-board Flash. The default

configuration of EP9302 is using part of SDRAM as RAM

disk for Linux root file system. The ramdisk image must be

stored in the on-board FLASH memory and loaded by

Redboot for the Linux kernel. The image must be loaded

into dynamic memory before it can be stored in the on board

FLASH memory. Since the file system is in RAM, it is fast

and can be mounted rw (read/write) but the changes are not

preserved after a reboot. The compressed image will remain

unchanged and provide the same environment each time the

system starts

IV. COMPILING RTLINUXPRO

Before you compile your kernel, you need to configure it.

Configuration choice is kept in /linux/.config file.

Configuration is your opportunity to control exactly what

kernel features are enabled (and disabled) in your new

kernel. You'll also be in control of what parts get compiled

into the kernel binary image (which gets loaded at boot-

time), and what parts get compiled into load-on-demand

kernel module files. The old-fashioned way of configuring a

kernel is make config. New Way to configure is to use

make menuconfig or make xconfig. If you'd like to

configure your kernel, type one of these options. If you type

make menuconfig, you'll get a nice text-based color menu

system that you can use to configure the kernel. If you type

make xconfig, you'll get a very nice X-based GUI that can

be used to configure various kernel options. make config

runs the Bash script Configure, which reads in the

arch/arm/config.in file, which is located in the architecture

directory and holds the definitions of the kernel

configuration options and default assignments and

interrogates it to see which components are to be included in

the kernel. arch/arm/config.in resorts to the config.in files

contained in the directories of the individual subsystems of

the kernel. During this process, the two files

linux/autoconfig.h and .config are created. The .config file

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3801

controls the sequencing of the compilation run which

linux/autoconfig.h takes care of conditional compiling

within the kernel sources. The .config file is used if

configure is called again to determine the default responses

to individual questions. A fresh configuration will thus

return the last values as the defaults. The command make

oldconfig ensures that the default values are accepted

without further interrogation. This enables .config file to be

included in a new version of Linux so that the kernel is

compiled with the same configuration.

Fig 6: Compiing RTLinux kernel

Once your kernel is configured, it's time to get it compiled.

Change the directories to the RTLinux kernel directory on

the host system. Use “make zImage” to build the Linux

boot image. After several minutes, compilation will

complete and you'll find the zImage file in /arch/arm/boot.

Fig 7: Creating zImage

Fig 8: Once the board is ready….

V. INSTALLING RTCORE

A typical RTCore application consists of one or more real

time components that run under the direct control of the real

time kernel and a set of non real time components that run as

under space programs. RTCore must be loaded in order for

any real time services to be available. Hence in order to run

any RTCore application we need to load RTCore modules

on the Board. The process is simple, once the patched kernel

has been compiled and installed. Once the system is running

the correct kernel, RTCore module can be loaded located in

modules directory of RTLinuxPro.

For this example, the RTCore OS needs to be loaded on

edb93xx SBC. This is most simple example to print Hello

message.

#include <stdio.h>

int main(void)

{

printf ("Hello from the RTL base system\n");

return 0;

}

Running the example (./hello.rtl) forces the RTCore OS to

load the application and enter the main () context. Here it

prints a message out through standard I/O for the user to see

and exits. A simple makefile is needed to build this, which

includes rtl.mk which will set up the build environment -

compilers, CFLAGS, and so on. Including Rules.make will

provide the build rules needed to transform C source to an

RTCore application. In old RTLinux versions (2.0 and prior)

printf () messages are appearing in the kernel’s ring buffer,

but now they print through stdout just like any other

application. Also, there is a standard printf (), rather than the

rtl_printf (). This printf () is fully capable and can handle

any format that a normal printf () can handle. Once the

message has been printed, the program exits, and RTCore

unloads the application.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 10, October 2013

Copyright to IJARCCE www.ijarcce.com 3802

Fig 9: Running RTLinux application on EP9302

CONCLUSION

This paper presents guidelines showing how to port

RTLinux on ARM platforms. While configuring the real

time kernel for ARM platform, we need to select proper

processor type. i.e. EP9302 processor. And we also need to

enable “Network File System” and “Root File System on

NFS” options as a root file system for target GESBC-9302

board. This paper also described the steps for running any

real-time applications on ARM platform.

REFERENCES

1. Using Linux for real time applications- Marchesin. A; Volume 21

IEEE- Sep-Oct 2004.

2. Victor Yodaiken. RTLinux approach to hard real-time.

3. ARM System-on-chip Architecture 2nd Edition – Steve Furber

4. ARM System Developer’s Guide by Andrew Sloss, Dominic Symes,
Chris Wright FSM Labs Inc. FSMLabs RTLinux Development, 2002.

www.fsmlabs.com/developers.

www.fsmlabs.com/products/software.htm.
5. GESBC-EP9302 User Manual

6. Website: www.cirrus.com

http://www.fsmlabs.com/developers
http://www.fsmlabs.com/products/software.htm
http://www.cirrus.com/

