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Abstract: Content-based retrieval has emerged in the face of content explosion as a promising approach to information access. 

In this paper, we focus on the challenging issue of recognizing the emotion content of music signals, or music emotion 

recognition (MER). Specifically, we formulate MER as a regression problem to predict the arousal and valence values (AV 

values) of each music sample directly. Associated with the AV values, each music sample becomes a point in the arousal-valence 

plane, so the users can efficiently retrieve the music sample by specifying a desired point in the emotion plane. Because no 

categorical taxonomy is used, the regression approach is free of the ambiguity inherent to conventional categorical approaches. 

To improve the performance, we apply principal component analysis to reduce the correlation between arousal and valence, and 

RReliefF to select important features. An extensive performance study is conducted to evaluate the accuracy of the regression 

approach for predicting AV values. The best performance evaluated in terms of the R2 statistics reaches 58.3% for arousal and 

28.1% for valence by employing support vector machine as the regressor. We also apply the regression approach to detect the 

emotion variation within a music selection and find the prediction accuracy superior to existing works. A group-wise MER 

scheme is also developed to address the subjectivity issue of emotion perception. 
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1. INTRODUCTION  
Music plays an important role in human‟s history, even 

more so in the digital age. Never before has such a large 
collection of music been created and accessed daily by 

people. As the amount of content continues to explode, the 
way music information is organized has to evolve in order 

to meet the ever increasing demand for easy and effective 

information access. Music classification and retrieval by 
emotion is a plausible approach, for it is content-centric and 

functionally powerful. Emotion recognition from music 

signal is a challenging task due to the following reasons. 
First, emotion perception is intrinsically subjective and 

people can perceive different emotions for the same song. 
This subjectivity issue makes the performance evaluation of 

an MER system fundamentally difficult because a common 

agreement on the classification result is hard to obtain. 
Second, it is not easy to describe emotion in a universal 

way because the adjectives used to describe emotions may 

be ambiguous, and the use of adjectives for the same 
emotion can vary from person to person. Third, it is still 

inexplicable how music evokes emotion. What intrinsic 
element of music, if any, creates a specific emotional 

response in the listener is still far from well-understood.  
To uncover the relationship between music and emotion, 
many previous works [1]–[8] have categorized emotions 
into a number of emotion classes and applied the standard 
pattern recognition procedure to train a classifier. The 
methods described in [1], [2] adopt the basic emotions such 
as happy, angry, sad and fear as the emotion classes, 
whereas the methods described in [3]–[8] recognize the 

 
ambiguity of adjectives and define the emotion classes in 
terms of arousal (how exciting or calming) and valence 
(how positive or negative). For example, the emotion 
classes can be divided into the four quadrants in Thayer‟s 
arousal-valence emotion plane [12], Fig. 1.  
However, even with the emotion plane, the categorical 
taxonomy of emotion classes is still inherently ambiguous. 
Each emotion class represents an area in the emotion plane, 
and the emotion states within each area may vary a lot. For 
example, the first quadrant of the emotion plan contains 
emotions such as excited, happy, and pleased, which are 
different in nature. This ambiguity confuses the subjects in 
the subjective test and confuses the users when retrieving a 
music piece according to their emotion states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Thayer‟s arousal-valence emotion plane. 
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An alternative is to view the emotion plane as a continuous 

space and recognize each point of the plane as an emotion 
state. In this way, the ambiguity associated with emotion 
classes or adjectives can be successfully avoided since no 
categorical classes are needed. This continuous perspective 

has been adopted by psychologists to model the emotional 
response of the subjects [13], [14]. In [15], the software 
„FEELTRACE‟ is developed to let subjects track the 
emotion content of a stimulus (such as speech, music, or 
video) as they perceive it over time. However, a major issue 

of the continuous perspective is that arousal and valence are 
not necessarily independent and can in fact impact each 
other. Whether the emotion states should be modeled as 
categories or continua has been a debate in psychology, and 

either perspective has its pros and cons. For MER, the 
continuous perspective is considered more appropriate 
since it resolves the ambiguity issue.  
Specifically, with the continuous approach, we first 
compute the arousal and valence values (AV values) of 
each music sample and view the music sample as a point in 
the emotion plane. Then the user can retrieve music by 

specifying a point in the emotion plane according to his/her 
emotion state, and the system would return the music pieces 
whose locations are closest to the specified point. In this 
way, apparently, the efficiency and accuracy of music 

retrieval is much improved. The viability of the continuous 
approach heavily lies in the prediction accuracy of the AV 
values. Since automatic calculation of the AV values (AV 
computation) is still at its early stage, and the performance 
of existing approaches [8]–[11] is unsatisfactory in many 

aspects (see Section II), a primary task of this paper is to 
develop an effective method for AV computation.  
We propose to formulate MER as a regression problem and 
use regression techniques to directly predict the AV values 
of music samples from the extracted features. This 
computational algorithm has sound theoretical basis, allows 
thorough performance study, and generally exhibits reliable 
prediction performance. The other main issue, the 
dependency between arousal and valence, is addressed by 
reducing the data correlation by principal component 
analysis [16].  
An extensive performance study is conducted to evaluate 
the prediction accuracy of the proposed regression approach 
by using different combination of data spaces, feature 
spaces, and regression algorithms. Support vector 
regression [18] is found to produce better prediction 
accuracy than linear regression [17] and AdaBoost.RT [20]. 
The R2 statistics [17] reaches 58.3% for  
arousal and 28.1% for valence. Because there are no other 
existing systems viewing MER from a continuous 
perspective, we apply the regression approach to detect the 
emotion variation within music selections and find it is 
superior to the one proposed in [10].  
In summary, the primary contributions of the paper include: 
To our best knowledge, this work represents one of the first 
attempts that develop an MER system from a continuous 
perspective and represent each song as a point in the 
emotion plane. This approach is free of the ambiguity issue 
of MER. 

TABLE I COMPARISON OF WORKS ON MUSIC EMOTION 
 

Field Perspective Description 
MER [1]–[8] categorical Classifying music selections into 

  several classes based on emotion. 
MEVD [8]–[11] continuous Detecting the emotion variation 

  within a music selection. 
MER (this work) continuous Representing each music 

  selection as a point in the emotion 
  plane.  

A novel AV computation method based on the regression 
theory is proposed. Principal component analysis [16] is 
employed to reduce the data correlation, and RReliefF [22] 
is utilized for feature selection (Sections 3 and 4). 

 
An extensive performance study is conducted to 

demonstrate the accuracy and effectiveness of the 
regression approach for both music emotion recognition 
and music emotion variation detection (Section 5).  

 
A group-wise MER scheme is proposed to solve the 

subjectivity issue of MER (Section 6).  
 

2. LITERATURE REVIEW  
Despite a great deal of effort has been made for MER in 
recent years [1]–[8], little attention has been paid to view 
the emotion plane from a continuous perspective. Some 
exceptions can be found in the music emotion variation 
detection (MEVD) field [8]–[11], where the emotion 
content of music is quantified as a time-varying continuous 
variable, and some statistical methods are developed to 
predict the emotion variation.  
However, detecting the emotion variation is different from 
representing each song individually as a point in the 
emotion plane. Our work represents one of the first 
attempts pioneering this novel perspective. See Table I for a 
comparison. In the following we give brief review of 
existing AV computation methods and illuminate the 
rational of adopting the regression approach rather than 
these methods.  
2.1. Arousal and Valence Modeling (AV modeling)  
To detect the emotion variation in video sequences, AV 
modeling is proposed in [9] to compute the AV values. The 
arousal and valence models are weighted combinations of 
some component functions that are computed along the 
timeline. The resulting arousal and valence curves are 
combined to form an affective curve, making it easy to trace 
the emotion variation of video content and to identify the 
segments with high emotional content. The component 
functions used for arousal are the motion vectors between 
consecutive video frames, the changes in shot lengths, and 
the energy of sound. Valence is modeled by the pitch of 
sound.  

3. THE REGRESSION APPROACH  
Regression theory is a well-studied theory aiming at 
predicting a real value from observed variables (or 
features). It has a sound theoretical foundation, allows easy 
performance analysis and optimization, and generally 
provides reliable prediction performance [17]. Besides, no 
temporal information or geometric operation is needed. 
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Therefore, formulating MER as a regression problem seems 
to be a promising approach.  
Below we first describe how the formulation is made, then present the system 
description in detail. The performance study of the regression approach is 
reported in Section V. Given N inputs (xi, yi), 1≤ i ≤N, where xi is a feature 
vector for the ith input sample, and yi∈ ( denotes a set of real values) is the real 
value to be predicted for the ith sample, the regression system trains a 
regression algorithm (regressor) R( ⋅ ) such that the mean squared error ε is 
minimized [17]: 

 
 
 
 
 

where R(xi) is the prediction result for the ith sample. Since 
the AV values are viewed upon as real values from the 
continuous perspective, the regression theory can be well 
applied to directly predict arousal and valence. To 
formulate MER as a regression problem, the following 
considerations are taken into account:  
1) Domain of : The Thayer‟s emotion plane is viewed as a 
coordinate space spanned by arousal and valence, where 
each value is confined within [–1, 1].   
2) Ground truth: The ground truth is set via a subjective test 
by averaging the subjects‟ opinions about the AV values of 
each music sample (see Section 4.3).   
3) Feature extraction: The extracted features need to be 
relevant to emotion perception for the repressors to be 
accurate (see Sections 4.2 and 5.3).   
4) Regression algorithm: Although regression theory has 
been well studied and many good regressors are readily 
available [17], the performance of a regressor is case 
dependent. A number of regressors should be adopted and 
compared to find the best one (see Section 4.4).   
5) Number of regressors: Since we want to predict both 
arousal and valence, two regressors are required and are 
referred to as RA and RV .   
6) Training fashion: As mentioned in Section I, there is a 
certain degree of dependency between arousal and valence. 
Therefore, apart from training RA and RV solely 
independently, we need to study whether the prediction 
accuracy is improved if the dependency of the AV values is 
considered (see Section 5.2).   

TABLE II THE ADOPTED FEATURE EXTRACTION ALGORITHMS  
Method Number of Description 

 feature  
PsySound (P) 44 Extracts features including loudness, 
[27]  level, pitch multiplicity,  and dissonance 

  based on psychoacoustic models. 
Marsyas (M) 30 Extracts timbral texture, rhythmic content 
[29]  and pitch content features. It has been 

  shown useful in music genre 
  classification. 

Spectral (SC)12 Represents the relative characteristics of 
contrast [3]  each spectral subband, and reflects the 

  distribution of harmonic components. 
DWCH [2] (D) 28 Daubechies wavelets coefficient 

  histogram, which has better ability in 
  representing both local and global 
  information. 

Total (ALL) 114  
   

TABLE III THE 15 PSYSOUND FEATURES (PSY15) RECOMMENDED IN [8]  
 

Feature 
 

Description 
  

   
 

 1 Spectral Centroid  The centroid of spectral density  
 

   

function. 
  

    
 

 2 Loudness  Human perception of sound intensity.  
 

 3, 41 Sharpness  A pitch-like (low-high) aspect of  
 

   timbre.  
 

 5 Timbral  Width The flatness of a loudness  
 

   function.  
 

 6 Volume  Human perception of the size of sound.  
 

 7, 81 Spectral Dissonance  Roughness of all spectrum components.  
 

 9,101 Tonal Dissonance  Roughness of just the tonal  
 

   components.  
 

 11 Pure Tonal  The audibility of the spectral pitches.  
 

 12 Complex Tonal  The audibility of the virtual pitches.  
 

 13 Multiplicity  The number of pitches heard.  
 

 14 Tonality  Major-minor tonality, e.g., A major.  
 

 15 Chord  Musical pitches sounded  
 

   simultaneously.  
 

4. SYSTEM DESCRIPTION  
Our MER system represents each music selection as a point 
in the emotion plane and provides a friendly user interface 
for music retrieval and management. The system diagram is 
shown in Fig. 2, and the details are described below. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. System diagram of the proposed regression 
approach. Left: training phase; right: testing phase. RA 
denotes the regressor for arousal, and RV denotes the 
regressor for valence.  
4.1. Data Collection and Preprocessing  
The music database is made up of 195 popular songs 
selected from a number of Western, Chinese, and Japanese 
albums [8]. Two criteria are used in the selection: 1) These 
songs should be distributed uniformly in each quadrant of 
the emotion plane. 2) Each music sample should express a 
certain dominant emotion.  
Note the genre of our database is popular music of different 
countries rather than the western classical music, which is 
commonly adopted in previous works [2]–[5], [10], [11]. 
Western classical music is often chosen because it is much 
easier to gain agreement on perceived emotion and thus has 
less subjectivity issue [3]. However, since the purpose of 
MER is to facilitate music retrieval and management in 
everyday music listening, and since it is the popular music 
that dominates the everyday music-listening, we should not 
shy away from the subjectivity issue by using only western 
classical music. More discussions on the subjectivity issue 
are provided in Section 6.  
4.2. Feature Extraction  
After preprocessing, we use the spectral contrast algorithm 
[3], DWCH algorithm [2], and two computer programs 
PsySound [27] and Marsyas [29] to extract musical features 
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and construct a 114-dimension feature space, which is 
referred to as ALL hereafter. The extracted features, which 
are described in detail below, have been used for MER in 
pervious works. See Table II for denotations and brief 
descriptions.  
Dissonance measures are related to the perception of short 

irregularities in a sound; any note in music that does not fall 

within the prevailing harmony is considered dissonant. 
Pitch measures are related to the perceived fundamental 

frequency of a sound. Because of this psychoacoustical 

foundation, the features extracted by PsySound have been 
found much related to emotion perception, especially 15 of 

them [8]. Therefore, we utilize these 15 features to form a 
second feature space called Psy15. It generates 19 timbral 

texture features (spectral centroid, spectral rolloff, spectral 

flux, time domain zero-crossing and MFCC), 6 rhythmic 
content features (by beat and tempo detection) and 5 pitch 

content features (by multi-pitch detection). Spectral 

centroid, spectral rolloff, and spectral flux describe spectral 
shape properties, zero-crossing measures the noisiness of 

the signal, and MFCC (Mel-frequency cepstral coefficient) 
is a non-musical pitch scale commonly used in speech and 

audio signal processing.  
Spectral contrast features capture the relative spectral 
information in each subband and utilize the spectral peak, 
spectral valley, and their dynamics as features [3]. The 
spectral contrast features also roughly reflect the relative 
distribution of the harmonic and non-harmonic components 
in the spectrum.  
4.3. Regressor Training  
The 195 (xi, yi) inputs from feature extraction and 
subjective test are then used to train the following three 
regression algorithms: multiple linear regression (MLR) 
[17], support vector regression (SVR) [18], and 
AdaBoost.RT (BoostR) [20]. MLR is a standard regression 
algorithm which assumes a linear relationship between 
variables and estimates the linear relationship by a least 
squares estimator. We treat MLR as the baseline approach 
for its simplicity.  
Comparatively, SVR nonlinearly maps input feature vectors 
to a higher dimensional feature space by the kernel trick, 

and yields prediction functions that are expanded on a 

subset of support vectors [18]. As its name indicates, SVR 
is an extension of the famous support vector classification, 

which has been found in many cases superior to existing 

machine learning methods. A number of previous works 
have adopted support vector classification for MER and 

reported excellent classification performance [2], [4], [6]. 
BoostR is another nonlinear regression algorithm in which 

a number of regression trees are trained iteratively and 

weighted according to the prediction accuracy. After the 
iterative process, the prediction result of each regression 

tree is combined (weighted mean) to form the final 

hypothesis. The basic underlining concept of the boosting 
process is based on the observation that finding a number of 

weak predicting rules is much easier than finding a single, 
highly accurate one [20].  
Boosting algorithms, which are the state-of-the-art methods 
for face detection [21], have been successfully applied in 
many machine learning problems. 

5. PERFORMANCE ESTIMATION AND STUDY  
We run a series of experiments to evaluate the performance 
of the regression approach. Different ground truth data 
spaces, feature spaces, and regression algorithms are 
compared in terms of the R2 statistics, which is a standard 
way for measuring the goodness of fit for regression models 
[17], 

 
 
 
 

(5)  
where y is the mean of the ground truth, and the 
normalization of the total squared error (N ε ) by the energy 
of the ground truth makes R2 comparable between 
experiments. R2 is often interpreted as the proportion of 
underlying data variation that is explained by the fitted 
regression model [32]. An R2 of 1.0 means the model 
perfectly fits the data, while a negative R2 means the model 
is even worse than simply taking the sample mean. 
However, the kind of the R2 statistics that is satisfactory is 
case-dependent.  
We evaluate the performance of regression by the 10–fold 
cross validation technique [16], in which the whole dataset 
is randomly divided into 10 parts, 9 of them for training and 
the remaining one for testing. The above process is repeated 
20 times before we compute the average result. R2 for each 
data dimension (say, arousal and valence) is computed 
separately.  
5.1. Performance Evaluation of Regressor  
We first evaluate the prediction accuracy of different 
regression algorithms in terms of R2. The implementation 
of SVR is based on the library LIBSVM [19], along with a 
grid parameter search to find the best parameters. BoostR is 
implemented in Java language. The threshold φ for 
demarcating correct and incorrect predictions are 
empirically determined as 0.1, and the number of iterations 
is 30. MLR can be easily implemented in Matlab. 

 
We run each of the regressor with the same configuration: 
the data space is AV and the feature space is Psy15. Result 
shown in the first three rows of Table 4 indicates that the 
R2 of SVR reaches 57.0% for arousal and 22.2% for 
valence, representing the most prominent prediction 
accuracy among the three, and BoostR exhibits prediction 
accuracy similar to the baseline method MLR. 
Consequently, we employ SVR as the regressor in the 
following experiments.  

TABLE IV THE R2 STATISTICS FOR DIFFERENT COMBINATION OF 
DIFFERENT METHODS, DATA SPACES, AND FEATURE SPACES 

Method Data Feature  R2 statistics 
 Space Space  a   v  

MLR AV Psy15 56.8%  10.9%  

BoostR AV Psy15  55.3%   11.7%  

SVR AV Psy15 57.0%  22.2%  

SVR PC RRF18,15  58.3%   28.1%  

Test-retest 1 N/A N/A 80.5%  58.6%  

 
6. CONCLUSION  

In this paper, a music selection is quantified as a point in 
the arousal-valence emotion plane. This continuous view of 
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music emotion makes the proposed MER system free of the 
inherent ambiguity issue from which conventional 
categorical approaches suffer. In addition, because there is 
more freedom in describing a song, the subjectivity issue is 
alleviated to some extent.  
The accuracy of the AV computation determines the 
viability of the MER system. We formulate MER as a 
regression problem and adopt the support vector regression 
for direct estimation of the AV values. Comparing to 
existing AV computation algorithms, the regression 
approach has a sound theoretical foundation, exhibits 
promising prediction accuracy, and needs no temporal 
information or geometric operations.  
Future work will focus on exploiting features about lyrics 
and singing of a song, evaluating the regression approach 
on a large-scale database, and realizing the GWMER 
scheme to further address the subjectivity issue.  
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