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Abstract: Internet Engineering Task Force (IETF) has recently standardized Network Mobility Basic Support Protocol 

to address the issue of mobility management for networks in motion (mobile networks). This development allows 

providing seamless Internet access to all the devices in the mobile network. A lot of research has been done to enhance 
the TCP performance in mobile networks and networks with wireless links, where packet losses are due to reasons 

other than congestion such as high Bit Error Rate. We considered Snoop and obTCP as they give promising results in 

mobile networks. 

In this paper we consider Vehicle-to-Vehicle communication scenario where a host in an On-Board IP Network 

communicates directly with a host in another On-Board IP Network. We analyze the performance of TCP Snoop and 

obTCP in Vehicle-to-Vehicle communication under varying wireless link characteristics. We found that Snoop and 

obTCP performs almost same in this scenario due to complex timer cooperation among sender timer and agent’s timer. 
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I. INTRODUCTION 

In response to the increasing popularity of palm-top and 

other mobile computers, Mobile IP [1] was developed to 

enable these mobile devices to maintain Internet 

connectivity while moving from one Internet attachment 

point to another. In recent years we have witnessed an 

explosive growth of Networks in Motion. Network 

Mobility (NeMo) arises when a Mobile Router (MR) 

connecting a network to the Internet dynamically changes 

its point of attachment, maintaining the sessions of every 

device of the network. These networks are often called on-

board IP Network (obIPN). A key characteristic of these 

systems is that the entire IP subnet is mobile and may 

rapidly changes its communication point to the outside 

world while moving. Existing IP protocols do not cope 

with this new requirement of entire network mobility. New 

extensions are required to support network mobility. IETF 

has recently standardized NEMO Basic Support Protocol 

[2] to address the issue of mobility management for 

networks in motion. 

Transmission Control Protocol (TCP) [3, 4], works well in 

traditional networks made up of wired links and stationary 

hosts. In such networks the main cause for packet loss is 

congestion. TCP performs very well on such networks by 

adapting to end-to-end delays and packet losses caused by 

congestion. TCP provides reliability by maintaining a 

running average of estimated round-trip delay and mean 

deviation and calculating retransmission time out value, 

and by retransmitting any packet whose acknowledgment  

 

 

is not received within the time out duration. Due to the  

relatively  low bit-error  rates over  wired  networks,  all  

packet  losses are correctly  assumed  to be because of 

congestion. In  the presence  of  the high  error  rates and 

intermittent  connectivity  characteristic of wireless links, 

in wireless last-hop networks or in obIPN, TCP reacts to 

packet losses as it would in the wired  environment. It 

drops its transmission window size before retransmitting 

packets, initiates congestion control or avoidance 

mechanisms such as slow start [5], and resets its 

retransmission timer according to Karn’s Algorithm [6]. 

These measures result  in  an unnecessary reduction  in  

the  link’s  bandwidth  utilization thereby causing a 

significant  degradation  in performance  in the form of  

poor throughput  and very high interactive delays. 

Several schemes have been proposed to mitigate the 

effects of non-congestion-related losses on TCP 

performance over networks that have wireless or similar 

high-loss links [7, 8, and 9]. Many proposed schemes can 

be classified into three basic groups, based on their 

fundamental working principle: end-to-end proposals, 

split-connection proposals and link-layer proposals. The 

end-to-end protocols attempt to make the TCP sender 

handle losses through the use of two techniques. First, they 

use some form of selective acknowledgments (SACKs) to 

allow the sender to recover from multiple packet losses in 

a window without resorting to a coarse timeout. Second, 

they attempt to have the sender distinguish between 
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congestion and other forms of losses using an Explicit 

Loss Notification (ELN) mechanism. Split-connection 

approaches completely hide the wireless link from the 

sender by terminating the TCP connection at the base 

station. Such schemes use a separate reliable connection 

between the base station and the destination host. The 

second connection can use techniques such as negative or 

selective acknowledgments, rather than just regular TCP, 

to perform well over the wireless link. The third class of 

protocols, link-layer solutions, lies between the other two 

classes. These protocols attempt to hide link-related losses 

from the TCP sender by using local retransmissions and 

perhaps forward error correction over the wireless link. 

Since the end-to-end TCP connection passes through the 

lossy link, the TCP sender may not be fully shielded from 

wireless losses. This can happen either because of timer 

interactions between the two layers [10], or more likely 

because of TCP’s duplicate acknowledgments causing 

sender fast retransmissions even for segments that are 

locally retransmitted. As a result, some proposals to 

improve TCP performance use mechanisms based on the 

knowledge of TCP messaging to shield the TCP sender 

more effectively and avoid competing and redundant 

retransmissions [8]  

These TCP enhancement schemes are not suitable for On-

Board IP Networks (ObIPN) as they consider a scenario 

where the last hop/link of an end-to-end TCP path is 

wireless and these schemes work with Mobile IP rather 

than NEMO Basic Support Protocol. This corresponds to 

the popular case of web-browsing via mobile terminals. 

Relatively little attention has been paid to the case of 

Mobile Network where multiple wireless links are present 

in the end-to-end TCP path. An efficient TCP performance 

enhancement scheme, called obTCP [11], for ObIPNs, has 

been proposed and it is proved in [11] that obTCP 

performs considerably better than TCP Snoop when 

multiple error prone wireless links are present. It confirms 

the possible use of obTCP for ObIPNs instead of other 

existing wireless versions of TCP. 

In this paper we consider Vehicle-to-Vehicle 

communication where host in an ObIPN communicates 

directly with a host in another ObIPN. Police patrolling 

and other such type of applications may get benefited from 

this type of communication scenario where the devices 

and users in obIPNs can communicate with each other for 

better surveillance or performance. 

 In this paper we compare performance of Snoop and 

obTCP over Vehicle-to-Vehicle communication topology, 

which will help in understanding and improving the 

Vehicle-to-Vehicle communication. 

In next section we describe briefly the functioning of 

Snoop and obTCP. Section III describes the experimental 

setup and Section IV presents the results and discussion. 
Section V concludes the paper.  

II. RELATED WORK 

There are several TCP enhancement schemes proposed for 

wireless networks but obTCP is appropriate for ObIPNs, 

so we discuss working details of obTCP in this section. 

obTCP extends the idea of Tcp Snoop. We also present the 

functional details of the Snoop protocol. 

A. Snoop 

The Snoop protocol [8] introduces an agent called Snoop 

agent at the base station that monitors every packet that 

passes through the connection in either direction. The 

Snoop module maintains a cache of TCP packets sent from 

the FH that haven’t yet been acknowledged by the MH. 

When  a new  packet  arrives  from  the FH,  Snoop  adds  

it  to  its  cache and passes the  packet  onto the  routing  

code which performs  the  normal  routing  functions.  The  

Snoop  module  also  keeps  track  of  all  the 

acknowledgments  sent from  the mobile  host. When  a 

packet loss is detected (either  by  the arrival  of a 

duplicate  acknowledgment or by a local  timeout),  it  

retransmits  the  lost packet to  the MH  if  it  has the 

packet cached. Thus,  the base station (Snoop)  hides  the 

packet  loss  from  the FH  by  not propagating  duplicate  

acknowledgments,  thereby  preventing  unnecessary 

congestion  control  mechanism  invocations. 

To deal with data transfer from MH to FH Snoop protocol 

proposes a slight modification to the TCP code at the 

mobile host.  At  the  base station,  Snoop agent keeps 

track of the packets that  were  lost  in  any  transmitted  

window,  and generate negative  acknowledgments  

(NACKs)  for  those packets back  to  the mobile.  This is 

especially useful if several packets are lost in a single 

transmission window. These NACKs are sent when  either  

a threshold  number  of  packets  (from  a single  window)  

have reached the base station  or when  a certain  amount  

of  time  has expired  without  any  new  packets from  the 

mobile.  

Though the Snoop considerably improves the TCP 

performance in wireless last-hop networks, this protocol 

requires that the RTT at the wireless link be small enough 

to allow multiple retransmissions on wireless links before 

the sender retransmission timer times out. If the wire-less 

links are slow such that the RTT is large enough to cause 

the sender to time out, this leads to retransmission at the 

sender when the retransmission is being performed on the 

wireless link by Snoop agent.  

B. obTCP 

obTCP works by employing obTCP agents at the BS and 

MR. The obTCP agents maintain a cache of TCP packets 

sent from FH that have not yet been acknowledged by the 

receiver. The packets that reach the BS are handled in the 

same way as in Snoop protocol, but the ACKs are handled 

in a different way. The main function of obTCP agent at 

BS is to cache TCP packets and perform local 

retransmissions over the wireless link as reported by the 

obTCP agent at MR. The obTCP agent at BS will receive 

two types of ACK packet from obTCP agent at MR: 

Standard TCP ACK and SNACK packet. If an ACK is 

received it is forwarded to the FH and the buffer spaces 

are freed. However, if a SNACK is received, obTCP agent 
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at BS checks its cache. If the packet is found, it is 

retransmitted immediately over wireless link. Otherwise, 

the obTCP agent at BS assumes that the packet has been 

lost due to congestion in wired network or flushed 

prematurely from the cache. In this case, the obTCP agent 

at BS sends an indication (congestion packet) to the 

obTCP agent at MR saying not to suppress the duplicate 

ACKs for these lost packets. It is important because if the 

duplicate ACKs are suppressed by obTCP agent at MR, it 

is unnecessarily delaying the Fast Retransmission from the 

FH because the packets are not available at the BS. In 

order to activate Fast Retransmission as early as possible, 

obTCP agent at MR should not suppress the duplicate 

ACKs for these lost packets.  

The obTCP agent at MR has four main functions: i) 

caching TCP packets received from obTCP agent at BS, ii) 
dropping duplicate ACKs, iii) detecting and reporting 

packet corruption to the obTCP agent at BS, iv) 

retransmitting packets those are lost in the path between 

MR to receiver. If the obTCP agent at MR finds a gap in 

sequence number of the received packets, it generates a 

SNACK specifying all the packets those might have been 

lost in the wireless link and forwards to the obTCP agent 

at BS. If the packets reach the obTCP agent at MR in 

sequence it stores them in the cache and forwards to the 

receiver. When duplicate ACKs reach the obTCP agent at 

MR, it checks its cache. If the packet is found it is 
retransmitted. Otherwise it checks whether it has received 

any indication (congestion packet) from obTCP agent at 

BS about this packet. If the packet has been lost in wired 

network, it will get an indication from the obTCP agent at 

BS. In this case the obTCP agent at MR will not suppress 

these duplicate ACKs in order to initiate Fast 

Retransmission at the FH.  

III. SIMULATION 

A. Vehicle-to-Vehicle Communication  

We compare the performance of obTCP and Snoop in a 

special topology where devices in one vehicle equipped 

with ObIPN needs to communicate with devices in another 

such a vehicle, directly via base station. This scenario is 

shown in Figure 1. 

B. Simulation Setup 

The network topology shown in figure 1 is simulated using 

ns-2.29 [12], [13] in Red Hat Linux 9.0. The system 

consists of an 11 Mbps, 5 ms propagation delay wire-less 

links between MH-MR and MH1-MR1, a 2 Mbps, 10 ms 

wireless link between BS-MR and BS1-MR1 and a 100Mb 

20ms wired link between BS and BS1. The queues used in 

all links are drop tail. The buffer size at all links is 2000 

packets. The MH is a TCP-Reno agent with maximum 

congestion window is of size 256 packets, slow start 

threshold is set to 256 packets, initial/reset value of 

congestion window is set to 1 packet and maximum bound 

on window size is 256 packets. Packet size is 1000 Bytes. 

To simulate the wireless link characteristics, error is 

incorporated in wireless links. The wireless links between 

MH-MR and MH1-MR1 have 1% error rate. The error 

wireless links between MR-BS and MR1-BS1 has been 

varied from 1% to 20% error rate. We assume wired link 

between base stations are error free, so that we can 

concentrate on how obTCP and Snoop recover from non-

congestion related losses. The simulation duration is 2000 

sec. 

The performance metrics for our simulations is TCP 

Throughput. To analyze the performance of TCP, we cal-

culate the throughput at TCP receiver. If N is the total 

number of received packets and T is the simulation dura-

tion, then the throughput Tpt in packet/Sec is calculated as  

 

T

N
Tpt      (1) 

IV. RESULTS AND DISCUSSION 

We compare the performance of Snoop and obTCP under 

the impact of link errors in Vehicle-to-Vehicle 

Communication scenario. We carry out investigations for 

different link error scenarios and different TCP control 

parameters. 

The throughput of the TCP depends on how the congestion 

window varies. In Vehicle to Vehicle Communication 

scenario, there exist more number of wireless links and 

more agents (at MR, BS, MR1 and BS1 respectively). 

Whenever a packet loss is detected in a wireless link by 

any of these agents, they fallow local retransmission 

mechanism. And each agent (Snoop or obTCP) maintains 

its own timer for each retransmitted packet. Based on 

these timers the agent transmits the loss packet from its 

cache. At high error rates there are too many packet losses 

in this topology and there is a chance that locally 

retransmitted packet is lost resulting in more number of 

retransmissions. These agents require that the RTT at the 

wireless link be small enough to allow multiple 

retransmissions on wireless links before the sender 

retransmission timer times out. If RTT at the wireless link 

is high and error rate of wireless link is also high 

Snoop/obTCP agent can not perform sufficient number of 

retransmissions to recover from the loss and eventually 

sender retransmission timer times out. So there should be 

well coordination between agent timer and TCP sender 

timer. And TCP consider these timeouts as indication of 

congestion and decreases its sending rate, leading to lesser 

throughput. Snoop employs two agents in this topology, 

one at BS and one at BS1 resulted in fewer local 

retransmissions in the network. And propagation of 

duplicate acknowledgements by Tcp receiver is relatively 

fast in Snoop. So timeouts are lesser than in the case of 

obTCP. The obTCP though performs well in ObIPNs, in 

this topology it yields throughput almost equal to that of 

Snoop. This observation is evident from the figures 2 to 6 

where TCP sender, when employed obTCP agent at BS 

and MR, times out more frequently. 
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 Fig. 2.  Congestion Window variations vs. Simulation Time at error rate 

1% at link A and D, 1% at link B and C respectively 
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 Fig. 3.  Congestion Window variations vs. Simulation Time at error rate 

1% at link A and D, 5% at link B and C respectively 
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 Fig. 4.  Congestion Window variations vs. Simulation Time at error rate 

1% at link A and D, 15% at link B and C respectively 

From the figures 2, 3 and 5 we can observe more number 

of timeouts in obTCP than in Snoop. 
TABLE 1  

VALUES OF PACKETS DELIVERED, CONGESTION WINDOW CUTS AND 

TIMEOUTS OBTAINED IN SIMULATION 

 

 

Above table shows the values of total number of packets 

delivered during the simulation time with obTCP and 

Snoop as well. 
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Fig.  5.  Throughput at varying error rates at links B and C  

 

Congestion window is dropped for every fast 

retransmission (upon receiving duplicate acks) or timeout 

event. In the event of timeout congestion window is set to 

its initial value. We can observe in Table 1, Snoop causes 

more congestion window drops than obTCP at different 

instances of error at wireless links. But timeouts out of 

total congestion window cuts are more in obTCP than in 

Snoop. It occurs when Tcp sender times out before 

DUPACKs from Tcp receiver reaches the Tcp sender. The 

throughput values in Table 1 and the throughput bars in 

figure 7 shows that Snoop and obTCP perform equally 

well in this topology.  

V. CONCLUSION 

We compare the performance of Snoop and obTCP under 

the impact of link errors in Vehicle-to-Vehicle 

Communication scenario. We carry out investigations for 

different link error scenarios and different TCP control 

parameters. We found that Snoop and obTCP performs 

almost same in this scenario due to complex timer 

cooperation among sender timer and agent’s timer. 
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