
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4209 40

Comparative study of Recursive and OpenMp

Genetic algorithm in solving Towers of Hanoi

Prashanth V

UG Student, Computer Science, RV College of Engineering, Bangalore, India

Abstract: Towers of Hanoi is a standard planning problem in the field of computer science. It has applications in

various fields of engineering. Solution to Towers of Hanoi is generally provided by method of recursion. Recursion is a

functional programming concept widely used to solve variety of problems. Recursion has been providing solution to
this problem most efficiently; hence other methods of solving have not been explored. In this paper we study artificial

intelligence method of solving the problem. Artificial intelligence is a field of study which aims at creating intelligence

in computer systems. Genetic algorithm is a well-known algorithm for optimization used in artificial intelligence. In

this paper we have studied a method of solving Towers of Hanoi using genetic algorithm. Parallelism is achieved

through OpenMp.We propose a comparative study of both Genetic algorithm and Recursive algorithm in solving

Towers of Hanoi puzzle. Results for the same are presented.

Keywords: Towers of Hanoi, Genetic algorithm, Recursion, Roulette Wheel selection, OpenMp

I. INTRODUCTION

Artificial intelligence is an emerging field of study. If

implemented efficiently, it is a field with potential to

change the world. It is a dream of every engineer to build

system which is intelligent. In this paper we study a

method based on artificial intelligence in solving Towers

of Hanoi [1]. The reason for study of this method is

because it is a method which solves the problem without
being explicitly programmed. Towers of Hanoi are a

standard recursive problem in the field of computer

science. It is well known mathematical puzzle invented by

Edouard Lucas (hence also known as Lucas' Tower). The

problem basically consists of three rods A, B and C. A

known number of disks of unequal sizes are placed in one

of the three rod (consider rod A). The problem is complete

when all the disks are moved from one rod (rod A) to

another rod (rod B) by making use of an auxiliary rod (rod

B).The constraints for transfer of disks has following

constraints.

 Only one disk can be moved at a time.

 No disk has to be placed on top of a smaller disk.

 Disk at the top of each rod has to be moved to

either of other two rods. Each transfer of disk from one

rod to another is known as a move.

The problem has to be completed in minimum number of

moves without violating the constraints. A known

recursive method provides solution in 2n - 1 moves, where
n is the number of disks. Thus number of moves for 3

disks is 7. We show that artificial intelligence method also

solves the problem in the minimum number of moves on

most of the occasions. The two algorithms are separately

considered and analysed on basis of various factors in this

paper. Results using both the algorithms in solving 3 disk

and 4 disk problems are presented. OpenMp is used as a
parallelizing tool to increase the efficiency of genetic

algorithm. Genetic algorithm is a continuous algorithm

whereas Towers of Hanoi is a discrete valued problem;

hence the study of this algorithm can solve many other

real world problems. It relates discreteness and continuity

two contrasting fields.

II. RECURSIVE SOLUTION TO TOWERS OF HANOI

Recursion is a process of breaking an object into smaller

objects of its own kind. Recursion is functional

programming concept and is used very much in

mathematics and computer science [2]. Objects are said to

exhibit recursive behaviour if they satisfy two properties:

 A base case

 Rules that reduce the problem towards base case.
Towers of Hanoi are solved using recursion making use of

dynamic programming principle. Consider the problem to

consist of n disks numbered from 1 to n. Let A, B and C

be the from peg, auxiliary peg and to peg respectively. Let

the problem of moving n disks be represented as F(n). The

problem is solved if top n-1 disks are moved from A to B,

& the remaining nth disk is moved from A to C, then again

the n-1 disks are moved again from B to C. Here the act of

moving 1 disk is the base case and moving n-1 disks is the

divided problem. Since F(n) represents the operation of

moving n disks F(n-1) represents the act of moving n-1
disks. Hence the solution is obtained by moving n-1 disks

twice (i.e. from A to B and B to C) and moving the nth

disc once. We formulate the above as a recurrence

relation.

 F(n)=2F(n-1)+1

This recurrence relation on solving will give the minimum

number of moves to solve the puzzle as 2n – 1.
The following procedure when written as a code is

implemented in following way

void

towers (int n, char A, char C, char B)

{

 if (n == 1) //base case

 {
 //print from peg to peg move

 return;

 }

 towers(n- 1, A, B, C); //1st recursive call

 //print from peg to peg move

 towers (n - 1, B, C, A); //2nd recursive call

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4209 41

}

The above function towers calls itself repeatedly until

certain conditions are satisfied. The base condition is

given by n=1 i.e. number of disk is one. The solution for 4

or 5 rods towers of Hanoi problem cannot be solved by the

same algorithm this is the major flaw in the recursive

algorithm. Time complexity of algorithm is O(2n) or
exponential. Most recursive algorithms have exponential

time complexity hence it is very difficult to implement

them in iterative methods.

III. OPENMP GENETIC ALGORITHM METHOD

Genetic algorithms are well known evolutionary algorithm

used in global optimization problems. Genetic algorithms

are comparatively slow in solving problems hence they

need to parallelize for greater efficiency. Genetic

algorithm was initially implemented in C language by

Tim.M.Jones [11]. Modified version of this algorithm

using OpenMp[4] is implemented in this paper. OpenMp

is an API that supports multi-platform shared memory

multiprocessing programming in C, C++ and FORTRAN.

Parallelization of code using OpenMp has increased

efficiency and has better memory utilization than dual
population parallel genetic algorithm. The OpenMp library

can be imported into program including <omp.h> header

file

Solving Towers of Hanoi using evolutionary computation

has many steps.

Step1. First we have to represent the sequence of moves

in the form that can be evolved by the genetic algorithm.

We considered all the moves that are possible. Since we

consider the problem with 3 pegs, the maximum number

of moves possible are 3!= 6. Though we consider all the
moves some of them are not feasible, these moves are

removed or avoided by genetic algorithm when it is

simulated. The pegs are represented as 0 1 and 2

respectively, hence move from peg 0 to 1 is encoded as 01

similarly all moves are represented in the solution space.

Hence total number of moves is represented from 0 to 5.

The output to the problem is printed as 01 02 12 and so on,

01 depicts that a disk is moved from peg 0 to 1.

Step2. We consider 2 structures one to represent the pegs.

The pegs structure contains a pegs array to depict the pegs,
and a count value to count number of disks in each peg.

Then another structure is used to provide the solution it

contains the current fitness value, the sequence of moves

and also a variable to count number of legal operations.

Step3. We then define the values for maximum number of

generations for the genetic algorithm to evolve and

maximum number of operations. The mutation and

crossover probability also have to be defined or set to

default values. We have to take care that number of

operations must in the order of the number of disks taken;

if too large values are taken minimum number of moves
might be very different from what we expect. If we define

the operations too less the algorithm takes large amount of

time to compute. These are known as under fitting and

over fitting in optimization.

Step4. We split population into two arrays one to store the

current generation and another array to store the next

generation. Hence solution is represented as double
dimensional array of the form

solution[2][Population_size].

Step5. After the basic initialization and defining of

default values, we enter the main loop of genetic

algorithm. First in the main function we begin by

randomly generating and initializing the population. We

then compute the fitness of the randomly initialized

population. Initially the population are set to zero. We then

call the genetic algorithm function.

Step6. The genetic algorithm function receives current

population as input. Then the algorithm walks through

entire population and selects two parents based on their

fitness value. Parents with highest fitness have higher

probability of getting selected. Then crossover is achieved

between the 2 parents by swapping the tails at appropriate

points. We also check that number of moves is minimum,

when crossover is achieved. Crossover includes both

possibility of mutation and selection based on the

probability. Then the genes are copied into the child to

continue the evolution process.

Step7. We used a roulette wheel [5] based selection

method for selecting the fittest parent. This function walks

through the population by comparing population's fitness

value with the randomly generated value. If the random

value is less than the fitness value of population, then the

value is selected and propagated, i.e. less fit members are

allowed to propagate. If no member is selected the random

value is returned.

Step8. Then finally we considered the fitness function.

The fitness function starts of by initializing the Towers of
Hanoi simulation. Then it is iterated to perform the

specified move. If an illegal move is attempted the illegal

move counter is incremented, but the move is not

performed. We found out the fitness value by assign a

constant value to each disk that is on the correct peg. Then

this value is subtracted from number of illegal moves so

that no illegal moves are attempted.

Step9. The above algorithm when simulated provides the

solution to Towers of Hanoi problem. In certain cases

exact solution is not obtained, this is mainly due to less

population diversity. This problem can be corrected by
running the code many times or providing an automatic

restart mechanism.

Step10. The main genetic algorithm function continues

execution until there is adequate diversity in population or

until the fitness value reaches an expected value [11].

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4209 42

Step11. Once the algorithm is coded we parallelized it

using OpenMp. #pragma omp parallel is the directive used

for parallelizing. The entire main loop of the program is

included inside the directive. This directive achieves

parallelization by splitting the process into number of

available threads. There is an associated thread id with

each thread. Considerable improvement in performance is
achieved in this. The code segment for parallelization is as

follows

int threads, tid;/*declare thread and thread id variables

/* split a team of threads giving them their own copies of

variables */

#pragma omp parallel private(threads, tid)

 {

 /* thread number is generated and stored in tid */

 tid = omp_get_thread_num();

 /* master thread id is checked and total number of

threads is printed. This action can be performed only by

master thread */

 if (tid == 0)

 {

 threads = omp_get_num_threads();

 printf("Number of threads = %d\n", threads);

 }

}

In general running time of genetic algorithm depends on
the population size and also on the methods of

implementation. Genetic algorithm is generic and can be

used for all problems solving in general. The above

algorithm can be used to solve 4 pegs or 5 pegs problem

conveniently by just making use of appropriate solution

space.

IV. RESULTS AND DISCUSSION

The above considered methods are implemented in Intel

core i5 processor and 8 GB RAM. The following results

were obtained when preformed on 3 and 4 disks problem.

Run

no

Recurs-

ion 3

disks

GA

3 disks

OpenMp

GA

3 disks

4 disks

Recur-

sion

4

disks

GA

4

disks

Open

Mp

GA

1 0.0002 4.56 2.98 0.0001 1.37 1.51

2 0.0002 22.16 1.38 0.0002 31.1 0.62

3 0.0001 7.03 12.18 0.0002 2.47 4.31

4 0.0002 11.30 0.66 0.0002 1.42 0.73

5 0.0002 54.38 2.51 0.0002 11.6 5.27

6 0.0001 7.98 0.46 0.0002 8.69 2.81

7 0.0002 26.02 13.55 0.0002 6.76 0.87

Table -1: Running time of Towers of Hanoi in seconds.

It is seen that recursive algorithm has running time of

order 0.0002 seconds. Whereas running time for genetic

algorithm is of the order of 7-8 seconds. The parallel

genetic algorithm has higher efficiency than normal

genetic algorithm in most of the cases. The above results

are obtained with setting of probability of crossover as

0.09 and probability of mutation as 0.01. Number of
operations is set as 30 and number of generations is set as

100000. The running time is computed by using clock()

function available in standard library.

V. CONCLUSION AND FUTURE WORK

From the above results presented it can be concluded that

speed of execution of Parallel genetic algorithm is much

higher than normal genetic algorithm. Average time for 3

disk execution is over 15 seconds in case of normal

genetic algorithm but this time reduces to up to 5 seconds

in case of OpenMp genetic algorithm. However in case 4

disk Towers of Hanoi the time variation is not much, since
the number of operations is less. Recursive algorithm is

most efficient and its speed is very much higher compared

to genetic algorithm. Hence we can conclude that Genetic

algorithm provides an inefficient solution when compared

to recursive algorithm. Recursion method is unique for the

problem and the algorithm has to change in case of 4 peg

problem. The programmer had to think the logic for

solving the problem. Genetic algorithm is advantageous in

these cases, since it is an artificial intelligence method and

provides an intuitive solution. The speed of execution of

the algorithm can improved even further using GPU and

high processing power systems. Thus parallel genetic
algorithm can be used for all kinds of applications

provided high processing power systems are available.

They are efficient in solving small input problems. The

future work can be done in this regard to improve speed of

execution and make the algorithm work for large input

problems. Hence solving problems using artificial

intelligence methods is region where much research can be

done.

ACKNOWLEDGEMENT

I would like to thank my teachers, parents and my friends

for helping me out with this paper. It wouldn't have been
possible without them.

 REFERENCES

[1] Mindless intelligence method for solving Towers of Hanoi by

TSAO Minhe, Kao Weiven, CHANG Albert Chinese journal of

mechanical engineering vol 22.no 2, 2009.

[2] Mathematics for Computer Science by Srini Devadas and Eric

Lehman 6.042/18.062J.

[3] T. Park, K. Ruy, ―A Dual-Population Genetic Algorithm for

Adaptive Diversity Control‖, IEEE transactions on evolutionary

computation, vol. 14, no.6, pp 865-883, Dec.2010, pp 865-883.

DOI:10.1109/TEVC.2010.2043362

[4] http://openmp.org, June 2013.

[5] Genetic Algorithm Programming Environments Jose Ribeiro Filho,

Cesare Alippi and Philip Treleaven Department of Computer

Science – University College London.

[6] http///;www.wikipedia.com

[7] [Banzhaf 1998] Banzhaf, W., Nordin, P., Keller, R.E., Francone,

F.D., Genetic Programming: An Introduction: On the Automatic

Evolution of Computer Programs and Its Applications, Morgan

Kaufmann, 1998.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4209 43

[8] [EvoNews 1999] “Professor Hans-Paul Schwefel talks to

EvoNews.”1999.Available online at:
http://evonet.lri.fr/evoweb/news_events/news_features/article.php id=5

[9] [Fogel 1966] Fogel, L.J., Owens, A.J., Walsh, M.J. Artificial

Intelligence through Simulated Evolution. Wiley, New York, 1966.

[10] [Levenick 1991] Levenick, James R. “Inserting Introns Improves

Genetic Algorithm Success Rate: Taking a Cue from Biology.”

Proceedings on the Fourth International Conference on Genetic

Algorithms, 1991.

[11] Jones, T. (2009). Artificial Intelligence. A Systems Approach.

Jones and Bartlett Publishers, LLC. MA, USA.

