
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4403 14

Application of Genetic Programming for Pattern

Recognition

Mansoor Farooq

School of Science & Technology, Department of Computer Science, Shri Venkatashwara University, U.P, India

Abstract: Genetic programming combines and extends discrete decision theory with the principles of genetic and

natural selection. The programs may be in the form of decision trees or diagram. The decision trees and diagrams are

used in many discipline, genetic programming has many applications. Among those applications is pattern recognition.

Different genetic programming techniques exist. This section describes a general technique for programs that use

mathematical function. A function is routine that take one or two arguments, performs some function and returns value.

The arguments with the routine are also functional routines, the resulting programs is like a tree in which each node

represents a functional routine and each subtree an argument. Genetic programming with subtree crossover technique

will be used that evolves a population over much iteration until some termination is satisfied. During each iteration the

existing population is replaced by a new population that is derived from the existing population. The primary

operations of reproduction and crossover are used for all problems. The two operations were sufficient for most of the
problem to which the technique was applied in [9]

Keywords: Genetic Programming, Crossover, Decision Tree, Decision Diagram and Pattern Recognition.

I. INTRODUCTION

Genetic programming is a branch of genetic algorithms.

Genetic programming creates computer programs in the

lisp or scheme computer languages as the solution.

Genetic algorithms create a string of numbers that

represent the solution. The best computer program that

appeared in any generation, the best-so-far solution, is

designated as the result of genetic programming [1]
Genetic programming is useful in finding solutions where

the variables are constantly changing. GP evolves

computer programs, traditionally represented in memory

as tree structures. [2] Trees can be easily evaluated in a

recursive manner. Every tree node has an operator

function and every terminal node has an operand, making

mathematical expressions easy to evolve and evaluate.

Thus, traditionally GP favours the use of programming

languages that naturally embody tree structures for

example Lisp.

Genetic programming combines and extends discrete

decision theory with the principles of genetic and natural

selection. The programs may be in the form of decision

trees or diagram. The decision trees and diagrams are used

in many discipline, genetic programming has many
applications. Among those applications is pattern

recognition. The use of the word “pattern” in this research

differs from that found in some literature on pattern

recognition. In that literature, a pattern is a representation

of a scene with the things to be recognized. In contrast, in

this research patterns must be discoveries. Each pattern is

as cluster in the recognition problem space. It consists of

the features ranges to which some a representation is

compared for classification. In other words, the pattern is a

set of criteria by which some representations of the things

to be recognized can be distinguished from representation
of other similar and not-so-similar things. Those criteria

identify properties that are common on usually multiple

representations of the things to be recognized. Hence, the

use of the word “pattern”.

II. THE DECISION TREE OR DIAGRAMS

Since the 1950’s, many concept learning systems have

been implemented as decision-tree construction algorithm

[3][4][5] to construct a tree from training data is easy.

The Decision Tree

A decision tree is a set of test sequences by which one can

reach a conclusion. Each of the tree’s branching nodes

represents a test for which the outcome determines the

path taken to be the next node. Eventually it will be a leaf

node representing some conclusion. In a decision tree used

for pattern recognition, that conclusion is the class of a

representation. Thus the tests concern the pattern

characteristics by which the representation belongings to

any class can be distinguished among representation
belongings to other classes.

Decision Diagrams

The decision tree is folded back on top of itself to create a

decision diagram. The diagram differs from tree in that
some of the diagram’s node may have more than one

parent. This allows the diagram to encode the same

information in a more compact form. Although the

compactness of the diagram is important for some

applications, the important point here is that two different

forms are equivalent and each can be easily converted into

the other.

Decision Location

There are two approaches. When using a decision tree,

many authors believe that one makes a series of decisions
to reach a conclusion, for these the outcome of a test in a

branching node is a decision. Other authors consider the

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4403 15

conclusion in a leaf node to be the decision. One might

traverse one decision tree in order to reach a conclusion

that answer a question in another decision tree.

Feature Selection and Extraction during Classification

Features are selected for extraction while using a decision
tree for classification. The test at each branching node

extracts some feature. Then based on the value of that

feature, the decision tree either selects the nest feature to

be extracted or arrives at a conclusion. That is why

decision trees are frequently used for diagnostic setting.

This method allows classifiers to avoid extracting useless

features for unnecessary tests. The important point is that a

decision tree identifies the context in which specific

features should be selected for extraction.

Decision Equivalence
Two decision trees are decision equivalent if their

conclusions are in agreement for every possible test

sequence. Three identities apply to decision equivalent,

but not structurally equivalent [6] [7] [8]. Suppose that N

branches are attached to a decision tree at some branching

node. Then, one of those branches can be selected by

answering some question Q. Since each branch leads to a

subtree there are N possible subtrees, S1 through Sn.

Q. (S1, S2,Sn)

Using this notation, the three identities are:

Idempotence:
Q. (X,, X) = X

Repetition:

Q.(X1,.....,Xr-.....Q(Y1,...,Yr-.....Yr,.....,Yr+......,Yn), Xr+,....Xn)

= Q.(X1,....,Xr-,Yr, Xr+,......,Xn)

Transposition:

Q1.(Q2.(X11,.....X1m),.....,Q2.(Xn1,....Xnm))=

Q2.(Q1.(X11,...Xn1),.....Q1.(X1m,.....,Xnm))

Checking Decision Equivalence

The decision equivalence of two trees can be checked in
different ways. One way is to compare the conclusion of

both trees for all possible instances. This is impractical. A

better ways is based on discrete decision theory. [6][7][8]

A tree is simply reduced if it cannot be made any smaller

by repeatedly applying the repetition identity and then

repeatedly applying the idempotence identity.

Decision Tree Construction

Two conventional decision-tree construction algorithms

are well know. One is the “classification and regression

tree” (CART) algorithm [16] and the other is C4.5

algorithm [10]. Both the algorithm consists of two steps.
The first step grows a tree that correctly or almost

correctly classifies every training datum. The resulting tree

may “overfit” that data. This means that the tree obtains its

accuracy on those training data in a way that degrades its

accuracy on other instances of the recognition problem.

The second step adjusts for that possibility by pruning the

tree. [18] compares the performance of the following

algorithm:

 C4.5 variants

C1 – C4.5 with its –m1 option. A leaf is split when it

classifies 1 or more examplars of the second most-frequent

class to visit the leaf.

C2 – C4.5 with its default setting. A leaf is split when it

classifies 2 or more examplars of the second most-frequent
class to visit the leaf.

 Incremental tree-inducer (ITI) variants

I1 – ITI set to split a leaf when the leaf classifies 1 or more

examplars of the second most-frequent class to visit the

leaf.

I2 – ITI set to split a leaf when the leaf classifies 2 or more
examplars of the second most-frequent class to visit the

leaf.

IE – Like I1 but runs in error-correction mode instead of

batch mode.

 Direct-metric tree-inducer (DMTI) variants

DE – DMTI with the expected quantity of tests for

classification as the direct metric.

DL – DMTI with the quantitiy of leaves as the direct

metric.

DM – DMTI with the minimum description length as the
direct metric.

III. GENETIC PROGRAMMING

Genetic programming combines and extends discrete

decision theory with the principles of genetic and natural

selection. The programs may be in the form of decision

trees or diagram. The decision trees and diagrams are used

in many discipline, genetic programming has many

applications. Among those applications is pattern

recognition. Different genetic programming techniques

exist. This section describes a general technique for

programs that use mathematical function.

A function is routine that take one or two arguments,

performs some function and returns value. The arguments

with the routine are also functional routines, the resulting

programs is like a tree in which each node represents a

functional routine and each subtree an argument. It means

that subtree crossover can be used in a variation of genetic

algorithm to evolve a population of increasingly fit

functional program.[9][1]

Genetic programming with subtree crossover is a
technique that evolves a population over much iteration

until some termination is satisfied. During each iteration

the existing population is replaced by a new population

that is derived from the existing population. The primary

operations of reproduction and crossover are used for all

problems. The two operations were sufficient for most of

the problem to which the technique was applied in [9]

Reproduction

An operation that creates a replica of a program in the

existing population, the existing program is randomly

selected with a preference for those individuals that are
more fit.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4403 16

Crossover

An operation that creates two new programs by wrapping

subtrees between what are otherwise replica of two

programs in the existing population. These existing

programs are randomly selected with a preference for

programs that are fit.

Within each of the program, a random node is chosen as

the crossover point. The subtree rooted at that point is

copied into the replica of the other tree at that tree’s

crossover point and vice versa.

The two modified replica became part of the new

population. The secondary operations are of little benefit

and thus rarely used in [9] the secondary operations are:

Mutation
An operation that creates a new program by inserting a

randomly-generated subtree at a random point in what

would otherwise be a replica of an existing program.

Permutation

An operation that creates a new program by inserting a

randomly swapping the branches that emanate from a

random branching node within a replica of an existing

program.

IV. EXPERIMENT

To achieve comparable accuracy on the training data, the
genetic programming technique required both too much

memory and too much computation [10]. The hybrid

needed much less memory, but still too much computation

[10] [11]. Two set of experiments were conducted in

which genetic programming with subtree crossover was

used in an attempt to evolve small, accurate decision trees

from large set of training data.

The first set of experiments compared the performance of

this the genetic algorithm technique to that of C4.5

software.[10] The result of the experiment is explained,
one was lack of mutation operators and the other

inappropriate crossover operator. Without mutation, new

branching node tests could not be introduced into the

population as it evolved. Instead all the needed tests had to

exist in the initial population.

This meant that the population had to be quit large. In the

second, experiment, this problem was reduced by using

C4.5 to partially address the problems introduced by

subtree crossover. The use of C4.5 introduced new

branching node tests into the population as it evolved.

Thus the combination of subtree crossover with C4.5 acted
like a mutation operator.

The problem is that subtree crossover does not preserve

decision tree accuracy even when the parents are identical.

For example in Figure (a), Figure (b) and Figure (c) the

two identical parents on the left accurately as shown in the

figure classify every instance of the recognition problem.

Fig. (a) Pattern Expression & Specification

Fig. (b) A Problem Space

Fig. (c) Pattern Specifications and Concept

The problem requires a decision tree with at least four leaf

nodes, one for each pattern cluster. But each of the

children divides the problem space into two clusters. After

reduction by the Transposition and Idempotence identities,

each child has two leaf nodes. As a result accuracy drops,

because the information (subtree) extracted from each

parent was out of context after its insertion at the

crossover point in the replica of the parent. In Figure (d)
the randomly chosen crossover point in one parent is at the

node that tests feature F0, and in the other parent at the

node that tests feature F1.

Fig. (d) Subtree Crossover between Identical Trees

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4403 17

 The context of the crossover point in each parent is

defined by the test-outcome pairs on the path from the

parent’s root to, but not including, the crossover point.

Since each parent accurately classifies every instance of

the recognition problem. However, genetic programming

with subtree crossover does not automatically do so. It
extracts a randomly chosen subtree to replace the existing

subtree. When subtree crossover is used in genetic

programming, it can be applied to any tree of functions. A

decision tree is just one such type tree. Subtree crossover

crosses two randomly selected subtrees without any

regards for their context. The sub problems can be easily

compared when genetic algorithm is evolving decision

trees. The method appears to depend on how meaning is

encoded within the tree and that encoding depends on the

nature of the problem. As a result, some new operators

have been conceived for subtree crossover

[12][13][14][15]. The new operators try to cause less

damage by restricting the subtrees eligible for crossover.

The operators first align two trees and then cross over only

subtrees that exist in similar structural contexts. For

example, crossover between two identical parents can be

constrained to produce an identical child.

V. CONCLUSION
By creating a genetic algorithm specifically for the

decision programs includes both (trees and diagrams) this

research has contributed to study of pattern recognition,

machine learning and evolutionary computation. The

primary contribution of this research springs from the

realization that the information encoded in decision tree

can be easily recombined in such a way that its meaning is

preserved. The technique is a genetic algorithm with

crossover and mutation operators that are specifically

designed for decision programs (tree and diagrams). The

algorithm extends discrete decision theory in the search
for those decision programs that best satisfy some user

defined criteria. In this research those criteria concerned

how a computer might perform a machine learning task to

achieve pattern recognition.

VI. REFERENCES
[1]. John R. Koza. “Non-linear genetic algorithms for solving

problems”, 1990, patent 4,935,877, United States Patent and

Trademark Office, Alexandria, Virginia, USA.

[2]. Cramer “PROCEEDINGS OF AN INTERNATIONAL

CONFERENCE ON GENETIC ALGORITHMS” Carnegie-Mellon

University Pittsburgh, PA APPLICATIONS.

[3]. Earl B. Hunt and Carl I. Hovland, “Programming a model of human

concept formation”, [WJCC – 1961, pages 145 – 155].

[4]. Earl B. Hunt, “Concept Learning: An Information Processing

Problem”, 1962, John Willey and Sons, New York, New York,

USA.

[5]. Earl B. Hunt, Janet Martin and Philip J. Stone, “Experiments in

Induction”, 1966, Academic Press, New York, New York, USA.

[6]. J. R. B. Cockett, “Decision Expression Optimization”, 1987,

Fundamentals Informaticae, Volume X, pages 93 – 114.

[7]. J. R. B. Cockett, “Discrete decision theory: Manipulations”, 1987,

Theoretical Computer Science, Volume 54, pages 215 – 236.

[8]. J. R. B. Cockett and J. A. Herrera, “ Decision Tree Reduction”,

1990, Journal of the Association for Computing Machinery,

Volume 37, Pages 815 – 842.

[9]. john R. Koza, “ Non-linear genetic algorithms for solving

problems”, 1990, patent 4,935,877, United States Patent and

Trademark Office, Alexandria, Virginia, USA.

[10]. J. Ross Quinlan, “C4.5, Programs for Machine Learning, 1993,

Morgan Kaufmann Publishers, San Mateo, California, USA, ISBN:

1-55860-2380-0.

[11]. M. D. Ryan and V. J. Rayward-Smith, “The Evolution of Decision

Trees”, 1998, [Koza et al. – 1998], pages 350 – 358.

[12]. Patrik D’haeseleer, “Context Preserving Crossover in Genetic

Programming”, 1994, [ICEC – 1994], volume 1, pages 256 – 261,

DOI: 10.1109/ICEC.1994.350006.

[13]. Peter Nordin, Wolgang Banzhaf and Frank D. Francone, “Efficient

Evolution of Machine Code for CISC Architectures Using

Instruction Blocks and Homologous Crossover”, 1990, [Spector,

Langdon, O’Reilly and Angeline – 1999], chapter 12, pages 275 –

299.

[14]. Riccardo Poli and W. B. Langdon, “On the Search Properties of

Different Crossover Operators in Genetic Programming”, [Koza et

al. – 1998], pages 293 – 301.

[15]. W. B. Langdon, “Size Fair and Homologous Tree Crossovers for

Tree Genetic Programming”, Genetic Programming and Evolvable

Machines, volume 1, pages 95 – 119.

[16]. Leo Breiman, Jerome H. Friedman, Richard A. Olshen and Charles

J. Stone, “Classification and Regression Trees”, 1984, Wadsworth

International Group, Belmont, California, USA, ISBN: 0-534-

98053-8 (hardcover) and 0.534-98054-6 (paperback).

[17]. Paul E. Utgoff, Neil C. Berkman and Jeffery A. Clouse, “ Decision

Tree Induction Based on Efficient Tree Restructturing”, 1997,

Machine Learning, Volume 29, pages 5 – 44.

