
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6539

Simulation Based Performance Analysis of

Snoop and obTCP for Vehicle to Vehicle

Communication

A. Vishnuvardhan Reddy
1
, G. Vijaya Kumar

2

Assistant Professor, Department of Computer Science and Engineering, G. Pulla Reddy Engineering College

(Autonomous), Kurnool, India
1,2

Abstract: Internet Engineering Task Force (IETF) has recently standardized Network Mobility Basic Support Protocol

to address the issue of mobility management for networks in motion (mobile networks). This development allows

providing seamless Internet access to all the devices in the mobile network. A lot of research has been done to enhance
the TCP performance in mobile networks and networks with wireless links, where packet losses are due to reasons

other than congestion such as high Bit Error Rate. We considered Snoop and obTCP as they give promising results in

mobile networks.

In this paper we consider Vehicle-to-Vehicle communication scenario where a host in an On-Board IP Network

communicates directly with a host in another On-Board IP Network. We analyze the performance of TCP Snoop and

obTCP in Vehicle-to-Vehicle communication under varying wireless link characteristics. We found that Snoop and

obTCP performs almost same in this scenario due to complex timer cooperation among sender timer and agent’s timer.

 document gives formatting instructions for authors preparing papers for publication in the Proceedings of an

International Journal. The authors must follow the instructions given in the document for the papers to be published.

You can use this document as both an instruction set and as a template into which you can type your own text.

Keywords: NEMO, obTCP, SNOOP, Vehicle to Vehicle communication.

I. INTRODUCTION

In response to the increasing popularity of palm-top and

other mobile computers, Mobile IP [1] was developed to

enable these mobile devices to maintain Internet

connectivity while moving from one Internet attachment

point to another. In recent years we have witnessed an

explosive growth of Networks in Motion. Network

Mobility (NeMo) arises when a Mobile Router (MR)

connecting a network to the Internet dynamically changes

its point of attachment, maintaining the sessions of every

device of the network. These networks are often called on-

board IP Network (obIPN). A key characteristic of these

systems is that the entire IP subnet is mobile and may

rapidly changes its communication point to the outside

world while moving. Existing IP protocols do not cope

with this new requirement of entire network mobility. New

extensions are required to support network mobility. IETF

has recently standardized NEMO Basic Support Protocol

[2] to address the issue of mobility management for

networks in motion.

Transmission Control Protocol (TCP) [3, 4], works well in

traditional networks made up of wired links and stationary

hosts. In such networks the main cause for packet loss is

congestion. TCP performs very well on such networks by

adapting to end-to-end delays and packet losses caused by

congestion. TCP provides reliability by maintaining a

running average of estimated round-trip delay and mean

deviation and calculating retransmission time out value,

and by retransmitting any packet whose acknowledgment

is not received within the time out duration. Due to the

relatively low bit-error rates over wired networks, all

packet losses are correctly assumed to be because of

congestion. In the presence of the high error rates and

intermittent connectivity characteristic of wireless links,

in wireless last-hop networks or in obIPN, TCP reacts to

packet losses as it would in the wired environment. It

drops its transmission window size before retransmitting

packets, initiates congestion control or avoidance

mechanisms such as slow start [5], and resets its

retransmission timer according to Karn’s Algorithm [6].

These measures result in an unnecessary reduction in

the link’s bandwidth utilization thereby causing a

significant degradation in performance in the form of

poor throughput and very high interactive delays.

Several schemes have been proposed to mitigate the

effects of non-congestion-related losses on TCP

performance over networks that have wireless or similar

high-loss links [7, 8, and 9]. Many proposed schemes can

be classified into three basic groups, based on their

fundamental working principle: end-to-end proposals,

split-connection proposals and link-layer proposals. The

end-to-end protocols attempt to make the TCP sender

handle losses through the use of two techniques. First, they

use some form of selective acknowledgments (SACKs) to

allow the sender to recover from multiple packet losses in

a window without resorting to a coarse timeout. Second,

they attempt to have the sender distinguish between

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6540

congestion and other forms of losses using an Explicit

Loss Notification (ELN) mechanism. Split-connection

approaches completely hide the wireless link from the

sender by terminating the TCP connection at the base

station. Such schemes use a separate reliable connection

between the base station and the destination host. The

second connection can use techniques such as negative or

selective acknowledgments, rather than just regular TCP,

to perform well over the wireless link. The third class of

protocols, link-layer solutions, lies between the other two

classes. These protocols attempt to hide link-related losses

from the TCP sender by using local retransmissions and

perhaps forward error correction over the wireless link.

Since the end-to-end TCP connection passes through the

lossy link, the TCP sender may not be fully shielded from

wireless losses. This can happen either because of timer

interactions between the two layers [10], or more likely

because of TCP’s duplicate acknowledgments causing

sender fast retransmissions even for segments that are

locally retransmitted. As a result, some proposals to

improve TCP performance use mechanisms based on the

knowledge of TCP messaging to shield the TCP sender

more effectively and avoid competing and redundant

retransmissions [8]

These TCP enhancement schemes are not suitable for On-

Board IP Networks (ObIPN) as they consider a scenario

where the last hop/link of an end-to-end TCP path is

wireless and these schemes work with Mobile IP rather

than NEMO Basic Support Protocol. This corresponds to

the popular case of web-browsing via mobile terminals.

Relatively little attention has been paid to the case of

Mobile Network where multiple wireless links are present

in the end-to-end TCP path. An efficient TCP performance

enhancement scheme, called obTCP [11], for ObIPNs, has

been proposed and it is proved in [11] that obTCP

performs considerably better than TCP Snoop when

multiple error prone wireless links are present. It confirms

the possible use of obTCP for ObIPNs instead of other

existing wireless versions of TCP.

In this paper we consider Vehicle-to-Vehicle

communication where host in an ObIPN communicates

directly with a host in another ObIPN. Police patrolling

and other such type of applications may get benefited from

this type of communication scenario where the devices

and users in obIPNs can communicate with each other for

better surveillance or performance.

 In this paper we compare performance of Snoop and

obTCP over Vehicle-to-Vehicle communication topology,

which will help in understanding and improving the

Vehicle-to-Vehicle communication.

In next section we describe briefly the functioning of

Snoop and obTCP. Section III describes the experimental

setup and Section IV presents the results and discussion.
Section V concludes the paper.

II. RELATED WORK

There are several TCP enhancement schemes proposed for

wireless networks but obTCP is appropriate for ObIPNs,

so we discuss working details of obTCP in this section.

obTCP extends the idea of Tcp Snoop. We also present the

functional details of the Snoop protocol.

A. Snoop

The Snoop protocol [8] introduces an agent called Snoop

agent at the base station that monitors every packet that

passes through the connection in either direction. The

Snoop module maintains a cache of TCP packets sent from

the FH that haven’t yet been acknowledged by the MH.

When a new packet arrives from the FH, Snoop adds

it to its cache and passes the packet onto the routing

code which performs the normal routing functions. The

Snoop module also keeps track of all the

acknowledgments sent from the mobile host. When a

packet loss is detected (either by the arrival of a

duplicate acknowledgment or by a local timeout), it

retransmits the lost packet to the MH if it has the

packet cached. Thus, the base station (Snoop) hides the

packet loss from the FH by not propagating duplicate

acknowledgments, thereby preventing unnecessary

congestion control mechanism invocations.

To deal with data transfer from MH to FH Snoop protocol

proposes a slight modification to the TCP code at the

mobile host. At the base station, Snoop agent keeps

track of the packets that were lost in any transmitted

window, and generate negative acknowledgments

(NACKs) for those packets back to the mobile. This is

especially useful if several packets are lost in a single

transmission window. These NACKs are sent when either

a threshold number of packets (from a single window)

have reached the base station or when a certain amount

of time has expired without any new packets from the

mobile.

Though the Snoop considerably improves the TCP

performance in wireless last-hop networks, this protocol

requires that the RTT at the wireless link be small enough

to allow multiple retransmissions on wireless links before

the sender retransmission timer times out. If the wire-less

links are slow such that the RTT is large enough to cause

the sender to time out, this leads to retransmission at the

sender when the retransmission is being performed on the

wireless link by Snoop agent.

B. obTCP

obTCP works by employing obTCP agents at the BS and

MR. The obTCP agents maintain a cache of TCP packets

sent from FH that have not yet been acknowledged by the

receiver. The packets that reach the BS are handled in the

same way as in Snoop protocol, but the ACKs are handled

in a different way. The main function of obTCP agent at

BS is to cache TCP packets and perform local

retransmissions over the wireless link as reported by the

obTCP agent at MR. The obTCP agent at BS will receive

two types of ACK packet from obTCP agent at MR:

Standard TCP ACK and SNACK packet. If an ACK is

received it is forwarded to the FH and the buffer spaces

are freed. However, if a SNACK is received, obTCP agent

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6541

at BS checks its cache. If the packet is found, it is

retransmitted immediately over wireless link. Otherwise,

the obTCP agent at BS assumes that the packet has been

lost due to congestion in wired network or flushed

prematurely from the cache. In this case, the obTCP agent

at BS sends an indication (congestion packet) to the

obTCP agent at MR saying not to suppress the duplicate

ACKs for these lost packets. It is important because if the

duplicate ACKs are suppressed by obTCP agent at MR, it

is unnecessarily delaying the Fast Retransmission from the

FH because the packets are not available at the BS. In

order to activate Fast Retransmission as early as possible,

obTCP agent at MR should not suppress the duplicate

ACKs for these lost packets.

The obTCP agent at MR has four main functions: i)

caching TCP packets received from obTCP agent at BS, ii)
dropping duplicate ACKs, iii) detecting and reporting

packet corruption to the obTCP agent at BS, iv)

retransmitting packets those are lost in the path between

MR to receiver. If the obTCP agent at MR finds a gap in

sequence number of the received packets, it generates a

SNACK specifying all the packets those might have been

lost in the wireless link and forwards to the obTCP agent

at BS. If the packets reach the obTCP agent at MR in

sequence it stores them in the cache and forwards to the

receiver. When duplicate ACKs reach the obTCP agent at

MR, it checks its cache. If the packet is found it is
retransmitted. Otherwise it checks whether it has received

any indication (congestion packet) from obTCP agent at

BS about this packet. If the packet has been lost in wired

network, it will get an indication from the obTCP agent at

BS. In this case the obTCP agent at MR will not suppress

these duplicate ACKs in order to initiate Fast

Retransmission at the FH.

III. SIMULATION

A. Vehicle-to-Vehicle Communication

We compare the performance of obTCP and Snoop in a

special topology where devices in one vehicle equipped

with ObIPN needs to communicate with devices in another

such a vehicle, directly via base station. This scenario is

shown in Figure 1.

B. Simulation Setup

The network topology shown in figure 1 is simulated using

ns-2.29 [12], [13] in Red Hat Linux 9.0. The system

consists of an 11 Mbps, 5 ms propagation delay wire-less

links between MH-MR and MH1-MR1, a 2 Mbps, 10 ms

wireless link between BS-MR and BS1-MR1 and a 100Mb

20ms wired link between BS and BS1. The queues used in

all links are drop tail. The buffer size at all links is 2000

packets. The MH is a TCP-Reno agent with maximum

congestion window is of size 256 packets, slow start

threshold is set to 256 packets, initial/reset value of

congestion window is set to 1 packet and maximum bound

on window size is 256 packets. Packet size is 1000 Bytes.

To simulate the wireless link characteristics, error is

incorporated in wireless links. The wireless links between

MH-MR and MH1-MR1 have 1% error rate. The error

wireless links between MR-BS and MR1-BS1 has been

varied from 1% to 20% error rate. We assume wired link

between base stations are error free, so that we can

concentrate on how obTCP and Snoop recover from non-

congestion related losses. The simulation duration is 2000

sec.

The performance metrics for our simulations is TCP

Throughput. To analyze the performance of TCP, we cal-

culate the throughput at TCP receiver. If N is the total

number of received packets and T is the simulation dura-

tion, then the throughput Tpt in packet/Sec is calculated as

T

N
Tpt  (1)

IV. RESULTS AND DISCUSSION

We compare the performance of Snoop and obTCP under

the impact of link errors in Vehicle-to-Vehicle

Communication scenario. We carry out investigations for

different link error scenarios and different TCP control

parameters.

The throughput of the TCP depends on how the congestion

window varies. In Vehicle to Vehicle Communication

scenario, there exist more number of wireless links and

more agents (at MR, BS, MR1 and BS1 respectively).

Whenever a packet loss is detected in a wireless link by

any of these agents, they fallow local retransmission

mechanism. And each agent (Snoop or obTCP) maintains

its own timer for each retransmitted packet. Based on

these timers the agent transmits the loss packet from its

cache. At high error rates there are too many packet losses

in this topology and there is a chance that locally

retransmitted packet is lost resulting in more number of

retransmissions. These agents require that the RTT at the

wireless link be small enough to allow multiple

retransmissions on wireless links before the sender

retransmission timer times out. If RTT at the wireless link

is high and error rate of wireless link is also high

Snoop/obTCP agent can not perform sufficient number of

retransmissions to recover from the loss and eventually

sender retransmission timer times out. So there should be

well coordination between agent timer and TCP sender

timer. And TCP consider these timeouts as indication of

congestion and decreases its sending rate, leading to lesser

throughput. Snoop employs two agents in this topology,

one at BS and one at BS1 resulted in fewer local

retransmissions in the network. And propagation of

duplicate acknowledgements by Tcp receiver is relatively

fast in Snoop. So timeouts are lesser than in the case of

obTCP. The obTCP though performs well in ObIPNs, in

this topology it yields throughput almost equal to that of

Snoop. This observation is evident from the figures 2 to 6

where TCP sender, when employed obTCP agent at BS

and MR, times out more frequently.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6542

1200 1300 1400 1500 1600 1700 1800 1900 2000

0

40

80

120

160

200

240

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
p

k
ts

)

Simulation Time in Seconds

 obtcp

 snoop

 Fig. 2. Congestion Window variations vs. Simulation Time at error rate

1% at link A and D, 1% at link B and C respectively

300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 (
p
k
ts

)

Simulation Time in Seconds

 obtcp

 snoop

 Fig. 3. Congestion Window variations vs. Simulation Time at error rate

1% at link A and D, 5% at link B and C respectively

600 650 700 750 800 850 900 950

5

10

15

20

25

C
o
n

g
e

s
ti
o
n

 W
in

d
o

w
 (

p
k
ts

)

Simulation Time in Seconds

 obtcp

 snoop

 Fig. 4. Congestion Window variations vs. Simulation Time at error rate

1% at link A and D, 15% at link B and C respectively

From the figures 2, 3 and 5 we can observe more number

of timeouts in obTCP than in Snoop.
TABLE 1

VALUES OF PACKETS DELIVERED, CONGESTION WINDOW CUTS AND

TIMEOUTS OBTAINED IN SIMULATION

Above table shows the values of total number of packets

delivered during the simulation time with obTCP and

Snoop as well.

0 5 10 15 20

6

8

10

12

14

16

18

20
T

h
ro

u
g
h
p
u
t
(p

kt
s/

se
c)

Error Rate (%)

 obtcp

 snoop

Fig. 5. Throughput at varying error rates at links B and C

Congestion window is dropped for every fast

retransmission (upon receiving duplicate acks) or timeout

event. In the event of timeout congestion window is set to

its initial value. We can observe in Table 1, Snoop causes

more congestion window drops than obTCP at different

instances of error at wireless links. But timeouts out of

total congestion window cuts are more in obTCP than in

Snoop. It occurs when Tcp sender times out before

DUPACKs from Tcp receiver reaches the Tcp sender. The

throughput values in Table 1 and the throughput bars in

figure 7 shows that Snoop and obTCP perform equally

well in this topology.

V. CONCLUSION

We compare the performance of Snoop and obTCP under

the impact of link errors in Vehicle-to-Vehicle

Communication scenario. We carry out investigations for

different link error scenarios and different TCP control

parameters. We found that Snoop and obTCP performs

almost same in this scenario due to complex timer

cooperation among sender timer and agent’s timer.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6543

REFERENCES

[1] C. Perkins, “IP Mobility Support,” IETF RFC 2002, Oct. 1996.

[2] Vijay Devarapalli, Ryuji Wakikawa, Alexandru Petrescu and Pascal

Thubert. “Network Mobility (NEMO) Basic Support Protocol”.

IETF RFC 3963, Jan 2005.

[3] J. B. Postel. Transmission Control Protocol. RFC, Information

Sciences Institute, Marina del Rey, CA, September 1981. RFC 793.

[4] Douglas E. Comer, Internetworking with TCP/IP, vol-1. Prentice

Hall, India, 2006.

[5] V. Jacobson. Congestion Avoidance and Control. In Proc. ACM

SIGCOMM 88, August 1988.

[6] P. Karn and C. Partridge. Improving Round-Trip Time Estimates in

Reliable Transport Protocols. ACM Transactions on Computer

Systems, 9(4):364–373, November 1991.

[7] A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for Mobile

Hosts. In Proc. 15th International Conf. on Distributed Computing

Systems (ICDCS), May 1995.

[8] H. Balakrishnan, S. Seshan, and R.H. Katz. Improving Reliable

Transport and Handoff Performance in Cellular Wireless Networks.

ACM Wireless Networks, 1(4), December 1995.

[9] R. Yavatkar and N. Bhagwat. Improving End-to-End Performance

of TCP over Mobile Internetworks. In Mobile 94 Workshop on

Mobile Computing Systems and Applications, December 1994.

[10] A. DeSimone, M. C. Chuah, and O. C. Yue. Throughput

Performance of Transport-Layer Protocols over Wireless LANs. In

Proc. Globecom ’93, December 1993.

[11] B. Sardar, P.Chand, D. Saha, “A Novel Version of Wireless TCP

for Vehicular On-Board IP Networks”, IEEE VTC, Vol. 2, pp. 876-

880, 2006.

[12] Network Simulator, ns-2 web site. [Online]. Available:

http://www.isi.edu/nsnam/ns/

[13] Kevin Fall, ed., Kannan Varadhan, ed., “The ns Manual,” VINT

Project, November 2008.

BIOGRAPHIES

A Vishnuvardhan Reddy, is
working as an Assistant Professor in

Department of Computer Science
and Engineering of G. Pulla Reddy

Engineering College (Autonomous),
Kurnool, India. He received his M.E

degree in Software Engineering from
Jadavpur University, Kolkata, India.

He received his B.Tech degree in

Computer Science and Engineering
from Sri Venkateswara University, tirupati, India. His area of

research is in the design and implementation of transport
layer protocol for vehicular ad-hoc networks.

G Vijaya Kumar, received his
B.Tech and M.Tech Degree in

Computer Science & Engineering
from Jawaharlal Nehru

Technological University,
Hyderbad, AP, India, in 2002, and

2006 respectively. At present, he

is pursuing Ph.D in Computer
Science & Engineering from

Jawaharlal Nehru Technological
University, Anantapur, India. His

research interests include mobile ad hoc networks, cross-layer
design, network security and wireless mesh networks.

Currently he is working as Assistant Professor in Depatment
of Computer Science and Engineering of G.Pulla Reddy

Engineering College (Autonomous), Kurnool, Andhra
Pradesh. He has 9 years of teaching experience.

Photograph

