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Abstract: In this paper, we introduce a Graphic User interface (GUI) which performs segmentation of nonlinear 3D 

functions which approximate the 3D functions within a desired degree of accuracy.  Due to the approximation and 

prediction difficulty of 3D functions, it is advantageous to segment these nonlinear shapes into sub regions which can 

easily be approximated.  The GUI systematically segments nonlinear functions into smaller regions and applies the 

Least Square Estimate (LSE) method to approximate the parameters of each subsequent linear plane.  The GUI has the 

ability to regulate the approximation error to be within a desired range chosen by the user.  We demonstrate, through 

simulation, the functionality and capabilities of the GUI and provide results of user-defined parameters variations and 
how they affect the linear region parameter approximation. 
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I. INTRODUCTION 

There have been great efforts in engineering to linearize 

nonlinear functions to approximate system states, model 

dynamic behaviour, simplify computational complexity, 

and provide control methods and strategies [1-10].  In all 
the aforementioned references, different methods of 

linearization and approximation are presented.  This same 

approach is also beneficial in fields outside of engineering 

where there is a need to approximate nonlinear curves.  

Approximation by „segmenting‟ or essentially breaking up 

a nonlinear function into smaller regions has shown to be a 

very efficient method [11-12].  The approximation task 

becomes especially difficult for 3D profiles compared to 

2D profiles which can be approximated by linear segments 

[13].  This segmentation method, referred to in control 

engineering as Piecewise Linearization, has shown in 

recent literature to be very useful because it allows for 
linear control and estimation methods on nonlinear 

systems.  Linear control and estimation theory is found in 

abundance, and is less computationally complex.  In 

practice, the control costs are less due to the ability to 

utilize less powerful processors compared to those needed 

for the more complex nonlinear problems. 

A Graphic User Interface (GUI) is presented in this work 

and its functionality and capabilities are outlined in detail.  

The user-defined inputs of the GUI are as follows: 

 Defines a 2-variable (3D) nonlinear function 

 Defines the range of the variables of the nonlinear 
function 

 Sets the number of randomly generated points 

used for approximation for each linear plane 

 Sets an acceptable error range (%) 

 Set the maximum amount of trials for the GUI to 

achieve the acceptable error percentage 

requirements 

The GUI will use the randomly chosen points within the 

defined ranges and error allowance, and it uses the Least 

Square Estimate (LSE) method to approximate the 

parameters for the linear approximation of each region. A 
flowchart of the GUI is presented in Figure 1.  In section  

 
 

II, we discuss segmentation and how it is performed.  In 

section III, we outline the Least Squared Estimate (LSE) 
method used to find the linear segmentation parameters.  

In Section IV, we provide the analysis of the results of 

how the user-defined GUI parameters affect the 

approximation error.  This is done by varying the number 

of randomly generated points used for parameter 

approximation and the number of segments chosen for 

region approximation.  Lastly, we provide our final 

thoughts on the work that was presented in this paper. The 

GUI, along with a tutorial document, can be found at the 

following link: 
 

tiny.cc/MATLAB_3D_LinearSeg_GUI 
 

 
Fig. 1 Segmentation GUI Procedure Flowchart 

 

II. DIMENSIONAL SEGMENTATION 

 Segmentation is a method by which a 3-dimensional (3D) 

profile is broken up into sub regions.  The main advantage 

is in the ability to approximate the (3D) profile of a system 

to a high degree of accuracy without using complex 

nonlinear computational methods.  The simplest form of 

segmentation is for 2-dimensional profiles (2D) in the 

form shown in Eq. 1 where ( )f x is a nonlinear function 

dependent on one variable .x    Fig. 2 and Fig. 3 

demonstrate segmentation of a 2D nonlinear profile.  For 

this example we picked the cosine function.  From Figures 

2 and 3, it is easy to see that the more segments that are 

taken then the better the approximation.  This is evident by 

the decrease in the Root Mean Squared Error (RMSE) 

recorded for each segmented function and shown in Table 

I. q denotes the number of segments chosen to 

approximate the nonlinear profile.  Each of these line 
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segments are represented as a linear equation of the form 

presented in Eq. 2.  The slope of each line segment is 

given by m
i

, where 1.....i q . The boundary point for 

each segment is 
i

b  and ŷ is the approximation of 

nonlinear profile. 

( )                                                               (1)z f x

ˆ                                                           (2)y m x b
i i

   

 
Fig. 2 2D Segmentation ( ) cos( )f x x with 2q

 
 

 
Fig. 3 2D Segmentation ( ) cos( )f x x with 8q  

 

TABLE I 

2D SEGMENTATION OF COSINE FUNCTION 

Number of Linear 

Segments 

Root Mean Square 

Error (RMSE) 

2 0.0506 

7 0.0214 

 

The regions can be chosen intelligently by having a prior 

knowledge of the symmetry of the profile.  Things such as 

minima, maxima, zero crossings and curvature are all 

good boundary points for segmenting.  Even though, it is 

clear that more segments means a better approximation.  
One has to take into account the increase in complexity 

factor that more segments brings.  The more pieces taken, 

then the more computations need to be performed.  That 

trade-off between accuracy and complexity needs to be 

taken into account considering the particular problem at 

hand. 

3D segmentation is a tougher task than 2D segmentation 

due to the increase in the dimensions and the shape of the 

profile because the task now must take two variables into 
account as shown in Eq. 3.  The linear approximation of 

what are now planes, as opposed to linear segments, takes 

the form shown in Eq. 4. 

( , )                                                           (3)z f x y  

ˆ                                              (4)
1 2

y m x m y b
ii i

     

 

The approximations of 3D profiles, such as the one shown 
in Fig. 4, are of great importance.  This is because it is 

known that many systems in engineering, and other fields 

such as medicine, are 3 dimensional and dependent on 

more than one variable.  3D segmentation, therefore, 

allows us to approximate these profiles for control, 

analysis or diagnosis of the system. 

 

 
Fig. 4 3D Nonlinear profile 

 

III. LEAST SQUARE ESTIMATE METHOD 

The Least Square Estimate (LSE) method is an estimation 

method that finds the solution which reduced the squared 

error of a function based on statistical data [14-15].  It is 

often used for parameter determination where the function 

is known and much statistical data can be collected.  In our 

GUI, we use this method to determine the parameters 

,
1 2

m m  and 
1

b for the linear planes which approximate the 

nonlinear function.  While there exists other methods of 
estimation, such as Taylor Series [16], the LSE method is 

the most optimal because it inherently minimizes an error 

criterion.  Taylor series has the advantage over other 

methods in that it doesn‟t require an extensive amount of 

data, however, an operating point must be known.  This is 

not practical for 3D nonlinear systems because of their two 

variables nature the operating point often changes 

dynamically and/or is not well known.  This can lead to 

high approximation error due to limited knowledge of the 

operating point.   

 
For any function represented as in Eq. 5, with parameters

x which need to be estimated, an approximation x̂ can be 

found.  The approximation error e , is written in Eq. 6. 
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                                                                      (5)y Ax

ˆ                                                                (6)e y Ax   

The LSE decreases the approximation error by finding the 

minimum solution to the error criterion denoted, m̂in
LSx

( )J .  ( )J  is the squared error which is shown in Eq. 7. 

1 1
ˆ ˆ( ) ( )                     (7)

2 2

T TJ e e y Ax y Ax     

The solution to this problem, x̂
LS

, is the least squared 

estimate given in Eq. 8 and is found by taking the 

derivative of Eq. 7 and equating it to Eq.8. 
1ˆ                                                        (8)x

LS
A y  

In case that there are more data point taken, y , then the 

unknown parameters, x , Eq. 8 will not hold due to  

dimensions mismatch.  To solve this issue, the pseudo-

inverse of A is used as follow, 
1 1( )                                                (9)T TA A A A   

IV. ANALYSIS AND RESULTS 
In this section, we provide an overview of the 

functionality of the GUI, while conducting a test to show 

its capabilities.  The most important user-defined 

command in this GUI, in terms of parameter determination 

and the segmentation approximation, is the total amount of 

segments chosen.  While we vary the amount of segments 

taken, the number of data points taken for the LSE of the 

parameters, the acceptable error, and the maximum 

number of trials to reach the acceptable error for each 
segment remain unchanged.  These constant parameters 

for this test are shown in Table II. 

 

TABLE II 

USER DEFINED TEST PARAMETERS 

Number of 

random data 

points 

Acceptable 

error                 
( %)  

Max. number 

of trials 

100 10 100 

 

In Table III, we show the three different combinations of 

region segmentations that were applied on the same 

nonlinear function (Z= X*Y).  Each row provides the 

approximation error for each particular segment.  For the 

first trial, 2 segments were chosen for Var1 and Var2 as 
shown in Fig.5.  This gives a total of 4 segments.  For the 

second trial, 2 segments were taken for var1 and 3 

segments for Var2 given us a total of 5 segments as shown 

in Fig. 6.  In the third and final trial 3 segments were used 

for Var1 and 5 segments for Var2 or a total of 8 segments 

as shown in Fig. 7.  The results are shown in the table IV. 

They clearly demonstrate that using more segments for the 

nonlinear function approximation yields less error.  We 

calculate the root mean squared error for every segment in 

each trial and the percent error of each segment for the 

individual trials to find their average in order to get the 
average error for each trial.  For each increasing number of 

segments, from trial 1 to trial 3, the average error 

percentage as well as the RSME decreased.  As discussed 

in section II, the segmentation procedure improves with 

the increasing amount of segments taken.  This is the main 

parameter a user needs to adjust when wanting to get 
better results using this GUI. 
 

TABLE III 

ERROR APPROXIMATION 

 
TABLE IV 

AVERAGE ERRPR RESI;TS PF THE TRIALS 

 TRIAL 1 TRIAL 2 TRIAL 3 

Average 

Error 
5.668280933 2.774016811 1.876938083 

Root 

mean 

Square 

Error 

3.366981121 2.355426421 1.937492237 

 

 
Fig. 5 Trial 1 (4 segments)
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Fig. 6 Trial 2 (5 segments)  

 

 
Fig. 7 Trial 3 (8 segments) 

 

V. CONCLUSION 

In this work, we provided a Graphic User Interface which 
performs segmentation and estimation of 3D nonlinear 

functions.  Indeed, segmentation is a good way to 

approximate any nonlinear function. This GUI can span 

various fields and applications where the approximation of 

a 3D profile is beneficial. The tasks involved in finding 

the equations for the segments of a 3D nonlinear function 

can be tedious, time consuming and mathematically 

extensive.  Therefore, the GUI we provide is of great 

service to the technical community.   It has already been 

shown in literature that this segmentation method of 

splitting a nonlinear function into sub regions has 

favourable advantages.  In the engineering field it 
decreases the mathematical, control and estimation 

complexity of a problem.   
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