
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5477

Pattern of Algorithm for Web Services using

Distributed Application

Prof.Prashant G. Nandanwar
1
, Prof.Sushma G. Patle

2

Department of MCA, Rajiv Gandhi College of Engineering &Research, Nagpur. Maharashtra, India
1,2

Abstract: Web services technology is all about distributed computing. There is no fundamentally new basic

concept behind this and related technologies. What is really new is the reach of Web services and its ubiquitous

support by literally all major vendors. Most likely, heterogeneity will at the end no longer be an obstruction for

distributed applications. This will have impact on application architectures, middleware, as well as the way in

which people will think about computing and businesses use computing resources. We sketch these impacts as

well as some exemplary research work to be done to actually build the outline environment.

Keyword: web service, Technology,

I. INTRODUCTION
Web service is a virtual component that can be accessed

via multiple formats and protocols. Such a component

can be located anywhere in the network, e.g. on a

machine on a different continent or within a thread in the

same operating system process. Consequently, the

environment for Web services is heterogeneous and

distributed from the outset. Furthermore, Web services

support a service-oriented architecture in which

requestors can discover Web services and dynamically

bind to them. But the primary focus of Web service

technology is communication between Web services

themselves, i.e. requestors are again Web services. Thus,

to make the corresponding heterogeneous, distributed, and

dynamic discovery-based environment work in practice,

interoperability is key and standards are a must. A whole

stack of standards has already been proposed (e.g. WSDL,

SOAP, UDDI and WS-Security) and others will follow

(see for example the roadmaps). Based on these standards

a set of interoperability profiles will be published that

describe artifacts from collections of Web services

standards and its recommended collective usage to ensure

interoperability across platforms and languages. We

describe the overall Web service environment and

underlying basic concepts.

Grid technology is about to evolve towards a

“virtualization layer” for hosting Web services

Corresponding environments are under implementation,

for example for Java . This will enable what has been

called recently “utility computing” or “on demand

computing”. Section 3 sketches this development.

Applications in this environment will consist of two parts,

namely collections of individual and autonomic Web

services (i.e. components) and aggregation specifications

defined as business processes. This will make the two-

level programming model pervasive and will even allow

involving human beings in applications. The

corresponding application structure is outlined in section

finally; Web services also need to be aggregated in a less

structured manner: Corresponding aggregation models for

Web services appear that allow building unstructured

collections of Web services. Section 5 sketches the basics.

We conclude in chapter 6 and present the draft of a high-

level middleware stack that supports the execution of this

kind of applications.

II. VIRTUAL COMPONENT
Web service technology makes functions available

independent of many aspects of the proper implementation

of the Web Service: A requestor has no need to know the

programming model chosen to implement a Web service,

i.e. whether the Web service is implemented in procedural

or object oriented manner, for example. The programming

language used to implement a Web service is completely

irrelevant for a requestor. It doesn’t matter whether the

Web service is based on functions of a monolithic

application system or whether it is build as a component,

and if it is a component what the underlying component

model is (e.g. J2EE, .NET). Any specific formats and

protocols assumed by the Web service for direct

communication is irrelevant for a requestor, i.e. it is

hidden whether the implementation of the Web service

expects ASCII files or Java objects, or whether it is

invoked via a local call, an RPC or via a message queue,

for example.

Fig- Web service as virtual component

The concept of a WSDL port type is used to define what

functions a Web service pro- vides, i.e. a port type

specifies the interface of a Web service. Different WSDL

bindings can be used to specify how these functions can be

accessed via different formats and protocols, e.g. via

SOAP over JMS, or via Java objects via method call. And

a WSDL port defines an actual endpoint where these

functions can be accessed according to a certain format

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5478

and protocol, e.g. a queue name, or a class name and JNDI

name. In this sense, a Web service is a virtual component

that can be implemented in many different ways, e.g. by

real components or by any other piece of executable code.

Especially, a Web service is not at all coupled with any

kind of Web technology; be- cause of this we will often

simply use the term service instead of the Web service and

we will use both terms interchangeably.

2.1 Life Cycle

A service can be state full or stateless. For our discussion

it is not important whether state is introduced via

persistent instances or via session-like interactions. It is

more important for our discussion whether or not the fact

that a service is state full or not is hidden from or visible

to its clients: This has impact on the client programming

model, i.e. whether a client has to explicitly manage the

lifecycle of a service or not. When services are

dynamically discovered, having to distinguish between

state full and stateless services causes complexity. Today,

as a matter of fact, different application areas follow one

approach or the other: In an OGSA Grid environment state

full services are explicitly dealt with, while a BPEL

business process environment implicitly manages the state

fullness of a service on behalf of a client.

At the level of details sufficient for us, OGSA uses an

explicit factory-based approach to deal with the lifecycle

of a Web service: A client uses a factory to create “an

instance” of a particular kind of service. The client can

then explicitly manage the destruction of such an instance,

or it can be left to the Grid environment. In the latter case,

a client registers its interest in the instance for a particular

period of time (which can be extended). When no client is

any longer interested in a given instance it can be

destructed.

2.2. Polices

Services need to describe their capabilities and

requirements to their environment and potential users. A

collection of capabilities and requirements is referred to as

a policy. A policy may express such diverse characteristics

as transactionality, security, response time, pricing, etc.

For example, a policy of a service may specify that all

inter- actions must be invoked under transaction

protection, that incoming messages have to be encrypted,

that outgoing messages will be signed, that responses

may only be accepted within 5 seconds, and that certain

operations are subject to a fee to be paid via credit card by

the invoker. Since policies might get quite complex they

should be reusable. For this purpose, a policy can be

specified as a separate document. Such a document can be

associated with (constituents of) a Web service via an

attachment. Basically, an attachment consists of both, a

policy and a subject the policy applies to (“resource”).

Such subjects include port types, operations, messages,

and also endpoints, i.e. individual ports or Web ser- vices,

respectively. Attachments can be specified as follows (see

Figure 3):

i. Policies can be referenced out of the WSDL

definitions of subjects. This method is suited to attach

policies at the time when Web service resources are

specified.

ii. Web services resources that are already deployed can

be associated with policies by simply pointing to these

resources and to the policies to be applied. Pointing to

resources can be done based on domain expressions that

describe the subjects and that have to be resolved in order

to find the resources characterized by the policies. This

method is especially suited to attach policies to existing

resources.

iii. Finally, a policy can be registered itself in UDDI (as t

Models). It can be associated with a UDDI business

service (as key in a category bag).

2.3 Services Bus

Web service technology enables a new kind of architecture

for composing applications referred to as service oriented

architecture (SOA). In SOA, services are registered in a

service directory (e.g. in UDDI). Requestors find services

they are interested in by enquiring service directories. The

information they retrieve from a directory suffices to bind

to a service and use it .When a service provider publishes

a service in a service directory he specifies technical

information about the service as well as business relevant

information. Technical information about a service

includes its interfaces, supported bindings, and endpoint

information (e.g. the corresponding WSDL definitions).

Business relevant information about a service falls into

two categories: One category contains information about

the suitability of a service from a functional perspective;

the other category contains information about the

suitability of a service from an operational perspective.

The first category helps to understand whether a service is

instrumental in achieving a business goal, e.g. buying a

certain kind of sheet metal that is available within a

certain period of time at a given price. Information

provided are semantic descriptions about the kind of

service facilitated by each of its interfaces, information

about the service provider itself etc. The second category

helps to understand whether a service satisfies the business

policies of the requestor, e.g. all data are exchanged in an

encrypted manner and are deleted once the trade is settled,

messages are exchanged via reliable protocols, and

payment is can be done once a month collectively for all

orders. Information provided in this category includes

payment methods, charging models, quality of services

supported.

Fig- Service Bus

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5479

This infrastructure is called service bus. The service bus

receives the request and peels off the declarative

description of the service required .The description

contains both, the business goals as well as the business

policies of the requestor, and this description is used to

derive the set of matching services offered by various

service providers SP
j
. From a requestor’s perspective, all

qualified services are equivalent; i.e. the set of qualified

services represents the virtual service described by the

requestor by his request. If more than one service has

qualified the service bus will decide on one of them; this

decision will be based on overall environmental properties

like actual workload at the service provider side, average

response time etc (e.g. measured or based on service level

agreements with the service providers). Finally the

service bus will bind to the service selected, pass the

request message proper to it, and deliver the response to

the requestor. Note that during step the invocation

component sketched in section involved.

2.4 Clarification

It should be clear until now that the sometimes-heard

belief, Web service technology is all about SOAP, is

erroneous. As shown above, Web Service technology is

about SOA, a certain architectural style, which is far more

than just SOAP: SOAP is primarily one particular wire-

format used to exchange data as well as a set of

conventions about how to appropriately process SOAP

messages. The acronyms are close, but the goals are at

different scale.

III. VIRTUAL OPERATIONAL

ENVIRONMENT
The service bus introduced above virtualizes services:

As long as a service qualifies under a request the service

bus has the liberty to target the request to it. In doing so,

the service bus can optimize the execution of a single

request having the optimal exploitation of the overall

environment in mind. It will use algorithms and

mechanisms from scheduling, workload management etc

that apply to the heterogeneous and distributed

environment of Web services.

1.1 Grid Services

Middleware for scientific computing with similar goals

has already been developed in the Grid computing area. It

thus seems only natural to bring the area of Grid

computing and Web services together: outlines

architecture for such a combined environment called Open

Grid Services Architecture (OGSA). The most

fundamental aspects of the special kind of Web services,

called Grid Services that are hosted in such a combined

environment are under specification.

In order to become a Grid services, a Web service has to

support a set of pre-defined interfaces and has to comply

with some conventions. The interfaces to be supported

facilitate the discovery, creation, and lifetime management

of services; they further facilitate a notification

mechanism to especially enable the manageability of

services. The conventions deal primarily with naming

services. Based on these interfaces and conventions a

standard semantics for interacting with a Grid service is

defined: How services are created, how their lifetime is

determined, how to invoke functions of a service etc.

3.2 Grid Services Stack

Based on depicts the stack building the overall

environment for applications of Grid services. At the

bottom, it shows a Grid service container based on an

environment like an application server; the container

provides the functions discussed before. But the overall

environment might consist of many different Grid service

containers that are hosted on different autonomous and

heterogeneous application servers. Thus, clustering

capabilities are needed to “federate” the different Grid

service containers resulting in a virtual environment for

scalability and resource sharing. Also, such a virtual

environment has to support distributed and

heterogeneous problem determination and logging, the

association of policies with Grid services as a base for

request scheduling etc. The corresponding functions are

referred to a meta-operating system services.

At the top layer functions are shown that represent

various autonomic services of the Grid: For example,

Grid-wide workload management that enable a broad

range of mechanisms for scheduling requests in the Grid

reaching from simple round-robin schedulers to policy-

based meta-schedulers in hierarchical Grid topologies

enhancing overall availability and scalability within the

Grid. Also, functions enabling utility computing (see next

section) are at this layer.

Fig- Grid service stack

3.3 Web service Demand

Finally, such an environment will enable a new computing

model called on-demand computing. In a nutshell, this

term refers to the ubiquitous availability of compute

resources whenever needed and wherever needed. This

bares the potential to turn computing into a public utility

like water, power, gas, and telephone connections – which

is why this model is also referred to as utility computing.

An important step on this path is represented by the

concept of a hosted e-utility. A hosted e-utility is a

collection of application-related services (both, hardware

as well as all required software) that is made available by

a service provider to a request or on demand based on

particular service level agreements for a certain fee. For

example, a request or wants to analyze new genomic data

and needs for this purpose a set of certain algorithms, large

amount of temporary storage, a set of servers to provide

the corresponding compute power, as well a high-

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5480

bandwidth connections to the Internet for access to public

genomic data. A service provider can provide all of this as

a collection of Grid services.

IV. APPLICATION STRUCTURE
Services are either fine grained or coarse grained. From a

requestor’s perspective, a fine grained service achieves a

business goal based on a single interaction, while a coarse

grained service typically requires multiple interactions to

achieve a business goal. Be- cause a single interaction

with a fine grained service suffices, a fine grained service

typically does not reveal any of its inner structure, i.e. it is

opaque hiding its implementation details. In contrast to

this, a coarse grained service does reveal implementation

de- tails, especially the set of interactions required as well

as their order, i.e. it is transparent making some of its

inner structure visible to a requestor. The implementation

details revealed by a coarse grained service describe its

potential message exchange with the outside world, i.e.

business rules that specify in which order and under which

conditions which messages are sent to or expected from

the requestor and perhaps other third party Web services.

4.1 Two Level Paradigm

 In a Web services world actual messages are sent to ports

via their corresponding operations. Thus, at the type level

a potential message exchange can be specified by

defining the potential order in which operations of port

types are used and under which conditions. As depicted in

this is the same as specifying a business process or a work-

flow, respectively, the activities of which are realized by

operations of port types. Especially, a coarse grained

service appears to be composed of the corresponding

services, and consequently coarse grained services are also

referred to as composite services. Vice versa, fine grained

services are also referred to as elemental services.

This introduces the paradigm of two-level programming to

Web services: Programming in the small for implementing

the elemental services used by a composite service, and

programming in the large for specifying the composite

service itself. Programming in the small, i.e. the

implementation of elemental services, is done based on

usual programming languages (e.g. Java, C#), and based

on known component technologies and application server

environments (e.g. J2EE, .NET). The corresponding

components are hosted and rendered by the environment

as Web services, i.e. the elemental services. Programming

in the large is done based on a business process language

(e.g. BPEL) hosted and run by a workflow system. The

corresponding business process is rendered again as a Web

service resulting in a composite service.

4.2 Reuse

The two-level programming paradigm introduces reuse at

both levels: At the component level, i.e. elemental service

level, and at the business process model level, i.e.

composite service level. In practice, a vast number of

isolated component functionalities does already exist in

an enterprise, e.g. in form of purchased standard

applications or home grown special applications.

Typically, it is the knowledge of how to integrate these

component functionalities into a business process that

solves a (new) business problem. As a consequence, to

become an artifact of reusability a business process model

has to have the ability to be easily linked to the component

functionalities available at an individual enterprise; a

business process model with this property is sometimes

called a solution template

V. WEB AGGREGATION

The model of building a composite service as introduced

in is one example of an aggregation model for Web

services. In this model aggregation is done at the port

type level by specifying both, the port types offered as

well as required by the aggregate. Furthermore, the

aggregation is very much structured and constrained in its

behavior by the associated business process model, i.e. it

is “choreography”-centric: It prescribes the potential order

in which the operations of the aggregated port types are to

be used. And it is “pro-active” by defining an execution

model that actually drives the usage of the aggregated port

types. On the other hand, it is non-recursive in the sense

that defining new port types based on its aggregated port

types is not its focus.

5.1 Global Model

The definition of a recursive aggregation model (called

global model) for specifying collections of new port types

is included. This model defines the notion of a service

provider type as a set port types. The only structural

relation between service provider types is that they make

use of each other’s services. The relation between service

providers and the aggregate itself is that the aggregate

inter- face is built from the service provider types’

interfaces. Operations of port types of different service

provider types can be connected via a directed plug link. A

plug link defines a client-server relationship between

operations specifying who the initiator is and who the

follower within an interaction is. For example, the out-

operation op3 of port type of service provider SP
b

is the

source of a message sends to the in-operation op1 of port

type of service provider SP
a

that consumes this message.

It is not required that all operations are source or target of

a plug link, i.e. a service provider might offer operations

that are not used by other service providers of the

Aggregate.

5.2 Web Service Domain

In some application scenarios, a request or needs a

collection of related services that he will use in a non-

predefined manner. Properties beyond the signature level

of a concrete service are irrelevant to a requestor, i.e.

individual ports providing the same service are

indistinguishable from a requestor’s point of view.

Specifies a complete environment for such aggregations;

the corresponding aggregation model is referred to as

service domain. For conciseness reasons, we will take the

liberty here to use the same name but describe a variant of

this aggregation model.

Basically, a service domain is a set of ports implementing

a predefined set of port types. In general, for each

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5481

particular port type associated with a service domain there

is more than one port implementing this port type. A

service domain aggregates these ports by providing for

each of its port types a port that functions as a proxy for

the set of ports implementing the same port type. When a

request or sends a message to this proxy the environment

will select one implementing port and dispatch the

message to it.

Often, the final outcome of the usage of some services is

dependent on the final outcome of the usage of some other

services. As a result, an aggregation model is needed that

allows dynamically creating temporary collections of

services the joint outcome of their usage is determined

once the period of usage of the services within the

collection is over. The determination and dissemination of

the joint outcome is based on a collection- specific set of

protocols supported by the participating services, i.e.

member of the collection.

VI. CONCLUSION
In this paper we have demonstrated that Web services are

the base for a new era of distributed computing. Web

services are virtual components hiding from their user’s

idiosyncrasies of the concrete (application server)

technology chosen to implement the Web service.

Especially, users can easily mix and match functions from

heterogeneous environments into a single application if

those functions are rendered as Web services. Based on a

service-oriented architecture a user does not even have

to care about a particular Web service he is

communicating with because the underlying infrastructure,

i.e. the service bus, will make an appropriate choice on

behalf of the user. This choice is based on policies of

both, the user and the Web services qualifying under the

user’s functional request, and the choice is also influenced

by service level agreements and demand for an optimal

utilization of the overall environment. We have shown

that Grid computing technology and Web service

technology are about to converge to provide these features

and more, enabling utility computing and on-demand

computing. Aggregations of Web services support a broad

spectrum of requirements reaching from recursive

component construction over advanced provisioning of

groups of services to transaction management.

REFERENCES
[1] K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham and P.

Yendluri, Basic Profile Version 1.0, http://www.ws-
i.org/Profiles/Basic/2002-10/BasicProfile-1.0-WGD.htm

[2] W. Beer, D. Birngruber, H. Mössböck and A. Wöß, Die .Net

Technologie, dpunkt Verlag, 2003.
[3] T. Belwood et al, UDDI Version 3.0,

http://uddi.org/pubs/uddi-v3.00-published- 20020719.htm

[4] V. Berstis, Fundamentals of Grid computing,
IBMCorporation(2002)

http://www.redbooks.ibm.com/redpapers/pdfs/redp3613.pdf

[5] D. Box et al, SOAP 1.1, http://www.w3.org/TR/SOAP
[6] C. Boyens and O. Guenther, Trust is not enough: privacy and

security in ASP and Web services environments, Proc. ADBIS

2002 - 6
th

East-European Conference on Advances in Databases
and Information Systems (September 8-11, 2002, Bratislava,

Slovakia).
[7] S. Burbeck, The Tao of e-business services, IBM

Corporation, 2000,http://www-

4.ibm.com/software/developer/library/ws-tao/index.html

[8] F. Cabrera, G. Copeland, T. Freund, J. Klein, D. Langworthy, D.

Orchard and J. Shew- chuk, Web Services Coordination, BEA
Systems & IBM Coporation & Microsoft Corpo- ration, 2002,

http://www-106.ibm.com/developerworks/library/ws-coor/

[9] F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey
and S. Thatte, Web Ser- vices Transactions, BEA Systems & IBM

Coporation & Microsoft Corporation, 2002, http://www-
106.ibm.com/developerworks/library/ws-transpec

[10] M. Champion, Ch. Ferris, E. Newcomer and D. Orchard, Web

Services Architecture, http://www.w3.org/TR/ws-arch/
[11] E. Christensen, F. Curbera, G. Meredith, S.

Weerawarana, WSDL 1.1,http://www.w3.org/TR/WSDL

[12] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S.
Thatte and S. Weerawarana, Business Process Execution

Language For Web Services, BEA Systems & IBM Copora- tion

& Microsoft Corporation, 2002,
http://www-106.ibm.com/developerworks/library/ws-bpelwp

[13] B. Daum and U. Merten, System architecture with XML, Morgan

Kaufmann Publishers, San Francisco, CA, 2003.
[14] D. Fensel, Ontologies: A silver bullet for knowledge

management and electronic com- merce, Springer, 2001.

[15] I. Foster and C. Kesselman, The Grid: Blueprint for a new
computing infrastructure, Morgan Kaufmann Publishers, San

Francisco, CA, 1999.

[16] I. Foster, C. Kessleman, J.M. Nick and S. Tuecke, The
physiology of the Grid – An open Grid services architecture for

distributed systems integration, Open Grid Service Infra-

structure WG, Global Grid Forum,
June 22, 2002, http://www.globus.org/research/papers

[17] T. Freund and T. Storey, Transactions in the world of Web

services,http://www-
106.ibm.com/developerworks/webservices/library/ws-wstx1

[18] J. Gray and A. Reuter, Transaction processing, Morgan Kaufmann

Publishers, San Mateo, CA, 1993.
[19] V. Gruhn and A. Thiel, Komponentenmodelle, Addison-Wesley,

2000.

http://uddi.org/pubs/uddi-v3.00-published-
http://www-106.ibm.com/developerworks/library/ws-coor/
http://www-106.ibm.com/developerworks/library/ws-transpec
http://www-106.ibm.com/developerworks/library/ws-transpec
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/WSDL

