
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4401 1

N-Grams and Neural Networks in Early Virus

Warning

Mohamed H. Almeer

Computer Science & Engineering Department, Qatar University Doha, Qatar

Abstract: This paper proposes an intelligent first-warning system for virus code detection based on neural learning in an
artificial neural network (ANN). The system operates in accordance with the basic principles of ANNs for pattern

matching, in which the detectors detect a virus signature after training by means of analysis of the byte content of the

executable code. ANNs provide the potential to identify and classify network activity based on limited, incomplete, and

nonlinear data. The proposed system is capable of accurately detecting virus codes learned by training, and gives false

positive ratios within acceptable ranges. The results of experiments conducted indicate that the combination of N-grams

and neural networks results in a low false positive rate. The key ideas and approaches necessary for adaptation and

adjustments when implementing a neural network model as an underlying early warning virus detection system are also

discussed.

Keywords: neural networks, virus recognition, N-grams, antivirus software, ClamAV

I. INTRODUCTION

The majority of antivirus software products currently

commercially available utilize signature-based virus

detection and heuristic classifier models that have the

ability to detect new viruses. However, the ‗classic‘

signature-based detection algorithms simply use byte

signatures of known viruses saved in memory to generate

detection models. In general, detection methods based on

byte signatures use a huge collection of regular

expressions or simple signature string-matching engines to

scan files. Signatures create a unique tag for each virus

which can be considered a fingerprint, so that future
examples of it can be correctly identified with a small or

acceptable false positive error rate. The signature-based

approaches currently used in antivirus products have

acceptable detection rates for known viruses in addition to

low false positive and low false negative rates.

The term ‗N-gram analysis‘ is used in language modelling

and speech recognition, but character N-grams were used

prior for text categorization purposes. The Common N-

gram analysis method [1], for instance, is used for text

classification, authorship recognition [2], and text
clustering [3]. The 3-grams (tri-gram), in particular, can

perform very well, although it appears to be too short to be

able to memorize any noticeable information sequence.

However, some practitioners use N-grams to detect

features of code that are unique to certain tools, code

generators, compilers, assemblers, or programming

environments.

In addition, N-grams are still used to capture features that

could be unique for personal coding or even the coding

styles of individuals. An N-gram can be visualized as a

fixed-size sliding window byte array in which ‗N‘ is the
size of that window. For example the sequence

‗ABCDEFGH‘ is segmented (represented) in 5-gram as

‗ABCDE‘, ‗BCDEF‘, ‗CDEFG‘, ‗DEFGH‘, etc.

The byte N-gram used in this study to detect computer

viruses has been studied extensively earlier in computer

virology research. In the early days of antivirus software, a

byte N-gram-based method was successfully used to

automatically extract virus signatures and to measure

similarities in real-time processes. The representation of

viruses using N-gram profiles has been investigated by

various researchers, with good virus detection results

obtained [2], [3], [6]. The first known use of machine

learning in virus detection was carried out by Tesauro et

al. [4] and Arnold and Tesauro [5]. Their detection
algorithm was implemented in IBM‘s antivirus scanner,

which has been used for years to detect boot sector

malware. They used 3-grams as a feature set and neural

networks as a detection and classification method.

Further, Abou-Assaleh et al. [6] researched use of the N-

grams-based signature method to detect computer viruses.

He used a k-NN algorithm and conducted experiments that

produced results with very good detection ratios.

However, no false positive ratio was reported and they did

not utilize a neural network. The major difficulty in using
byte N-grams for classification and/or recognition is that

the set of byte N-grams obtained from the byte strings of

viruses, apart from benign programs, is very large.

Therefore, occurrences of these signatures in benign or

clean files are still very likely to appear, although it does

not point to occurrences for viruses. Thus, it is more

convenient to restrict utilization to a smaller set of related

N-grams for recognition of the viruses and use benign

executables as learning patterns. Many studies have

addressed this problem, but this study details how neural

network parameters affect recognition. In this study, we

use the N-gram feature of the virus to recognise the virus
instances with respect to their trained group (that is, if

training is implemented on 500 viruses, then the indicator

only triggers when one of those viruses appear in the

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4401 2

corpus of the file currently being scanned). This study

focuses only on signature detection and particularly uses

byte lengths ranging from 4-grams to 18-grams in one or

two (start and end sides) different places(s) from the

corpus of the virus.

We also analyse the applicability of neural networks in

identifying instances of a virus within the files searched,

and discuss tests conducted in which neural network-based

detectors were utilized as conceptual prototypes. Those

tests ranged from changing the virus numbers (called

Virus Code VC patterns) that must be recognised to

changing the benign parts of sample files (called Benign

Code BC patterns) needed for training and observing the

false positive metric. In addition, changing the training

error goals and the effect of changing the number of

neurons in the hidden layer are also studied, with
important results obtained. We therefore implemented an

N-gram, augmented with neural network ability for

memorization, to determine the effectiveness of such

algorithms in recognising viruses. This study seeks to

investigate the extent to which the use of neural networks

facilitate successful identification and recognition of

viruses based on N-grams signatures.

II. ARTIFICIAL NEURAL NETWORKS

(ANNS)

An ANN consists of a number of interconnected

processing elements and maps a set of inputs to a set of
desired outputs. The characteristics of the elements and the

weights associated with the interconnections among them

determine the result of the transformation. The nodes of

the network are able to easily adapt to the desired outputs

by changing the connections between their links. An ANN

analyses information and gives a probability estimate of

the data matching the required pattern which it has been

trained to recognise. This characteristic makes ANNs one

of the most desired methods for pattern recognition and

signature matching. However, the decision as to the

accuracy of the matches still relies completely on the
experience of the system (the memorization process)

inculcated during the training phase using examples of the

problem in question. Fig. 1 depicts a typical multilayer

feedforward NN.

Fig. 1. Typical multilayer neural network circuit

III. DATA PREPARATION AND TRAINING

A. ClamAV Background
In this study, we utilize signatures from ClamAV [15], the

most widely used open-source virus scanner. ClamAV

offers client-side protection for personal computers, as

well as protection for mail and file servers in large

organizations. The ClamAV virus database is updated at

least every four hours and, as of 25 December 2014,

contained over 3,700,000 virus signatures with the daily
update Virus DB number at 19,837. It consists of a core

scanner library and a command-line utility.

The ClamAV database contains signatures for non-

polymorphic viruses in simple string format, and for

polymorphic viruses in regular expression format. The

current version of ClamAV utilizes a simplified version of

the Boyer-Moore algorithm [11] and simple fixed string

signatures to detect non-polymorphic viruses. It uses a

variant of the classical Aho-Corasick and Wu-Manber

algorithms for polymorphic viruses [12], [13]. The simple

format in which ClamAV stores its virus signatures, and
its user-friendly conversion utility, with which it is

equipped, enabled us to extract the N-gram signatures

utilized in training the ANN used in our design from its

databases of patterns.

Four programs, written in the C language, have been

developed to assist in extraction of the required N-grams

signature corpus of the virus body, pre-processing of data

to make it available for training in MATLAB Neural

Network Toolbox, and to prepare the patterns from

collections of executable files:
1. The first program acts on the main ClamAV signature

database file and converts the content from binary to

hex format in ASCII. The ‗main.cvd‘ database file in

which ClamAV stores all its signatures contains the

static signatures of 3.7 million viruses.

2. The second program extracts more details about the

virus corpus and deletes or bypasses head

identification data, such as the name of the virus.

3. The third program chooses a user-specified number of

virus N-grams, in any sequence, to be further

processed by the Neural Network Toolbox in

MATLAB [14].
4. The fourth program reads collections of Windows

executable files then arranges them in text files with

sliding window effects. This preparation is essential in

order for MATLAB to apply the collection of patterns

to the Neural Network for validation. Nevertheless,

this maximizes the size of the generated files, for

instance a file such as ‗adamsync.exe‘, with size 164

KB, will generate text files with sizes of 238 KB (for

4-grams), 343 KB (for 6-grams), 447 KB (for 8-

grams), and 464 KB (for 10-grams).

IV. NEURAL NETWORKS AS PATTERN

RECOGNITION MODELS

VC detection can be viewed as a binary classification

problem; therefore, we can use a multilayer ANN that

operates as a pattern matcher to conduct the detection

process. The steps in the proposed detection procedure can

be summarized as follows:

 Dump hexadecimal byte sequences from viruses taken

from the ‗main.cvd‘ ClamAV main virus database and

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4401 3

benign installed ‗.exe‘ executable files that exist in

any PC.

 Slice each Hex sequence into gram by N—the size of

the sliding window—and save them in a file to be

presented to the trainer.

 Implement training and validation of the model.

Tables 3 and 4 give details on the content of one of the

viruses used in ClamAV and its format, as seen in the

ClamAV main database file, and show the names of the 50

viruses used in this study, respectively.

In reality, it is likely impossible to collect all normal
variations of a safe code. Thus, the possibility exists that

our normal collection of BC will give incomplete coverage

of normal behaviour. If the normal coverage is incomplete,

then false positives could result. The focus of this research

is on investigation of the performance of such virus

detection solutions based on neural networks under

incomplete training patterns. We selected random

executable files containing random sequences of bytes

representing the benign patterns we used in training.

The most widely used ANN, the multilayer feedforward

neural network, is used in this study because it is

considered the ‗workhorse‘ of neural networks in general.

It can be used for both function fitting and pattern
recognition applications (as in our case). The ANN used in

this study comprises an input layer, a hidden layer, and an

output layer.

In order to standardize our comparison of the various virus

pattern recognition approaches, we froze some properties

of the ANN—specifically, the number of layers (a total of

three, two hidden and one output); the number of neurons

in the input layer, which is used by the N-gram for the size

of the sliding window; the number of neurons in the first

hidden layer, 200; the number of neurons in the second
hidden layer, 10; and the number of neurons in the output

layer, one (because it signals true or false according to

whether the virus is present or absent, respectively).

Table.1 illustrates the details.

Moreover, the activation functions used in both the input

and hidden layers were chosen to be sigmoidal, whereas a

linear activation function was used for the output layer.

Fig. 3 depicts the ANN used in this study. It is

recommended that when training large networks, and in

particular recognition networks, that the training

algorithms TRAINSCQ and TRAINRP be used because

they are the best in such scenarios.

Their memory requirements are relatively small, and yet

they are much faster than standard gradient descent

algorithms. TRAINRP is the more suitable for pattern

recognition, and is good enough for large networks with

many neurons and large datasets, because it is the fastest

algorithm known. Our network has more than 200 neurons

and a large number of training sets, which justifies the use

of ‗TRAINRP‘, or a resilient backpropagation algorithm.

TABLE 1 NEURAL NETWORK CHARACTERISTICS

V. EXPERIMENTAL EVALUATION

We utilized the main virus signature database of the

ClamAV program [15]. The collection is composed of

over 100,000 static virus signatures and approximately

0.75 million MD5 hashed patterns. We extracted 50, 100,

250, and 500 virus codes as VC. Then, we collected more

than 125 Win32 executable files from a fresh installation

of Windows 8, with applications installed, on an ordinary

Intel-based PC. The files had a total size of over 54 MB.

We considered this collection benign code (BC) and

divided it into two sets; the first set for training, and the
second set to validate the network.

In order to achieve more efficient use of the validation

method, we focused our attention on the false positive rate

as a performance indicator. We also specified lower and

upper bounds in order to determine when a correct

recognition is made. Thus, the presented patterns for the

network trigger a positive recognition only when the

output falls between those two bounds (Table 2). The

bounds were recorded at the end of the training process.

Fig. 2 shows the various ranges for the system simulated
from its own training datasets.

TABLE.2 NEURAL NETWORK RECOGNITION

RESULTS FOR TRAINING ERROR GOAL = 1.0E-4

AND NETWORK = 200-10-1 NEURONS.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4401 4

Fig. 2. Positive and negative recognition outputs attained

by training when various training properties are

considered.

A. Experiment 1

This first experiment tested the validity of the networks

when the number of BC increased along with the number

of virus patterns; while maintaining the VC to be

recognised at 50 viruses. BC ranged from 250, 500, 1000,

1500, to 2000. Fig. 3 shows the results obtained. The x-

axis shows BC as a negative indicator for the presence of

viruses, while the y-axis depicts the false positive rate in

percentage.

Fig. 3. Change in false positives for various BC numbers

A different experiment that tests the changing of VC

versus performance was also conducted. The results are

depicted in Fig. 4 and Table 2. The results are
encouraging. They show an FP ratio of 0.0928% at BC

length = 2000 B. A high accuracy of > 0.098% and even

more can be achieved if BC > 2000 is tested. The results

indicate the attainment of an FP ratio between 3.9% and

31% when the VC number increased from 50 to 500.

However, increasing VC while maintaining BC is

considered a load on the ANN, which must then memorize

more patterns as positive while maintaining the number

memorized for negative recognition unchanged. That leads

to a more complicated network, and hence, worse training

and recognition results.

Therefore, increasing BC will get better results and

improves the recognition as opposed to increasing VC.

Fig. 4. Change in false positives for various VC numbers

B. Experiment 2

This second experiment was conducted to determine how

changing the number N in N-grams affects performance.

The test was conducted over the range N = 3, 4, 6, 8, 10,
12, 14, 16, to 18. Fig. 5 shows the results obtained. The x-

axis indicates the number of N-grams; while the y-axis

depicts the false positive ratio in percentage. The results

(Fig. 5) are encouraging, because an FP ratio of 0.0004%

is achieved for N = 18. High accuracy is also expected for

N > 18. Thus, we conclude that increasing the N value in

N-gram results in a better virus recognition measure;

however, a higher calculation load is involved and hence

more processing time is required.

Fig. 5. Change in false positives for various N values in N-

grams

C. Experiment 3

The third experiment validated the effect of changing the
accuracy of the training over the range 1.0E-3 to 1.0E-8 in

increments of 0.1. Here, the degree of overfitting was

varied and the effect on the virus recognition process

recorded. Overfitting occurs when the classifier learns the

training set too well. Fig. 6 shows the results obtained. The

x-axis indicates the training accuracy the network has

converged to; while the y-axis depicts the false positive

ratio in percentage. In most neural network studies,

overfitting is avoided because there is no need to

generalize the recognition to a wider range of inputs that

has not been presented at the training phase. Conversely,
in this case, overfitting is used as a measure of how close

0

1

2

3

4

5

0 500 1000 1500 2000 2500

Fa
ls

e
 P

o
si

ti
o

ve
 %

Benign Code Length

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 200 400 600

Fa
ls

e
P

o
si

ti
ve

 %

Virus Number

0.000

0.200

0.400

0.600

0.800

1.000

5 10 15 20

Fa
ls

e
P

o
si

ti
ve

 %

n-grams

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4401 5

the recognition will be when presented by the correct virus

patterns; in addition, other non-virus patterns should be

avoided.

Fig. 6. Changes in false positives for various training

accuracy goals

TABLE 3 VIRUS SIGNATURE FORMAT IN CLAMAV

AND ITS REDUCED CONTENT USED IN THIS

STUDY FOR N=16.

VI. CONCLUSION

In this study, we presented encouraging preliminary

results obtained in applying a feed forward neural network

based on byte the N-gram format to the detection of virus

codes using virus patterns extracted from ClamAV, a

popular open-source free antivirus program. The method

achieved a false positive rate of 0.0004% for N-gram>18

on training data, 0.09% for BC = 2000, and FP ratio of

0.026% for a training error goal of 1.0E-8. In future work,

we plan to conduct experiments on larger data collections,

mining the extracted N-grams to refine the method for
extraction of the VC signatures, and consider the

implementation of this method on FPGA or

Reconfigurable Logic.

TABLE 4 FIRST 50 VIRUSES FOUND IN CLAMAV

AND USED IN THIS STUDY

REFERENCES
[1]. D. Reddy, K. Sandeep, and A. K. Pujari. ―N-gram analysis for

computer virus detection,‖ Journal in Computer Virology, vol. 2,

no. 3, pp. 231–239, 2006.

[2]. W. Cavnar and J. Trenkle, ―N-gram-based text categorization,‖ in

Proc. SDAIR-94, 1994.

[3]. G. Frantzeskou, et al. ―Effective identification of source code

authors using byte-level information,‖ in Proc. 28th International

Conference on Software engineering. ACM, 2006.

[4]. G. J. Tesauro, O. J. Kephart, and B. G. Sorkin, ―Neural networks

for computer virus recognition,‖ IEEE EXPERT Magazine, pp. 5–

6, 1996.

[5]. W. Arnold and G. Tesauro, ―Automatically generated Win32

heuristic virus detection,‖ in Proc. Virus Bulletin Conference, pp.

51–60, September 2000.

[6]. T. Abou-Assaleh et al., ―N-gram-based detection of new malicious

code,‖ in Proc. COMPSAC 2004, vol. 2, 2004.

[7]. K. Tan, ―The application of neural networks to UNIX computer

security,‖ in Proc. IEEE International Conference on Neural

Networks, vol. 1, 1995.

[8]. S. Shah, H. Jani, S. Shetty, and K. Bhowmick, ―Virus Detection

using Artificial Neural Networks,‖ International Journal of

Computer Applications, vol. 84, 2013.

[9]. I. Santos, Y. K. Penya, J. Devesa, and P. Garcia Bringas, ―N-grams-

based File Signatures for Malware Detection,‖ ICEIS, vol. 2, no. 9,

pp. 317-320, 2009.

[10]. B. Zhang, et al., ―New malicious code detection based on n-gram

analysis and rough set theory,‖ in Proc. International Conference on

Computational Intelligence and Security, vol. 2, 2006.

[11]. R. S. Boyer and J. S. Moore, ―A fast string searching algorithm,‖

Communications of the ACM, vol. 20, no. 10, pp. 762-772, 1977.

[12]. A. V. Aho and M. J. Corasick, ―Efficient string matching: An aid to

bibliographic search,‖ Communications of the ACM, vol. 18, no. 6,

pp. 333-340, 1975.

[13]. S. Wu and U. Manber, ―A fast algorithm for multi-pattern

searching.‖ Technical Report TR-94-17. University of Arizona,

1994.

[14]. Neural Network Toolbox User Guide,

[15]. ClamAV, www.clamav.org.

0.01

0.1

1

10

1.00E-081.00E-061.00E-04

Fa
ls

e
P

o
si

ti
ve

Train Accuracy

