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Abstract: Genetic programming combines and extends discrete decision theory with the principles of genetic and 

natural selection. The programs may be in the form of decision trees or diagram. The decision trees and diagrams are 

used in many discipline, genetic programming has many applications. Among those applications is pattern recognition. 

Different genetic programming techniques exist. This section describes a general technique for programs that use 

mathematical function. A function is routine that take one or two arguments, performs some function and returns value. 

The arguments with the routine are also functional routines, the resulting programs is like a tree in which each node 

represents a functional routine and each subtree an argument. Genetic programming with subtree crossover technique 

will be used that evolves a population over much iteration until some termination is satisfied. During each iteration the 

existing population is replaced by a new population that is derived from the existing population. The primary 

operations of reproduction and crossover are used for all problems. The two operations were sufficient for most of the 
problem to which the technique was applied in [9] 
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I. INTRODUCTION 

Genetic programming is a branch of genetic algorithms. 

Genetic programming creates computer programs in the 

lisp or scheme computer languages as the solution. 

Genetic algorithms create a string of numbers that 

represent the solution. The best computer program that 

appeared in any generation, the best-so-far solution, is 

designated as the result of genetic programming [1] 
Genetic programming is useful in finding solutions where 

the variables are constantly changing. GP evolves 

computer programs, traditionally represented in memory 

as tree structures. [2] Trees can be easily evaluated in a 

recursive manner. Every tree node has an operator 

function and every terminal node has an operand, making 

mathematical expressions easy to evolve and evaluate. 

Thus, traditionally GP favours the use of programming 

languages that naturally embody tree structures for 

example Lisp.  
 

Genetic programming combines and extends discrete 

decision theory with the principles of genetic and natural 

selection. The programs may be in the form of decision 

trees or diagram. The decision trees and diagrams are used 

in many discipline, genetic programming has many 
applications. Among those applications is pattern 

recognition. The use of the word “pattern” in this research 

differs from that found in some literature on pattern 

recognition. In that literature, a pattern is a representation 

of a scene with the things to be recognized. In contrast, in 

this research patterns must be discoveries. Each pattern is 

as cluster in the recognition problem space. It consists of 

the features ranges to which some a representation is 

compared for classification. In other words, the pattern is a 

set of criteria by which some representations of the things 

to be recognized can be distinguished from representation 
of other similar and not-so-similar things. Those criteria 

identify properties that are common on usually multiple  

 

representations of the things to be recognized. Hence, the 

use of the word “pattern”. 

 

II. THE DECISION TREE OR DIAGRAMS 

Since the 1950’s, many concept learning systems have 

been implemented as decision-tree construction algorithm 

[3][4][5] to construct a tree from training data is easy. 
 

The Decision Tree 

A decision tree is a set of test sequences by which one can 

reach a conclusion. Each of the tree’s branching nodes 

represents a test for which the outcome determines the 

path taken to be the next node. Eventually it will be a leaf 

node representing some conclusion. In a decision tree used 

for pattern recognition, that conclusion is the class of a 

representation. Thus the tests concern the pattern 

characteristics by which the representation belongings to 

any class can be distinguished among representation 
belongings to other classes. 
 

Decision Diagrams 

The decision tree is folded back on top of itself to create a 

decision diagram. The diagram differs from tree in that 
some of the diagram’s node may have more than one 

parent. This allows the diagram to encode the same 

information in a more compact form. Although the 

compactness of the diagram is important for some 

applications, the important point here is that two different 

forms are equivalent and each can be easily converted into 

the other. 

 

Decision Location 

There are two approaches. When using a decision tree, 

many authors believe that one makes a series of decisions 
to reach a conclusion, for these the outcome of a test in a 

branching node is a decision. Other authors consider the 
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conclusion in a leaf node to be the decision. One might 

traverse one decision tree in order to reach a conclusion 

that answer a question in another decision tree. 

 

Feature Selection and Extraction during Classification 

Features are selected for extraction while using a decision 
tree for classification. The test at each branching node 

extracts some feature. Then based on the value of that 

feature, the decision tree either selects the nest feature to 

be extracted or arrives at a conclusion. That is why 

decision trees are frequently used for diagnostic setting. 

This method allows classifiers to avoid extracting useless 

features for unnecessary tests. The important point is that a 

decision tree identifies the context in which specific 

features should be selected for extraction. 

 

Decision Equivalence 
Two decision trees are decision equivalent if their 

conclusions are in agreement for every possible test 

sequence. Three identities apply to decision equivalent, 

but not structurally equivalent [6] [7] [8]. Suppose that N 

branches are attached to a decision tree at some branching 

node. Then, one of those branches can be selected by 

answering some question Q. Since each branch leads to a 

subtree there are N possible subtrees, S1 through Sn. 

Q. (S1, S2, ........Sn) 

Using this notation, the three identities are: 

 

Idempotence: 
Q. (X, ..................., X) = X 

Repetition: 

Q.(X1,.....,Xr-.....Q(Y1,...,Yr-.....Yr,.....,Yr+......,Yn), Xr+,....Xn) 

= Q.(X1,....,Xr-,Yr, Xr+,......,Xn) 

 

Transposition: 

Q1.(Q2.(X11,.....X1m),.....,Q2.(Xn1,....Xnm))= 

Q2.(Q1.(X11,...Xn1),.....Q1.(X1m,.....,Xnm)) 

  

Checking Decision Equivalence 

The decision equivalence of two trees can be checked in 
different ways. One way is to compare the conclusion of 

both trees for all possible instances. This is impractical. A 

better ways is based on discrete decision theory. [6][7][8] 

A tree is simply reduced if it cannot be made any smaller 

by repeatedly applying the repetition identity and then 

repeatedly applying the idempotence identity. 

 

Decision Tree Construction 

Two conventional decision-tree construction algorithms 

are well know. One is the “classification and regression 

tree” (CART) algorithm [16] and the other is C4.5 

algorithm [10]. Both the algorithm consists of two steps. 
The first step grows a tree that correctly or almost 

correctly classifies every training datum. The resulting tree 

may “overfit” that data. This means that the tree obtains its 

accuracy on those training data in a way that degrades its 

accuracy on other instances of the recognition problem. 

The second step adjusts for that possibility by pruning the 

tree. [18] compares the performance of the following 

algorithm: 

 C4.5 variants 

C1 – C4.5 with its –m1 option. A leaf is split when it 

classifies 1 or more examplars of the second most-frequent 

class to visit the leaf. 

C2 – C4.5 with its default setting. A leaf is split when it 

classifies 2 or more examplars of the second most-frequent 
class to visit the leaf. 
 

 Incremental tree-inducer (ITI) variants 

I1 – ITI set to split a leaf when the leaf classifies 1 or more 

examplars of the second most-frequent class to visit the 

leaf. 

I2 – ITI set to split a leaf when the leaf classifies 2 or more 
examplars of the second most-frequent class to visit the 

leaf. 

IE – Like I1 but runs in error-correction mode instead of 

batch mode. 

 

 Direct-metric tree-inducer (DMTI) variants 

DE – DMTI with the expected quantity of tests for 

classification as the direct metric. 

DL – DMTI with the quantitiy of leaves as the direct 

metric. 

DM – DMTI with the minimum description length as the 
direct metric. 

 

III. GENETIC PROGRAMMING 

Genetic programming combines and extends discrete 

decision theory with the principles of genetic and natural 

selection. The programs may be in the form of decision 

trees or diagram. The decision trees and diagrams are used 

in many discipline, genetic programming has many 

applications. Among those applications is pattern 

recognition. Different genetic programming techniques 

exist. This section describes a general technique for 

programs that use mathematical function.  
 

A function is routine that take one or two arguments, 

performs some function and returns value. The arguments 

with the routine are also functional routines, the resulting 

programs is like a tree in which each node represents a 

functional routine and each subtree an argument. It means 

that subtree crossover can be used in a variation of genetic 

algorithm to evolve a population of increasingly fit 

functional program.[9][1] 

 

Genetic programming with subtree crossover is a 
technique that evolves a population over much iteration 

until some termination is satisfied. During each iteration 

the existing population is replaced by a new population 

that is derived from the existing population. The primary 

operations of reproduction and crossover are used for all 

problems. The two operations were sufficient for most of 

the problem to which the technique was applied in [9] 

 

Reproduction 

An operation that creates a replica of a program in the 

existing population, the existing program is randomly 

selected with a preference for those individuals that are 
more fit. 
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Crossover 

An operation that creates two new programs by wrapping 

subtrees between what are otherwise replica of two 

programs in the existing population. These existing 

programs are randomly selected with a preference for 

programs that are fit.  
 

Within each of the program, a random node is chosen as 

the crossover point. The subtree rooted at that point is 

copied into the replica of the other tree at that tree’s 

crossover point and vice versa.  

 

The two modified replica became part of the new 

population. The secondary operations are of little benefit 

and thus rarely used in [9] the secondary operations are: 

 

Mutation 
An operation that creates a new program by inserting a 

randomly-generated subtree at a random point in what 

would otherwise be a replica of an existing program. 

 

Permutation 

An operation that creates a new program by inserting a 

randomly swapping the branches that emanate from a 

random branching node within a replica of an existing 

program. 

 

IV. EXPERIMENT 

To achieve comparable accuracy on the training data, the 
genetic programming technique required both too much 

memory and too much computation [10]. The hybrid 

needed much less memory, but still too much computation 

[10] [11]. Two set of experiments were conducted in 

which genetic programming with subtree crossover was 

used in an attempt to evolve small, accurate decision trees 

from large set of training data.  

 

The first set of experiments compared the performance of 

this the genetic algorithm technique to that of C4.5 

software.[10] The result of the experiment is explained, 
one was lack of mutation operators and the other 

inappropriate crossover operator.  Without mutation, new 

branching node tests could not be introduced into the 

population as it evolved. Instead all the needed tests had to 

exist in the initial population.  

 

This meant that the population had to be quit large. In the 

second, experiment, this problem was reduced by using 

C4.5 to partially address the problems introduced by 

subtree crossover. The use of C4.5 introduced new 

branching node tests into the population as it evolved. 

Thus the combination of subtree crossover with C4.5 acted 
like a mutation operator.  

 

The problem is that subtree crossover does not preserve 

decision tree accuracy even when the parents are identical.  

 

For example in Figure (a), Figure (b) and Figure (c) the 

two identical parents on the left accurately as shown in the 

figure classify every instance of the recognition problem.  

 
Fig. (a) Pattern Expression & Specification 

 

 
Fig. (b) A Problem Space 

 

 
Fig. (c) Pattern Specifications and Concept 

 

The problem requires a decision tree with at least four leaf 

nodes, one for each pattern cluster. But each of the 

children divides the problem space into two clusters. After 

reduction by the Transposition and Idempotence identities, 

each child has two leaf nodes. As a result accuracy drops, 

because the information (subtree) extracted from each 

parent was out of context after its insertion at the 

crossover point in the replica of the parent. In Figure (d) 
the randomly chosen crossover point in one parent is at the 

node that tests feature F0, and in the other parent at the 

node that tests feature F1. 

 
Fig. (d) Subtree Crossover between Identical Trees 
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 The context of the crossover point in each parent is 

defined by the test-outcome pairs on the path from the 

parent’s root to, but not including, the crossover point. 

Since each parent accurately classifies every instance of 

the recognition problem. However, genetic programming 

with subtree crossover does not automatically do so. It 
extracts a randomly chosen subtree to replace the existing 

subtree. When subtree crossover is used in genetic 

programming, it can be applied to any tree of functions. A 

decision tree is just one such type tree.  Subtree crossover 

crosses two randomly selected subtrees without any 

regards for their context. The sub problems can be easily 

compared when genetic algorithm is evolving decision 

trees. The method appears to depend on how meaning is 

encoded within the tree and that encoding depends on the 

nature of the problem. As a result, some new operators 

have been conceived for subtree crossover 

[12][13][14][15]. The new operators try to cause less 

damage by restricting the subtrees eligible for crossover. 

The operators first align two trees and then cross over only 

subtrees that exist in similar structural contexts. For 

example, crossover between two identical parents can be 

constrained to produce an identical child.  
 

V. CONCLUSION 
By creating a genetic algorithm specifically for the 

decision programs includes both (trees and diagrams) this 

research has contributed to study of pattern recognition, 

machine learning and evolutionary computation. The 

primary contribution of this research springs from the 

realization that the information encoded in decision tree 

can be easily recombined in such a way that its meaning is 

preserved. The technique is a genetic algorithm with 

crossover and mutation operators that are specifically 

designed for decision programs (tree and diagrams). The 

algorithm extends discrete decision theory in the search 
for those decision programs that best satisfy some user 

defined criteria. In this research those criteria concerned 

how a computer might perform a machine learning task to 

achieve pattern recognition. 
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