
ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6533

Cloud Based Adaptive Overlapped Data Chained

Declustering

Vidya G. Shitole
1
, Prof. N. P. Karlekar

2

Student, M.E. 2nd year, Computer Engineering, SIT Lonavala, University of Pune, Maharashtra, India1

Associate Professor, Computer Engineering, SIT Lonavala, University of Pune, Maharashtra, India2

Abstract: Distributed file systems (DFS) are key building blocks for cloud computing applications based on the Map

Reduce programming paradigm. In such file systems, nodes simultaneously serve computing and storage functions; a

file is partitioned into a number of chunks allocated in distinct nodes so that Map Reduce tasks can be performed in

parallel over the nodes. However, in a cloud computing environment, failure is the norm, and nodes may be upgraded,

replaced, and added in the system. Files can also be dynamically created, deleted, and appended. This results in load

imbalance; that is, the file chunks are not distributed as uniformly as possible in the nodes. Although distributed load
balancing algorithms exist in the literature to deal with the load imbalance problem, emerging DFS in production

systems strongly depend on a central node for chunk reallocation. The performance of the proposal implemented in the

Hadoop distributed file system is further investigated in a cluster environment.

Keywords: Load balance, Distributed file systems, Clouds, Map Reduce

I. INTRODUCTION

Cloud computing is a compelling technology. In clouds,

clients can dynamically allocate their resources on-

demand without sophisticated deployment and

management of resources. Key enabling technologies for

clouds include the Map Reduce programming paradigm,

distributed file systems, virtualization, and so forth. These

techniques emphasize scalability, so clouds can be large in
scale, and comprising entities can arbitrarily fail and join

while maintaining system reliability. Load balance among

storage nodes is a critical function in clouds. Here, the

load of a node is typically proportional to the number of

file chunks the node possesses.

The resources in a load-balanced cloud can be well

utilized and provisioned, maximizing the performance of

Map Reduce based applications. State-of-the-art

distributed file systems (e.g., Google GFS and Hadoop

HDFS) in clouds rely on central nodes to manage the
metadata information of the file systems and to balance the

loads of storage nodes based on that metadata. The

centralized approach simplifies the design and

implementation of a distributed file system. (e.g., Google

GFS and Hadoop HDFS) in clouds rely on central nodes to

manage the metadata information of the file systems and

to balance the loads of storage nodes based on that

metadata. The centralized approach simplifies the design

and implementation of a distributed file system.

However, recent experience e.g., concludes that when the

number of storage nodes, the number of files and the
number of accesses to files increase linearly, the central

nodes (e.g., the master in Google GFS) become a

performance bottleneck, as they are unable to

accommodate a large number of file accesses due to

clients and Map Reduce applications. Consequently,

tackling the load imbalance problem with the central

nodes only serves to increase their heavy loads, especially

considering the load rebalance problem is NP-hard.

Moreover, the central nodes may be the single point of

failure; if they fail, then the entire file system crashes.

The proposal is assessed through mathematical analysis,

computer simulations and a real implementation in

Hadoop HDFS. The performance results indicate that

although each node performs the load rebalancing

algorithm independently without acquiring global

knowledge, the proposal is comparable with the

centralized approach in Hadoop HDFS and remarkably

outperforms the competing distributed algorithm in terms

of load imbalance factor, movement cost, and algorithmic

overhead.

II. OBJECTIVE

The objective in the current study is to design a load

rebalancing algorithm to reallocate file chunks such that

the chunks can be distributed to the system as uniformly as

possible while reducing the movement cost, which is

defined as the number of chunks, migrated to balance the

loads of the chunk servers, as much as possible.

Specifically, our load rebalancing algorithm aims to

minimize the load imbalance factor in each chunk server.

A. Primary objective is to store data reliably.

B. MapReduce is used for processing of data &

 faster retrieval of stored data.

III. HADOOP MAPREDUCE

Hadoop is the most popular tool for content classification

in the www search and a software platform where it is

easier to develop and deal with large-scale data. Hadoop

has a reliable, efficient and scalable way to process data.
Being reliable means that Hadoop is able to maintain

multiple copies of data and can automatically re-deploy

computing tasks after the failure of the maindata. Being

efficient means that Hadoop works through parallel way to

speed up processing. In addition, the usage cost of Hadoop

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6534

is low because it can use a general machine server farm to

distribute and process data. The server farms can reach

hundreds of nodes, which anyone can use. Therefore it has
a large scalability.

Hadoop is an open source distributed parallel computing

platform. It is mainly composed of two parts: the

MapReduce algorithm implementation and a distributed

file system. MapReduce algorithm comes from functional

programming ,and it is natural to construct the algorithm .

Fig. 1 The Architecture of Hadoop DB

Hadoop is mainly composed by three parts of (the Hadoop

Distributed the File System) HDFS, MapReduce, and

Hbase. On the bottom is HDFS, it stores the files on all

storage nodes in the Hadoop cluster. Above the HDFS

layer is the MapReduce engine, which consists of

operating server and task server; HBase is another

interesting applications on the top of HDFS.

HBase differs a lot from the traditional relational database.

It is a distributed database based on column storage model,

which is similar to Google's BigTable high-performance

database system.

HDFS architecture is based on a specific set of nodes, the
metadata nodes and the data nodes, shown in

Figure1.HDFS includes a single NameNod. The

Namenode is used to manage the file system namespace

and it saves the metadata of all files and folders in a file

system tree; that Namenode provides internal metadata

service in HDFS; DataNode provides HDFS with storage

blocks, and DataNode is the real place to store data in the

file system. The client or the namenode can request data

nodes to write or read data block. The datanode

periodically returns its stored data block information to

metadata node.

A. MapReduce Framework

MapReduce framework is responsible for automatically

splitting the input, distributing each chunk to workers

(mappers) on multiple machines, grouping and sorting all

intermediate values associated with the intermediate key,

passing these values to workers (reducers) on multiple

resources, this is shown in Fig.2. Monitoring the execution

of mappers and reducers as to re-execute them when

failures are detected is done by the master.

Fig. 2 Simplified view of MapReduce

B. Implementation of VDB With Hadoop
MapReduce

In order to improve the performance efficiency of the

VDB the Hadoop MapReduce is added at the executor

phase. The executor will pass the mapper’s sub query to

the Master of the MapReduce. The master will

automatically split the input into chunks (splits) and finds

M mappers and R reducers. The splits can be processed in

parallel by the mappers. Reduce invocations are

distributed by partitioning the intermediate key space into

R pieces using a partitioning function. The number of

partitions (R) and partitioning functions are specified by
the user.

The output of the R Reducers stored in R output files. This

output files will fit our needs. This is shown in Fig.3. The

output will be sent back to the user.

Fig. 3 MapReduce execution flow with VDB

C. Hadoop MapReduce Algorithm

MapReduce program, the first step is called For the map,

the Map function works as follows: through the Mapping

function some data elements become input data one at a

time, and the Mapping will spread each mapping result

separately to an output data elements. Mapping creates a

new list of output data by applying a function to each

element in the list of input data.

The second step of the MapReduce program is called

Reduce (aggregation); implementation process of the

reduce function: Reducing (aggregate) function allows the

data to aggregate together. Reducer function receives

iterator from the list of the input, aggregates these data,

and then returns an output value.

The third step of the MapReduce program is to put map

and Reduce together on the MapReduce, with a key

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6535

associated with each value. For values related to the key,

no value is separate in MapReduce. mapping and reducing

function not only receive values (Values), but (key, value)
pairs. The output of each of these functions are the same,

being a key and a value, which will be sent to the next list

of the data stream.

IV. THE LOAD REBALANCING PROBLEM

To simplify load rebalancing first assume a homogeneous

environment, where migrating a file chunk between any

two nodes takes a unit movement cost and each

chunkserver has the identical storage capacity.

Fig. 4 An example illustrates the load rebalancing

problem

Where,

a) An initial distribution of chunks of sixfiles f1, f2, f3,

f4, f5 and f6 in three nodes N1, N2 and N3,
b) Files f2 and f5 are deleted,

c) f6 is appended, and

d) Node N4 joins. The nodes in (b), (c) and (d) are in a

load-imbalanced state.

A. Algorithm Overview

A distributed file system is in a load-balanced state if each

chunkserver hosts A chunks. Thus, for a large-scale

distributed file system, each chunkserver nod ei first

estimates without global knowledge in our proposed

algorithm whether it is light or heavy.

By a light (orunderloaded) node, we mean that the number

of chunks the node hosts is smaller than the threshold of

the average (1−ΔL)A, where ΔL is a system parameter and

0≤ΔL<1. In contrast, a heavy (or overloaded) node

manages the number of chunks greater than (1+ΔU) A,

where 0≤ΔU<1.

Conceptually, this algorithm proceeds as follows.

Consider any node i ∈V. If node i is light, then it seeks a

heavy node and takes over at mostAchunks from the heavy

node. Specifically, ifi is the least-loaded node in the

system, i has to leave the system by migrating its locally

hosted chunks to its successor i+1and then rejoin instantly
as the successor of the heaviest node (say, node j), that is,

j+1.

B. The Properties Of Reallocation

a. Low Movement Cost

As i is the lightest node among all chunkservers, the

number of chunks migrated because of i’s departure is

minimal, introducing the minimum movement cost.

b. Fast Convergence Rate
Node i seek to relieve the load of the heaviest node j,

hoping that the system converges quickly towards a load-

balanced state. i allocates A chunks from the heaviest node

j if j’s load exceeds 2A;otherwise,i requests the load of

Lj−A from j. i then becomes load-balanced if Li =A, and
the load of j is immediately relieved

Possibly, j remains the heaviest node in the system even if

it has migrated its load to i. If so, among all light nodes,

the least-loaded one departs and then re-joins the system

as j’s successor. That is, i become node j+1, and j’s

original neighbour i thus becomes node j+2.Such a process

repeats iteratively until j is no longer the heaviest.

Subsequently, among the remaining heavy nodes, the

heaviest one relieves its load by having the lightest node

re-join as its successor.

V. THE LOAD REBALANCING

ALGORITHMS

A. Algorithm 1: SEEK (V,ΔL,ΔU): a light node i

seeks an overloaded node j

Input: vector V={samples}, ΔL and ΔU

Output: an overloaded node, j

Step1: Ai an estimate forAbased on { Aj :j∈V}

Step 2: if Li <(1−ΔL) Ai then

Step 3: V←V ∪ {i};

Step 4: sort V according to Lj(∀ j∈V)in ascending order;

Step 5: k←i’s position in the ordered set V;

Step 6: find a smallest subset P ⊂ V such that
 (i) Lj >(1 + ΔU) Aj,∀ j∈P,and

 (ii) j ∈ P

Step 7: j←the least loaded node in P;

Step 8: return j;

B. Algorithm 2: MIGRATE(i, j): a light node i

requests chunks from an overloaded nodej

Input: a light node i and an overloaded node j

Step1: if Lj > (1 + ΔU) Aj and j is willing to share its

 load with i then

Step2: I migrates its locally hosted chunks to i+1;

Step3: i leaves the system;

Step4: i re-join the system as j’s successor by having

 i←j+1;

Step5: t← Ai;
Step6: if t > Lj−(1 + ΔU) Ai then

Step7: t←Lj−(1 + ΔU) Ai;

Step8: i allocates t chunks with consecutive IDs from j;

Step9: j removes the chunks allocated to i and renames

 its ID in response to the remaining chunks it

 manages.

Algorithm 1: specifies the operation that a light node i

seeks an overloaded nodej, and

Algorithm 2: shows that i requests some file chunks from j

C. Goals of Load Balancing
 a. To improve the performance.

 b. To maintain the system stability.

 c. To increase the flexibility of system.
 d. To have a backup plan in case system fails

 even partially

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6536

D. The Basic Concepts Include In Load Balancing

a. Clustering and Declustering

b. Chained-based Declustering.
c. Balancing Access Loads

d. Partitioning

e. Vertical Partitioning

f. Disk Failures and Space Utilization

E. Load Balancing Policies

1. Location Policy:

The policy used by a processor or machine for sharing the

task transferred by an over loaded machine is termed as

Location policy.

2. Transfer Policy:

The policy used for selecting a task or process from a local

machine for transfer to a remote machine is termed as

Transfer policy.

3. Selection Policy:

The policy used for identifying the processors or

machines that take part in load balancing is termed

as Selection Policy.

4. Information Policy:

The policy that is accountable for gathering all the
information on which the decision of load balancing is

based ID referred as Information policy.

5. Load estimation Policy:

The policy which is used for deciding the method for

approximating the total work load of a processor or

machine is termed as Load estimation policy.

6. Process Transfer Policy:

The policy which is used for deciding the execution of a

task that is it is to be done locally or remotely is termed
as Process Transfer policy.

7. Priority Assignment Policy:

The policy that is used to assign priority for execution of

both local and remote processes and tasks is termed as

Priority Assignment Policy.

8. Migration Limiting Policy:

The policy that is used to set a limit on the maximum

number of times a task can migrate from one machine to

another machine.

Fig. 5 Interaction among components of a load balancing

algorithm

Dynamic load balancing algorithms, the current state of

the system is used to make any decision for load

balancing. It allows

For processes to move from an over utilized machine to

an under-utilized machine dynamically for faster

execution as shown in Figure 5. This means that it

allows for process preemption which is not supported in

Static load balancing approach. An important advantage

of this approach is that its decision for balancing the
load is based on the current state of the system which

helps in improving the overall performance of the system

by migrating the load dynamically

F. Algorithm Implementation

The system performs Algorithms 1 and 2 simultaneously

without synchronization. It is possible that a number of

distinct nodes intend to share the load of node j (Line 1 of

Algorithm 2. Thus, j offloads parts of its load to a

randomly selected node among the requesters. Similarly, a

number of heavy nodes may select an identical light node
to share their loads. If so, the light node randomly picks

one of the heavy nodes in the reallocation.

Without global knowledge, pairing the top - k1 light nodes

with the top - k2 heavy nodes is clearly challenging. In-
stead, we let each light node I estimate its k value based on

its sample set (Line 5 in Algorithm 1).i re-joins as a

successor of a heavy node j, where -j is the least loaded

among the (estimated) top-k2 heavy nodes;

-The total exceeding load of these top-k2 heavy nodes is

approximately greater than k times Ai (Line 6 in
Algorithm 1).

(a)

Fig. 6 An example illustrating algorithm

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6537

Where,

a. The initial loads of chunkservers N1, N2,·· ·,N10,

b. N1samples the loads of N1, N3, N6, N7, and N9 in
order to perform the load rebalancing algorithm,

c. N1leaves and sheds its loads to its successor N2,

and then re-joins as N9’s successor by allocating

A N1chunks (the ideal number of chunks

N1estimates to manage) from N9,

d. N4 collects its sample set {N3,N4,N5,N6,N7},and

e. N4departs and shifts its load to N5, and it then re-

joins as the successor of N6 by allocating N6 AN4

chunks from N6

Each node in our proposal implements the gossip-based

Each node in this proposal implements the gossip-based

aggregation protocol to collect its set V and estimate A

(Line 1 in Algorithm 1). Precisely, with the gossip-based

protocol, the participating nodes exchange locally

maintained vectors, where a vector consists of s entries,

and each entry contains node ID and node network address

representing a node selected randomly in the system.

The nodes perform load rebalancing algorithm

periodically, and they balance their loads and minimize the

movement cost in a best-effort fashion.

VI. MANAGING REPLICAS

In distributed file systems (e.g. Google GFS and Hadoop

HDFS), a constant number of replicas for each file chunk

are maintained in distinct nodes regardless of node failure

and departure to improve file availability. The current load

balancing algorithm does not treat replicas distinctly. It is

unlikely that two or more replicas are placed in an

identical node because of the random nature of our load

rebalancing algorithm. More specifically, in this proposal

each under loaded storage node samples a number of
nodes, each selected with a probability of 1/ n, to share

their loads (where n is the total number of storage nodes).

 Given k replicas for each file chunk (where k is typically

a small constant, and k = 3 in GFS), the probability that k_

replicas (k ≤ k) are placed in an identical node due to

migration of our load balancing algorithm is (1/n) ^k’

independent of their initial locations. For example, in a

large-scale distributed file system with n = 1, 000 storage

nodes and k = 3, then the probabilities are only(1/10)^6

and (1/10)^9 for two and three replicas, respectively,

installed in the same node. Consequently, the probability

of more than one replica appearing in a node.

Fig. 7 The setup of the experimental environment

The Load Balancing Algorithm strives to balance the loads

of nodes and reduce the demanded movement cost as

much as possible, while taking advantage of physical
network locality and node heterogeneity. In the absence of

representative real workloads (i.e., the distributions of file

chunks in a large-scale storage system) in the public

domain, we have investigated the performance of system

and compared it against competing algorithms through

synthesized probabilistic distributions of file chunks. The

synthesis workloads stress test the load balancing

algorithms by creating a few storage nodes that are heavily

loaded.

VII. METRICS FOR LOAD BALANCING
The different qualitative metrics or parameters that are

considered important for load balancing in cloud

computing [8] are discussed as follows:

A. Throughput: The total number of tasks that have

completed execution is called throughput. A high

throughput is required for better performance of the

system.

B. Associated Overhead: The amount of

overhead that is produced by the execution of the

load balancing algorithm. Minimum overhead is expected
for successful implementation of the algorithm.

C. Fault tolerant: It is the ability of the algorithm

to perform correctly and uniformly even in conditions of

failure at any arbitrary node in the system.

D. Migration time: The time taken in migration or

transfer of a task from one machine to any other
machine in the system. This time should be minimum for

improving the performance of the system.

E. Response time: It is the minimum time that

a distributed system executing a specific load

balancing algorithm takes to respond.

F. Resource Utilization: It is the degree to which

the resources of the system are utilized. A good load

balancing a l g o r i t h m p r o v i d e s m a x i m u m

r e s o u r c e utilization.

G. Scalability: It determines the ability of the

system to accomplish load balancing algorithm with a

restricted number of processors or machines.

H. Performance: It represents the effectiveness of

the system after performing load balancing. If all the

above parameters are satisfied optimally then it will

highly improve the performance of the system.

VIII. ANALYTICAL MODEL

The load balancing algorithm is a randomized algorithm,

in which each node samples a number of nodes

independently and uniformly at random. It is possible for

multiple light nodes (denoted by the set I) to contend for

allocating file chunks from the same heavy node (say,
node j). As a result, j migrates parts of its load to a

randomly selected node in I. Similarly, multiple heavy

nodes may simultaneously have the same light node share

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6538

their loads. If so, the light node randomly selects one of

the heavy nodes in the reallocation. Consequently, it is

essential to study the number of algorithmic rounds after
which all light nodes can request loads from heavy nodes.

IX. ADVANTAGES & LIMITATIONS

A. Advantages

1. It used to handle large amounts of work across a set

of machines.

2. Enables applications to work with thousands of

nodes.

3. It can be used as an open source implementation.

4. MapReduce is a new framework specifically

designed for processing huge datasets on distributed
sources.

5. Map and Reduce techniques to break down the

parsing and execution stages for parallel and

distributed processing.

6. The cluster machines can read the data set in

parallel and provide a much higher throughput.

B. Limitations

1. It cannot update data after it is inserted

2. There is no "insert into table values ... " statement

3. It can only load data using bulk load

4. There is not "delete from " command
5. It can only do bulk delete

X. FUTURE SCOPE

A. Video Streaming-Video streaming means mobile

nodes view a video stored in the main cloud. If a

cloudlet architecture is used, mobile users can view

the cached video from their cloudlet.

B. Implementing mapreduce technique in VDS

C. Implement the survey application for Hadoop.

D. To distributes streaming media content, both live and

on-demand to users who cooperate in the streaming

XI. CONCLUSION

The goal of load balancing is to increase client

satisfaction and maximize resource utilization and

substantially increase the performance of the cloud

system. The Load Rebalancing Algorithm strives to

balance the loads of nodes and reduce the demanded

movement cost as much as possible. In the absence of

representative real workloads (i.e., the distributions of file

chunks in a large-scale storage system) in the public

domain, it need to investigate the performance of proposal
and compared it against competing algorithms through

synthesized probabilistic distributions of file chunks. The

synthesis workloads stress test the load balancing

algorithms by creating a few storage nodes that are heavily

loaded. The performance results with theoretical analysis,

computer simulations and a real implementation are

encouraging, indicating that our proposed algorithm

performs very well. The Load Rebalancing Algorithm is

comparable to the centralized algorithm in the Hadoop

HDFS production system and dramatically outperforms

the competing distributed algorithm in terms of load

imbalance factor, movement cost, and algorithmic
overhead.

ACKNOWLEDGMENTS

I would like to thank my project guide Prof. N.P. Karlekar,

for giving me this chance to explore and increase my
knowledge. I would like to thank different journals and

blogs of various author and computer scientists, which

helped me to gain knowledge about this topic. Last but not

the least I thank my beloved parents, friends and well-

wishers who helped me by giving various advices

regarding the topic by their kind help and assistance

REFERENCES
[1] Hsueh-Yi Chung, Che-Wei hang Hung-Chang Hsiao, Yu-Chang

Chao,"The Load Rebalancing Problem in Distributed File

Systems,“, 2012

[2] Hung-Chang Hsiao, Hsueh-Yi Chung, Haiying Shen, Yu-Chang

Chao,"Load Rebalancing for Distributed File Systems in Clouds,",

2012.

[3] Wenqiu Zeng, Ying Li, Jian Wu, Qingqing Zhong, Qi Zhang,

"Load rebalancing in Large-Scale Distributed File System,” 2009.

[4] L.Kiran kumar,V.Ranjith kumar, "Application of Hadoop

MapReduce Technique to Virtual Database System Design," 2011.

[5] Fei Hu ,Jim Ziobro, Jason Tillett, Neeraj K. Sharma,"CATCH: A

Cloud-based Adaptive Data Transfer Service for HPC," 2011.

[6] Saba Sehrish, Grant Mackey, Pengju Shang, Jun Wang,

"Supporting HPC Analytics Applications with Access Patterns

Using Data Restructuring and Data-Centric Scheduling Techniques

in MapReduce," 2013.

[7] Bin Wu, Shengqi Yang, Haizhou Zhao, and Bai Wang, “A

Distributed Algorithm to Enumerate All Maximal Cliques in

MapReduce,”

[8] Suresh M., Shafi Ullah Z., Santhosh Kumar B., “An Analysis of

Load Balancing in Cloud Computing “2013

[9] R. X. T. and X. F. Z.” A Load Balancing Strategy Based on the

Combination of Static and Dynamic, in Database Technology and

Applications (DBTA)”, 2010 2nd International Workshop 2010

[10] Abhijit A. Rajguru, S.S. Apte, “A Comparative Performance

Analysis of Load Balancing Algorithms In Distributed Systems

Using Qualitative Parameters”, International Journal of Recent

Technology and Engineering, Vol. 1, Issue 3, August 2012.

[11] Eager, D., Lazowska, E., and J. Zahorjan, ”Adaptive Load Sharing

in Homo- geneous Distributed Systems,” IEEE Transactions on

Software Engineering, Vol. SE-12, No. 5, May 1986.

[12] Carey, M., Livny, M., and H. Lu, ”Dynamic Task Allocation in a

Distributed Database System,” Proceedings of the 5th International

Conference on Dis- tributed Computer Systems, Denver, May 1985.

[13] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Supporting

Scalable and Adaptive Metadata Management in Ultra Large-scale

File Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 4,

pp. 580–593, Apr. 2011

[14] Hadoop Distributed File System, http://hadoop.apache.org/hdfs/.

