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Abstract: Elliptic curve cryptography (ECC) is an approach to public-key cryptography which is based on the 

algebraic structure of elliptic curves over finite fields. ECC, a public-key encryption technique, can be used to create 

faster, smaller, and more efficient cryptographic keys. Instead of the traditional method of generation, ECC generates 

keys through the properties of the elliptic curve equation. The technology of ECC can be used in conjunction with most 

public key encryption methods, viz.  RSA and Diffie-Hellman. According to researchers, ECC can yield a level of 

security with a 164-bit key that other systems require a 1,024-bit key to achieve. As ECC can be used to establish 

equivalent security with lower computing power and battery resource usage, it is being widely used for mobile 
applications.  
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I. INTRODUCTION 

Elliptic Curve Cryptography (ECC) is a public key 

cryptographic technique. In public key cryptography, each 

user or the device taking part in the communication 

generally require a pair of keys, a public key and a private 

key, and a set of operations which remain associated with 

the keys to do cryptographic operations. The public key is 

being distributed to all the users taking part in the 
communication but the private key is only being known by 

the particular user. Some public key algorithm may require 

a set of predefined constants to be known by all the 

devices which will take part in the communication. 

Domain parameter of ECC is one such example. Unlike 

private key cryptography, public key cryptography does 

not require any shared secret between the communicating 

parties but it is much slower than private key 

cryptosystem. 

 

The mathematical operation on ECC is defined over the 
elliptic curve equation: 

 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑤ℎ𝑒𝑟𝑒 4𝑎3 + 27𝑏2 ≠ 0 
 

Different elliptic curves can be generated by varying the 

curve parameter values, that is, value of „a‟ and „b‟. All 

the (x,y) points satisfying the above equation plus a point 

at infinity lies on the elliptic curve. The user‟s public key 

is a point in the curve and its private key is a randomly 

selected number. The base point or the generator point „G‟ 

of the curve  is multiplied with the private key to obtain 
the public key. The generator point G, the curve 

parameters „a‟ and „b‟, together with few more constants 

constitutes the domain parameter of ECC. The 

requirement of small key size in ECC is one of its main 

advantage. For example, a 160 bit key in ECC is 

considered to be as secured as 1024 bit key in RSA. 

 

 

  

II. DETERMINATION OF POINTS IN AN 

ELLIPTIC CURVE OVER A FINITE FIELD 

Generation of points in the elliptic curve is the basic step 

in elliptic curve cryptography but it is normally not shown 

in papers how to generate those points. So, in this 

example, we will determine all points on the curve over 

the finite field having p=17, a=1 and b=0. Therefore the 
equation becomes: 
 

𝐸 = { 𝑥, 𝑦 ;𝑦2 = 𝑥3 + 𝑥} 
 

Taking  mod on both sides we have,  

 

𝐸 = { 𝑥,𝑦 ;𝑦2𝑚𝑜𝑑𝑝 =  𝑥3 + 𝑥 𝑚𝑜𝑑17} 

 

For doing that, we first compute the square table over F, 

which tells us which points in F can have a square root. 

>> For y=[0:16], the answers are- 

                                                          
TABLE I 

 

0   0 

 

4   16 

 

8   13 

 

12  8 

 

16  1 

 

1   1 

 

5    8 

 

9  13 

 

13  16 

 

 

2  4 

               

6   2 

 

 

10  15 

 

14  9 

 

 

3   9 

 

7  15 

 

11  2 

 

15  4 

 

 

This generates the following square table of mod p(p=17 

here). 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 1 4 9 16 8 2 15 13 13 15 2 8 16 9 4 1 
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Clearly, (0, 0) € E. Then, we compute x= 1,2,...., 16 to 

solve the equation 

 

𝑦2𝑚𝑜𝑑17 =  𝑥3 + 𝑥 𝑚𝑜𝑑17 
 

For x=1, y2=1+1 and so the square root table gives y= ±6. 

Hence (1, ±6) € E 

For x=2, we have y2=8+2=10. The square table says that 

there is no solution, and so we move on to the case for 

x=3. 

The following table computes all the needed information 

for x. 

>> For x=[0:16] 
TABLE II 

                                                                                         
 

0   0 

 

4   0 

 

8   10 

 

12  16 

 

16  5 

 

1   2 

 

5    11 

 

9  7 

 

13  0 

 

 

2  10 

               

 6   1 

 

 

10  7 

 

14  0 

 

 

3   13 

 

7  10 

 

11  16 

 

15  7 

 

  

In this way, we have the required points on the elliptic 
curve as   

𝐸 = { 0,0 ,  1, ±6 ,  3, ±8 ,  4,0 , 
 6, ±1 ,  11, ±4 ,  13,0 , 
 14, ±2 ,  16, ±7 } [4]. 

 

III. BASE POINT SELECTION 

 

Base point or generator point selection in ECC is the 

prime step for its security. The efficiency of the choice of 

base point is needed for reducing the time complexity of 

the algorithm thereby reducing the overall computational 
cost. So, the effectiveness of base point is necessary. Some 

chooses a random point on the curve as base point while 

some chooses the smallest point on the curve as the 

generator point. But there are some algorithms which 

gives optimum base point selection method. One such 

method is described below. 

The base point of ECC on GF(p) is given below: 

 

In ECC of GF(p), p is a prime number and Fp is a finite 

field of mod p. ECC uses modular arithmetic, so in 

modular form, the elliptic curve equation E over Fp can be 
defined as: 

 

𝑦2𝑚𝑜𝑑𝑝 =  𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑𝑝,
𝑤ℎ𝑒𝑟𝑒 4𝑎3 + 27𝑏2 ≠ 0𝑚𝑜𝑑𝑝 

 

Here, a and b are the curve parameters as stated earlier. 

Now if there is a point (x,y) which meets the above 

equation, then the number (x, y) is a point on the elliptic 

curve E. E(Fp) is used to represent set of all point which 

meets the curve E. The domain parameters of ECC on 
GF(p) are (q, a, b, p, n, h ) where q is the module, a and b 

are the coefficient of ECC, n is the order of the base point, 

h is the cofactor of n, namely #(E)=nh [2]. 

 

Theorem 1: 

Let assume a and p are integers, p>0. The basic idea of the 

algorithm is that at first we have to select an effective 
random point on the curve and then scalar multiplication is 

done using the random point. Finally, the scalar 

multiplication value is being used to judge the base point 

of the elliptic curve. 

 

Algorithm 1: the base point choice algorithm of ECC on 

GF(p). 

Input: a, b, p, n, h. 

Output: Effective base point G on curve having order n. 
 

Steps: 

S1. Randomly choose x (0 ≤ x < p); 

S2. a =(x3 + ax + b) mod p; 

S3. Judging whether a belongs to quadratic residue of mod 

p, if so y is gotten, marked G = (x, y) go to S4, if not, go to 

S1. 
S4. According to point G to compute G = hG, then judging 

whether G meets y2 = x3 + ax + b and G is not 

infinite point. If so, G is the solved base point, then go S5, 

if not, go to s1. 

S5. Return G 

Algorithm 2: To judge whether a is quadratic residue and 

get the coordinate y. 

Input: a, p, among them, a is gotten from S2 of Algorithm 

1, p is mod; 

Output: a, y, among them, a is gotten from S2 of 

Algorithm 1, y is y-coordinate; 

Steps: 

S1. If a=0, return (0, 0), or go to S2 

S2. sum←0, y←1, i←1 

S3. for i←1 to p do 

sum← (sum+i) mod p, 

if a=sum then 

return (a,y), 

else y←y+1, i←i+2, 

if  i=p 

return (-1,-1)[3]. 
 

IV. SECURITY AND EFFICIENCY OF ELLIPTIC 

CURVE  

1024-bit parameters of RSA and Diffie-Hellman are 

normally being used in majority of the public systems. But 

these 1024-bit systems were sufficient for use until 2010 

as stated by the US National Institute for Standards and 

Technology. Beyond that, NIST recommends that they 

were required to be upgraded to something which provides 
more security. But the question was what should these 

systems be changed to? One idea was to increase the 

public key parameter size to a level appropriate for which 

it can be used for another decade. The second option was 

to take advantage of the past 30 years of public key 

research and analysis and to move from first generation 

public key algorithms to elliptic curves. The judgments are 

made about the correct key size for a public key system in 

order to look at the strength of the conventional 

(symmetric) encryption algorithms that the public key 

algorithm will be used to key or authenticate. For a 
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conventional encryption algorithm, the length of a key in 

bits is a common measure of security. In order to attack an 

algorithm with a k-bit key, roughly 2k-1 operations will be 

required. Hence, a public key system would be secure 
when one would use parameters that require at least 2k-1 

operations to attack. In order to protect 128-bit AES keys 

one should use 3072-bit parameters of RSA or Diffie-

Hellman which is basically three times the size in use 

throughout the Internet today. For elliptic curves, the 

equivalent key size  is only 256 bits. Now it can be noticed 

that as symmetric key sizes increase the required key sizes 

for RSA and Diffie-Hellman increase at a much faster rate 

than the required key sizes for elliptic curve 

cryptosystems. Therefore, it can be said that elliptic curve 

systems offer much more security per bit increase in key 
size than either RSA or Diffie-Hellman public key 

systems. 
 

The attractive feature of elliptic curve cryptography is not 

limited to security only. Elliptic curve cryptosystems also 

are more computationally efficient than the first generation 

public key systems, RSA and Diffie-Hellman. Although its 
arithmetic is slightly more complex per bit than that of 

RSA or DH arithmetic, the added strength per bit more 

than makes up for any extra compute time. Elliptic curves 

offer much better solution than first generation public key 

systems like Diffie-Hellman in channel-constrained 

environments. The National Security Agency has decided 

to move to elliptic curve based public key cryptography 

for protecting both classified and unclassified National 

Security information. The Cryptographic Modernization 

Initiative in the US Department of Defense aims at 

replacing almost 1.3 million existing equipments over the 

next 10 years.[1].  

V. CONCLUSION 

 
 

Elliptic curve cryptography provides better performance in 

efficiency and greater security than most of the first 

generation public key techniques viz. RSA and Diffie-

Hellman which are in use. Point generation and base point 
selection is the key feature for security in ECC. It is also 

found that  a considerably smaller  key size can be used 

for ECC as compared to RSA. Therefore, we can say that 

there is computational advantage of using ECC with a 

shorter key length than comparably secure RSA. Even in 

terms of data files and encrypted files, ECC is more 

efficient. So, because of this, ECC can be efficiently used 

for wireless communication having low data rate 

transmission and for constrained devices due to low power 

requirements. 

 

REFERENCES 

[1] http://www.nsa.gov/business/programs/elliptic_curve.shtml 

[2] Elliptic Curve Cryptography- An Implementation Guide by Anoop 

MS. 

[3] Yah HU, Yan CUI, Tong Li, “An Optimization Base Point Choice 

Algorithm of ECC on GF(p)”. 

[4]   http://www.math.wvu.edu/~hjlai/Teaching/Math373-578/Matlab-    

Example_2009.pdf  
  

 

 

 

 

 

 


