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Abstract: This Paper presents an overview of the clustering and its methods used in Data Mining. Firstly, different 

measures that are used for determining whether two clusters are similar or dissimilar are defined. Then different 

methods of clustering are presented and are divided into:  hierarchical, partitional and evolutionary algorithms. Finally 

clustering is performed in large data sets and subsequently their challenges are discussed. 
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I. INTRODUCTION 

A. Motivation 
Data analysis underlies many computing applications, 

either in a design phase or as part of their on-line 

operations. Data analysis procedures can be dichotomized 

as either exploratory or confirmatory, based on the 

availability of appropriate models for the data source, but 

a key element in both types of procedures (whether for 

hypothesis formation or decision-making) is the grouping 

or classification of measurements based on either (i) 

goodness-of fit to a postulated model or (ii) natural 

groupings (clustering) revealed through analysis. 

Normally, Clustering is the process of dividing data into 
groups of similar objects. Each separate group is called 

cluster and consists of objects that are similar to each other 

and dissimilar to objects of other groups.  

Formally, the clustering structure is represented as a set of 

subsets, C = C1, C2, ... Ck of S, such that: 

𝑆 =   𝐶𝑖
𝑘
𝑖=1   and     (1) 

 𝐶𝑖  𝐶𝑗 =  ∅  𝑓𝑜𝑟 𝑖 ≠ 𝑗    (2) 

 Consequently, any instance in S belongs to exactly one 

and only one subset. 

Cluster analysis is the organization of a collection of 

patterns (usually represented as a vector of measurements, 

or a point in a multidimensional space) into clusters based 

on similarity. Intuitively, patterns within a valid cluster are 

more similar to each other than they are to a pattern 

belonging to a different cluster. An example of clustering 
is depicted in Fig. 1. The input patterns are shown in Fig. 

1(a) and the desired clusters are shown in Fig. 1(b). Here, 

points belonging to the same cluster are given the same 

label. 

The term „clustering‟ is used in several research 

communities to describe methods for grouping of 

unlabeled data. These communities have different 

terminologies and assumptions for the components of the 

clustering process and the context in which clustering is 

used. Thus, we face a dilemma regarding the scope of this 

survey. The goal of this paper is to survey the core 
concepts and techniques in the large subset of cluster 

analysis with its roots in statistics and decision theory 

where appropriate, references will be made to key 

concepts and techniques arising from clustering 

methodology in the machine learning and other 

communities. 

 

B. Components of Clustering Task 
Typical pattern clustering activity involves the following 

steps [4]: 

i) Pattern representation (optionally including 

feature extraction and/or selection), 

ii) Definition of a pattern proximity measure 

appropriate to the data domain,  

iii) Clustering or grouping,  

iv) Data abstraction (if needed), and  

v) Assessment of output (if needed). 

                       Y 

` X 

Fig. 1 (a) Data Clustering  

Fig. 2 depicts a typical sequencing of the first three of 

these steps, including a feedback path where the grouping 

process output could affect subsequent feature extraction 

and similarity computations. 
 

Pattern representation refers to the number of classes, the 

number of available patterns, and the number, type, and 

scale of the features available to the clustering algorithm. 

Some of this information may not be controllable by the 

practitioner. 

                       Y 

X 
Fig.1 (b) Data Clustering 
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Fig. 2. 

Stages in clustering 

Feature selection is the process of identifying the most 

effective subset of the original features to use in 

clustering. 

 

Feature extraction is the use of one or more trans-

formations of the input features to produce new salient 

features. Either or both of these techniques can be used to 

obtain an appropriate set of features to use in clustering. 

 

Pattern proximity is usually measured by a distance 

function defined on pairs of patterns. A variety of distance 

measures are in use in the various communities [3 4 5]. A 
simple distance measure like the Euclidean distance can 

often be used to reflect dissimilarity between two patterns, 

whereas other similarity measures can be used to 

characterize the conceptual similarity between patterns [6].  

 

The grouping step can be performed in a number of ways. 

The output clustering (or clusterings) can be hard (a 

partition of the data into groups) or fuzzy (where each 

pattern has a variable degree of membership in each of the 

output clusters).  

 
Data abstraction is the process of extracting a simple and 

compact representation of a data set. Here, simplicity is 

either from the perspective of automatic analysis (so that a 

machine can perform further processing efficiently) or it is 

human-oriented (so that the representation obtained is easy 

to comprehend and intuitively appealing). In the clustering 

context, a typical data abstraction is a compact description 

of each cluster, usually in terms of cluster prototypes or 

representative patterns such as the centroid [5]. 

 

How is the output of a clustering algorithm evaluated? 
What characterizes a „good‟ clustering result and a „poor‟ 

one? All clustering algorithms will, when presented with 

data, produce clusters regardless of whether the data 

contain clusters or not. If the data does contain clusters, 

some clustering algorithms may obtain „better‟ clusters 

than others. The assessment of a clustering procedure‟s 

output, then, has several facets. 

II. SIMILARITY MEASURES 

Since similarity is fundamental to the definition of a 
cluster, a measure of the similarity between two patterns 

drawn from the same feature space is essential to most 

clustering procedures. Because of the variety of feature 

types and scales, the distance measure (or measures) must 

be chosen carefully. It is most common to calculate the 

dissimilarity between two patterns using a distance 

measure defined on the feature space. The paper will focus 

on the well-known distance measures used for patterns 

whose features are all continuous. 

A. Euclidean Distance Measure 

The most popular metric for continuous features is the 

Euclidean distance. It is given as: 

𝑑2 𝑥𝑖 ,   
 𝑥𝑗 ) = ( (𝑥𝑖 ,𝑘 − 𝑥𝑗 ,𝑘 )2)

1
2 =  𝑥𝑖 −  𝑥𝑗  

 2    … (3)    

𝑑

𝑘=1

 

 

The Euclidean distance has an intuitive appeal as it is 

commonly used to evaluate the proximity of objects in two 

or three-dimensional space. It works well when a data set 

has compact or isolated clusters [7]. 

B. Minkowski Distance Measure 

It is given as: 

𝑑𝑝 𝑥𝑖 ,   
 𝑥𝑗 ) = (  𝑥𝑖 ,𝑘

 − 𝑥𝑗 ,𝑘 |2)
1
𝑝 =  𝑥𝑖 −  𝑥𝑗  

 𝑝

𝑑

𝑘=1

        … (4) 

                            

The drawback to direct use of the Minkowski metrics is 

the tendency of the largest scaled feature to dominate the 

others. Solutions to this problem include normalization of 

the continuous features (to a common range or variance) 

or other weighting schemes. Linear correlation among 

features can also distort distance measures this distortion 

can be alleviated by applying a whitening transformation 

to the data or by using the squared „Mahalanobis distance‟. 

C. Mahalanobis Distance Measure 

It is given as: 

 

𝑑𝑀 𝑥𝑖
 ,  𝑥𝑗  =  𝑥𝑖

 −   𝑥𝑗  ∑
−1 𝑥𝑖 −  𝑥𝑗 )𝑇                  … (5) 

 

where the patterns xi and xj are assumed to be row vectors, 

and is the sample covariance matrix of the patterns or the 

known covariance matrix of the pattern generation process 

dM (.,.) assigns different weights to different features based 

on their variances and pairwise linear correlations. The 

regularized Mahalanobis distance was used in [7] to 

extract hyper ellipsoidal clusters. Recently, several re-

searchers [29 9] have used the Hausdorff distance in a 

point set matching context. 
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Some clustering algorithms work on a matrix of proximity 

values instead of on the original pattern set. It is useful in 

such situations to pre compute all the n * ((n-1)/2) 

pairwise distance values for the n patterns and store them 

in a (symmetric) matrix. A variety of other metrics have 

been reported in [5 10] for computing the similarity 

between patterns represented using quantitative as well as 
qualitative features. 

 

Patterns can also be represented using string or tree 

structures [11]. Strings are used in syntactic clustering 

[28]. Several measures of similarity between strings are 

described in [20]. A good summary of similarity measures 

between trees is given by [13]. A comparison of syntactic 

and statistical approaches for pattern recognition using 

several criteria was presented in [20] and the conclusion 

was that syntactic methods are inferior in every aspect. 

Therefore, we do not consider syntactic methods further in 
this paper. 

 

There are some distance measures reported in the literature 

[15 24] that take into account the effect of surrounding or 

neighboring points. These surrounding points are called 

context in [6]. The similarity between two points‟ xi and 

xj, given this context, is given by: 

 

s 𝑥𝑖 ,
 𝑥𝑗  = 𝑓 𝑥𝑖 , 𝑥𝑗 ,  𝜀                              …  (6)   

 

Where E is the context (the set of surrounding points). One 

metric defined using context is the mutual neighbor 

distance (MND), proposed in [15], which is given by: 

 

M N D 𝑥𝑖 ,
 𝑥𝑗  =  N N  𝑥𝑖 ,

 𝑥𝑗  +  𝑁 𝑁  𝑥𝑗 ,  𝑥𝑖 
          … (7) 

 

Where NN (xi, xj) is the neighbor number of xj with 

respect to xi. 

III. CLUSTERING TECHNIQUES 

There are basically two clustering techniques:- 

 

A) Hierarchical Clustering – This is further divided 
into sub clustering techniques:- 

1) Single Link 

2) Complete Link 

 

B) Partitional Clustering – This also divided into 

following sub techniques:- 

1) Squared Error – again divided into K-means 

2) Graph Theoretic 

3) Mixture Resolving – again divided into 

Expectation Maximization 

4) Mode Seeking 
 

This clustering hierarchy is as show in Fig. 3  

A. Hierarchical Clustering 

The operation of a hierarchical clustering algorithm is 

illustrated using the two-dimensional data set as shown in 

Fig. 4. This figure depicts seven patterns labelled A, B, C, 

D, E, F, and G in three clusters. A hierarchical algorithm 

yields a dendrogram representing the nested grouping of 

patterns and similarity levels at which groupings change. 

A dendrogram corresponding to the seven points in Fig. 3 

(obtained from the single-link algorithm [4]) is shown in 

Fig. 4. The dendrogram can be broken at different levels to 

yield different clusterings of the data. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
   

Fig. 2. Clustering Hierarchy 
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Fig. 3. Points falling three clusters 

Most hierarchical clustering algorithms are variants of  

1) Single-link [36], and 
2) Complete-link [19], algorithms. 

 
 

These two algorithms differ in the way they characterize 

the similarity between a pair of clusters. In the single-link 

method, the distance between two clusters is the minimum 

of the distances between all pairs of patterns drawn from 

the two clusters (one pattern from the first cluster, and the 

other from the second).  

 
In the complete-link algorithm, the distance between two 

clusters is the maximum of all pairwise distances between 

patterns in the two clusters. In either case, two clusters are 

merged to form a larger cluster based on minimum 

distance criteria. 
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Fig. 4.The Dendrogram obtained using the single link algorithm 

The complete-link algorithm produces tightly bound or 

compact clusters [20]. The single-link algorithm, by 

contrast, suffers from a chaining effect [21]. It has a 

tendency to produce clusters that are straggly or elongated. 

There are two clusters in Fig. 6 and Fig. 7 separated by a 

“bridge” of noisy patterns. The single-link algorithm 

produces the clusters shown in Fig. 6, whereas the 

complete-link algorithm obtains the clustering shown in 

Fig. 7. The clusters obtained by the complete-link 

algorithm are more compact than those obtained by the 

single-link algorithm. The cluster labelled 1 obtained 

using the single-link algorithm is elongated because of the 

noisy patterns labelled “*”. The single-link algorithm is 

more versatile than the complete-link algorithm, 

otherwise. 

 

For example, the single-link algorithm can extract the 

concentric clusters shown in Fig. 5, but the complete-link 

algorithm cannot. However, from a pragmatic viewpoint, 

it has been observed that the complete-link algorithm 

produces more useful hierarchies in many applications 

than the single-link algorithm [4]. 
 

Agglomerative Single-Link Clustering Algorithm is as 

given below: 
 
1) Place each pattern in its own cluster. Construct a 
list of interpattern distances for all distinct unordered pairs 

of patterns, and sort this list in ascending order.  

 

2) Step through the sorted list of distances, forming 

for each distinct dissimilarity value dk; a graph on the 

patterns where pairs of patterns closer than dk are 

connected by a graph edge. If all the patterns are members 

of a connected graph, stop. Otherwise, repeat this step. 

 

3) The output of the algorithm is a nested hierarchy 

of graphs which can be cut at a desired dissimilarity level 
forming a partition (clustering) identified by simply 

connected components in the corresponding graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Two concentric clusters 
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Fig. 6. A single link clustering of pattern set containing two classes (1 

and 2) connected by a chain of noisy patterns (*) 

Agglomerative Complete-Link Clustering Algorithm is as 

given below: 
 

1) Place each pattern in its own cluster. Construct a list 

of interpattern distances for all distinct unordered pairs of 

patterns, and sort this list in ascending order.  

 

2) Step through the sorted list of distances, forming for 

each distinct dissimilarity value dk; a graph on the patterns 

where pairs of patterns closer than dk are connected by a 

graph edge. If all the patterns are members of a completely 

connected graph, stop.  

 

3) The output of the algorithm is a nested hierarchy of 

graphs which can be cut at a desired dissimilarity level 

forming a partition (clustering) identified by completely 

connected components in the corresponding graph.  

Hierarchical Agglomerative Clustering Algorithm is as 

given below: 

1) Compute the proximity matrix containing the distance 

between each pair of patterns. Treat each pattern as a 

cluster.  
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2) Find the most similar pair of clusters using the 

proximity matrix. Merge these two clusters into one 

cluster. Update the proximity matrix to reflect this merge 

operation. 

 

3) If all objects are in one cluster, stop. Else, go to 

step 2. 
 
Based on the way the proximity matrix is updated in step 

2, a variety of agglomerative algorithms can be designed. 

Hierarchical divisive algorithms start with a single cluster 

of all the given objects and keep splitting the clusters 

based on some criterion to obtain a partition of singleton 

clusters. 

X2 

 

 

 

 

 

 

 

 
  

 

 

 
 

         

               X1 

Fig. 7. A complete link clustering of pattern set containing two classes (1 

and 2) connected by a chain of noisy patterns (*) 

B. Partitional Algorithms 

A partitional clustering algorithm obtains a single partition 
of the data instead of a clustering structure, such as the 

dendrogram produced by a hierarchical technique. 

Partitional methods have advantages in applications 

involving large data sets for which the construction of a 

dendrogram is computationally prohibitive. A problem 

accompanying the use of a partitional algorithm is the 

choice of the number of desired output clusters. A seminal 

paper [22] provides guidance on this key design decision. 

The partitional techniques usually produce clusters by 

optimizing a criterion function defined either locally (on a 

subset of the patterns) or globally (defined over all of the 
patterns). Combinatorial search of the set of possible 

labelling for an optimum value of a criterion is clearly 

computationally prohibitive. In practice, therefore, the 

algorithm is typically run multiple times with different 

starting states and the best configuration obtained from all 

of the runs is used as the output clustering. 

The Partitional algorithms are subcategorized into: 

 

1) Squared Error Clustering: 

The most intuitive and frequently used criterion function 

in partitional clustering techniques is the squared error 

criterion, which tends to work well with isolated and 

compact clusters. The squared error for a clustering L of a 

pattern set X (containing K clusters) is 

where x(ij) is the ith pattern belonging to the jth cluster 

and cj is the centroid of the jth cluster. 

 

K-means Algorithm 

The k-means algorithm is the simplest and most 

commonly used algorithm employing a squared error 

criterion [23]. It starts with a random initial partition and 

keeps on reassigning the patterns to clusters based on the 

similarity between the pattern and the cluster centres until 

a convergence criterion is met (e.g., there is no 

reassignment of any pattern from one cluster to another, or 

the squared error ceases to decrease significantly after 

some number of iterations). The k-means algorithm is 

popular because it is easy to implement and its time 

complexity is O (n), where n is the number of patterns. A 

major problem with this algorithm is that it is sensitive to 

the selection of the initial partition and may converge to a 

local minimum of the criterion function value if the initial 

partition is not properly chosen. Fig. 8 shows seven two-

dimensional patterns. If we start with patterns A, B, and C 

as the initial means around which the 3 clusters are built, 

then we end up with the partition {{A}, {B, C}, {D, E, F, 

G}} shown by ellipses. The squared error criterion value is 

much larger for this partition than for the best partition 

{{A, B, C}, {D, E}, {F, G}} shown by rectangles, which 

yields the global minimum value of the squared error 

criterion function for a clustering containing three clusters. 

The correct three-cluster solution is obtained by choosing, 

for example, A, D, and F as the initial cluster means. 

 
Agglomerative Squared Error Clustering Method 
 
1) Select an initial partition of the patterns with a 

fixed number of clusters and cluster centres.  

     X2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                X1 
Fig. 8. The k-means algorithm is sensitive to the initial position 

 

2) Assign each pattern to its closest cluster centre 

and compute the new cluster centres as the centroid of the 

clusters. Repeat this step until convergence is achieved, 

i.e., until the cluster membership is stable.  
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3) Merge and split clusters based on some heuristic 

information, optionally repeating step 2.  

 

Agglomerative k-Means Clustering Algorithm 

 

1) Choose k cluster centres to coincide with k 

randomly chosen patterns or k randomly defined points 
inside the hypervolume containing the pattern set.  

 

2) Assign each pattern to the closest cluster centre.  

 

3) Re-compute the cluster centres using the current 

cluster memberships.  

 

4) If a convergence criterion is not met, go to step 2. 

Typical convergence criteria are: no (or minimal) 

reassignment of patterns to new cluster centres, or minimal 

decrease in squared error. 
  

Several variants [3] of the k-means algorithm have been 

reported in the literature. Some of them attempt to select a 

good initial partition so that the algorithm is more likely to 

find the global minimum value. Another variation is to 
permit splitting and merging of the resulting clusters. 

Typically, a cluster is split when its variance is above a 

pre-specified threshold and two clusters are merged when 
the distance between their centroids is below another pre-

specified threshold. Using this variant, it is possible to 

obtain the optimal partition starting from any arbitrary 

initial partition, provided proper threshold values are 
specified. The well-known ISODATA [24] algorithm 

employs this technique of merging and splitting clusters. If 

ISODATA is given the “ellipse” partitioning shown in Fig. 
8 as an initial partitioning, it will produce the optimal 

three-cluster partitioning. ISODATA will first merge the 

clusters {A} and {B, C} into one cluster because the 
distance between their centroids is small and then split the 

cluster {D, E, F, G} (which has a large variance), into two 

clusters {D, E} and {F,G}. 

 
2) Graph Theoretic Clustering: 

The most well-known graph-theoretic divisive clustering 

algorithm is based on the construction of the minimal 

spanning tree (MST) of the data [25] and then deleting the 

MST edges with the largest lengths to generate more 

clusters.  

The hierarchical approaches are also related to graph-

theoretic clustering. Single-link clusters are sub-graphs of 

the minimum spanning tree of the data [26] which are also 

the connected components [27]. Complete-link clusters are 

maximal complete sub-graphs [27] and are related to the 

node colorability of graphs [28]. The maximal complete 

sub-graph was considered the strictest definition of a 

cluster in [29] and [30]. A graph-oriented approach for 

non-hierarchical structures and over-lapping clusters is 

presented in [31]. The Delaunay graph (DG) is obtained 

by connecting all the pairs of points that are Voronoi 

neighbors. The DG contains all the neighborhood 

information contained in the MST and the relative 

neighborhood graph (RNG) [2]. 

3) Mixture Resolving and Mode Seeking Algorithms: 

The mixture resolving approach to cluster analysis has 

been addressed in a number of ways. The underlying 

assumption is that the patterns to be clustered are drawn 

from one of several distributions, and the goal is to 

identify the parameters of each and (perhaps) their 

number. Most of the work in this area has assumed that the 
individual components of the mixture density are 

Gaussian, and in this case the parameters of the individual 

Gaussians are to be estimated by the procedure. 

Traditional approaches to this problem involve obtaining 

(iteratively) a maximum likelihood estimate of the 

parameter vectors of the component densities [4]. 

 

More recently, the Expectation Maximization (EM) 

algorithm (a general-purpose maximum likelihood 

algorithm [33] for missing-data problems) has been 

applied to the problem of parameter estimation. A recent 
book [34] provides an accessible description of the 

technique. In the EM framework, the parameters of the 

component densities are unknown, as are the mixing 

parameters, and these are estimated from the patterns. The 

EM procedure begins with an initial estimate of the 

parameter vector and iteratively rescores the patterns 

against the mixture density produced by the parameter 

vector. The rescored patterns are then used to update the 

parameter estimates. In a clustering context, the scores of 

the patterns (which essentially measure their likelihood of 

being drawn from particular components of the mixture) 

can be viewed as hints at the class of the pattern. Those 
patterns, placed (by their scores) in a particular 

component, would therefore be viewed as belonging to the 

same cluster. 

 

Nonparametric techniques for density-based clustering 

have also been developed [4]. Inspired by the Parzen 

window approach to non parametric density estimation, 

the corresponding clustering procedure searches for bins 

with large counts in a multidimensional histogram of the 

input pattern set.  

 
4) Nearest Neighbor Clustering: 

Since proximity plays a key role in our intuitive notion of 

a cluster, nearest-neighbor distances can serve as the basis 

of clustering procedures. An iterative procedure was 

proposed in [1]. It assigns each unlabeled pattern to the 

cluster of its nearest labelled neighbor pattern, provided 

the distance to that labelled neighbor is below a threshold. 

The process continues until all patterns are labelled or no 

additional labelling occurs. The mutual neighborhood 

value (described earlier in the context of distance 

computation) can also be used to grow clusters from near 

neighbors. 
 

5) Fuzzy Clustering: 

Traditional clustering approaches generate partitions; in a 

partition, each pattern belongs to one and only one cluster. 

Hence, the clusters in a hard clustering are disjoint. Fuzzy 
clustering extends this notion to associate each pattern 



ISSN (Online) : 2278-1021 

ISSN (Print)    : 2319-5940 
 

 International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 2, February 2015 
 

Copyright to IJARCCE                                                                           DOI  10.17148/IJARCCE.2015.4219                                                                          87 

with every cluster using a membership function [32]. The 

output of such algorithms is a clustering, but not a 

partition.  

 

Agglomerative Fuzzy Clustering Algorithm 

 

1) Select an initial fuzzy partition of the N objects 
into K clusters by selecting the N*K membership matrix 

U. An element uij of this matrix represents the grade of 

membership of object xi in cluster cj. Typically,  

𝜇𝑖 ,𝑗 𝜖 0,1                           … (8) 

 

2) Using U, find the value of a fuzzy criterion 

function, e.g. a weighted squared error criterion function, 

associated with the corresponding partition. One possible 

fuzzy criterion function is  

 
3) Reassign patterns to clusters to reduce this 

criterion function value and re-compute U. 

 

4) Repeat step 2 until entries in U. Do not change 

significantly.  

In fuzzy clustering, each cluster is a fuzzy set of all the 

patterns. Fig. 9 illustrates the idea. The rectangles enclose 

two “hard” clusters in the data: H1 = {1, 2, 3, 4, and 5} 

and H2 = {6, 7, 8, and 9}. A fuzzy clustering algorithm 

might produce the two fuzzy clusters F1 and F2 depicted 

by ellipses. The patterns will have membership values in 
[0, 1] for each cluster. For example, fuzzy cluster F1 could 

be compactly described as: 

{(1, 0.9), (2, 0.8), (3, 0.7), (4, 0.6), (5, 0.55), (6, 0.2), (7, 

0.2), (8, 0.0), (9, 0.0)} and  

F2 could be described as: 

{(1, 0.0), (2, 0.0), (3, 0.0), (4, 0.1), (5, 0.15), (6, 0.4), (7, 

0.35), (8, 1.0), (9, 0.9)} 

 

The ordered pairs (i, µi) in each cluster represent the ith 

pattern and its membership value to the cluster µi. Larger 

membership values indicate higher confidence in the 

assignment of the pattern to the cluster. A hard clustering 
can be obtained from a fuzzy partition by thresholding the 

membership value. 

 
 

Fig. 9. Fuzzy clusters 

Fuzzy set theory was initially applied to clustering in [35]. 
The most popular fuzzy clustering algorithm is the fuzzy 
c-means (FCM) algorithm [36]. Even though it is better 

than the hard k-means algorithm in avoiding local minima, 
FCM can still converge to local minima of the squared 
error criterion. The design of membership functions is the 
most important problem in fuzzy clustering; different 
choices include those based on similarity decomposition 
[36] and centroids of clusters. A generalization of the 
FCM algorithm was proposed by [36] through a family of 
objective functions. A fuzzy c-shell algorithm and an 
adaptive variant for detecting circular and elliptical 
boundaries were presented in [36]. 
 

6) Evolutionary Approach for Clustering: 
Evolutionary approach, motivated by natural evolution, 
makes use of evolutionary operators and a population of 
solutions to obtain the globally optimal partition of the 
data. Candidate solutions to the clustering problem are 
encoded as chromosomes. The most commonly used 
evolutionary operators are: selection, recombination, and 
mutation. Each transforms one or more input 
chromosomes into one or more output chromosomes. A 
fitness function evaluated on a chromosome determines a 
chromosome's likelihood of surviving into the next 
generation. We give below a high-level description of an 
evolutionary algorithm applied to clustering. 
 
An Evolutionary Algorithm for Clustering 
 

1) Choose a random population of solutions. Each 

solution here corresponds to a valid k-partition of the data. 

Associate a fitness value with each solution. Typically, 
fitness is inversely proportional to the squared error value. 

A solution with a small squared error will have a larger 

fitness value.  

 

2) Use the evolutionary operators‟ selection, 

recombination and mutation to generate the next 

population of solutions. Evaluate the fitness values of 

these solutions.  

 

3) Repeat step 2 until some termination condition is 

satisfied.  

IV. CLUSTERING LARGE DATA SETS 

There are several applications where it is necessary to 

cluster a large collection of patterns. The definition of 

„large‟ has varied (and will continue to do so) with 

changes in technology (e.g., memory and processing time). 

In the 1960s, „large‟ meant several thousand patterns [38] 

now there are applications where millions of patterns of 

high dimensionality have to be clustered. For example, to 

segment an image of size 500 * 500 pixels, the number of 

pixels to be clustered is 250,000. In document retrieval 

and information filtering, millions of patterns with a 

dimensionality of more than 100 have to be clustered to 
achieve data abstraction. A majority of the approaches and 

algorithms proposed in the literature cannot handle such 

large data sets. Approaches based on genetic algorithms, 

tabu search and simulated annealing are optimization 

techniques and are restricted to reasonably small data sets. 

Implementations of conceptual clustering optimize some 
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criterion functions and are typically computationally 

expensive. 

 

The convergent k-means algorithm and its ANN 

equivalent, the Kohonen net, have been used to cluster 

large data sets [7]. The reasons behind the popularity of 

the k-means algorithm are: 
 

 Its time complexity is O (nkl), where n is the 

number of patterns, k is the number of clusters, and l is the 

number of iterations taken by the algorithm to converge. 

Typically, k and l are fixed in advance and so the 

algorithm has linear time complexity in the size of the data 

set [38]. 

 

 Its space complexity is O (k + n). It requires 

additional space to store the data matrix. It is possible to 

store the data matrix in a secondary memory and access 
each pattern based on need. However, this scheme requires 

a huge access time because of the iterative nature of the 

algorithm and as a consequence processing time increases 

enormously.  

 

 It is order-independent for a given initial seed set 

of cluster centres, it generates the same partition of the 

data irrespective of the order in which the patterns are 

presented to the algorithm.  

 

However, the k-means algorithm is sensitive to initial seed 

selection and even in the best case, it can produce only 
hyper-spherical clusters. 

V. CONCLUSION 

Thus, Clustering is a process of grouping data items based 

on a measure of similarity. Clustering is a subjective 

process; the same set of data items often needs to be 

partitioned differently for different applications. This 

subjectivity makes the process of clustering hard. This is 

because a single algorithm or approach is not adequate to 

solve every clustering problem. A possible solution lies in 

reflecting this subjectivity in the form of knowledge. This 

knowledge is used either implicitly or explicitly in one or 
more phases of clustering. Knowledge-based clustering 

algorithms use domain knowledge explicitly. 

 

The most challenging step in clustering is feature 

extraction or pattern representation. 

 

In this paper, we have examined various steps in clustering 

and surveyed different clustering techniques such as 

hierarchical and partitional. Also we have discussed 

statistical, fuzzy, neural, and evolutionary, approaches to 

clustering. 
 

The k-means algorithm and its neural implementation, the 

Kohonen net, are most successfully used on large data 

sets. This is because k-means algorithm is simple to 

implement and computationally attractive because of its 

linear time complexity. However, it is not feasible to use 

even this linear time algorithm on large data sets. 

 

In summary, clustering is an interesting, useful and 

challenging problem. It has great potential in applications 

like object recognition, image segmentation, and 

information filtering and retrieval. However, it is possible 
to exploit this potential only after making several design 

choices carefully. 
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