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Abstract:  Old spatial queries, like range search, nearest neighbour retrieval, involved only conditions on objects’ 

geometric properties. gradually many new applications call for novel forms of queries which aim to find objects which 

satisfy both a spatial predicate, as well as a predicate on their associated texts. consider an example: instead of 

considering all the hotels, a nearest neighbour query would just ask for the hotel that lies closest among the ones whose 

menu cards contain “rolls, burger, caramel custard” all at the same moment. at this time the best possible solution to 

such type of queries is based on the ir2-tree, which, as shown here, has some deficiencies that seriously would impact 
its efficiency. inspired by this, we are developing a new method called the spatial inverted index which extends the 

conventional inverted index to cope with multidimensional data, and produces algorithms which will answer nearest 

neighbor queries with keywords in real time. 
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INTRODUCTION 

A spatial database manages more than one dimensional 

objects (such as points, rectangles, etc.), and provides 
faster access to those objects based on different selection 

criteria. The importance of spatial databases is reflected by 

the convenience of modelling entities of reality in a them 

manner of geometry. Say for example, the locations of 

banks, hotels, ATM machines and so on are often 

illustrated as points in a map, while larger extents like 

gardens, rivers, and landscapes as a combination of 

rectangles. Many functions of a spatial database are useful 

in various ways in contexts specifically. Consider  

instance, in a geography information system, range search 

can be implemented to find all restaurants in a specific 

area, whereas the nearest neighbor retrieval may discover 
the restaurant nearest to a given address. Today, the use of 

search engines has made it more real to write spatial 

queries in a whole new way. Normally, queries are based 

on objects’ geometric properties. We have seen some new 

applications that call for the ability to select objects based 

on both of their geometric coordinates and their related 

texts. For example, it would be fairly useful if a search 

engine can be used to find the nearest restaurant that offers 

“burger, pizza, and desert” all at the same time. Note that 

this is not the “globally” nearest restaurant (which would 

have been returned by a traditional nearest neighbor 
query), but it is the nearest restaurant within only  those 

providing all the demanded item. There are easy ways to 

support queries that combine spatial and features of text. 

Say for example, in the above query, we would first fetch 

all the hotels whose menu contains the set of keywords 

{dessert, burger, pizza}, and then from the retrieved 

hotels, shortlist the nearest one. In the similar way, one 

could also do it oppositely by targeting first the spatial 

conditions – browse all the restaurants in ascending order 

of their distances to the query point until encountering one 

whose menu has all the keywords. The major drawback of 

these straight for-ward approaches is that they will fail to 
provide real time answers on strange hard inputs. An 

example is that the real nearest neighbor lies much far  

 

 

away from query point, whereas the closer neighbors are 

missing at least one of the query keywords. 
Spatial queries with keywords have not been majorly 

explored. In the past years, the community has sparked 

enthusiasm in studying keyword search in RDBMS. It is 

considered recently that the attention was diverted to 

multidimensional data [1], [2], [3]. The best method to 

date for nearest neighbor search with keywords is due to 

Felipe et al. [2]. They nicely integrate two well-known 

concepts: R-tree [2], a popular spatial index, and signature 

file [4], an effective method for keyword-based retrieval of 

document. By doing this they can develop a structure 

called the IR2-tree [5], which has the strengths of both R-

trees and signature files. Like R-trees, the IR2-tree 
preserves objects’ spatial proximity, which is the key to 

solving spatial queries with efficiency. Whereas, like 

signature files, the IR2-tree can filter a amount of portion 

of the objects that will not contain all the query keywords, 

thus reducing the number of objects to be examined 

significantly. 

The IR2-tree, also has a drawback of signature files; false 
hits.A signature file, because of its conservative nature, 

may direct the search to some basic objects, even if they 

don’t have all the 

RELATED WORK 
It provides the information retrieval R-tree (IR2-tree) [1], 

which is the used to answer the nearest neighbor queries 

explained. It explains an alternative solution based on the 

inverted index              

  The IR2-tree As mentioned earlier, the IR2-tree [2] 

combines the R-tree with signature files. Secondly, will 

review what is a signature file before explaining IR2-trees. 

Our discussion assumes the information of R-trees and 

best-first algorithm [4] for NN search, both of which are 

well-known methods in spatial databases.Signature file 

generally refers to a hashing-based framework, whose 

instantiation in [6] is known as superimposed coding (SC), 
it is shown to be more effective than other instantiations 
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[4]. It is designed to do membership tests: check whether a 

query word w exists in a set W of words. SC is reserved, 

in the sense that if it says “no”, then w is definitely not in 

W . If, on the other hand, SC returns “yes”, the true 

answer can be either way, in which case the whole W 

should be neglected to prevent false hit .In context of [7], 

SC works in same way as  classic technique of bloom 
filter. In preprocessing, it builds a bit signature of length l 

from W by hashing each word in W to a string of l bits, 

and then making the separation of all bit strings. To 

illustrate, denote by h(w) the bit string of a word w. 

Firstly, all l bits of h(w) are made 0. Then, SC repeats the 

following m times: randomly choose a bit and set it to 1. 

Most importantly, randomization must use w as its seed to 

make sure that same w always ends up with a similar h(w). 

Further, the m choices are mutually independent, and may 

even happen to be the same bit. The concrete values of l 

and m affect the space cost and false hit probability.The 
2nd figure gives an example to illustrate the above process, 

assuming l = 5 and m = 2. Say for example, in the bit 

string h(a) of a, the 3rd and 5th (counting from left). Given 

a query keyword w, SC performs the member-ship test in 

W by testing whether all the 1’s of h(w) appear at the 

same places in the signature of W . If not, it is guaranteed 

w cannot belong to W . Else, the test cannot be resolved 

using only signature, and a scan of W follows. A false hit 

occurs if the scan reveals that W actually does not contain 

w. For instance, assume that we want to test whether word 

c is a member of set {a, b} using only the set’s signature 

01101. Since the 4th bit of h(c) = 00011 is 1 but that of 
01101 is 0, SC suddenly reports “no”.Like another 

instance, assume the membership test of c in {b, d} whose 

signature is 01111. This time, SC returns “yes” because 

01111 has 1’s at all the bits where h(c) is set to 1; as a 

result, a full scan of set is needed to verify that this is a 

false hit.This IR2-tree is a R-tree where every (leaf or 

nonleaf) entry E is augmented with a signature that 

summarizes the union of the texts of the objects in the 

subtree of E. #rd figure shows an example based on the 

dataset of Figure 1 and  hash values in Figure 2. The string 

01111 in the leaf entry p2, for instance, is the signature of 
Wp2 = {b, d} (which is the document of p2; see Figure 1b). 

The string 11111 in the nonleaf entry E3 is the signature of 

Wp2 ∪  Wp6 , namely, the set of all words describing p2 and 

p6. Notice , in general, the signature of nonleaf entry E can 

be conveniently obtained simply as disjunction of all 

signatures in the leaf node of E. A nonleaf signature may 

allow a query algorithm to realize that certain word cannot 

exist in the subtree. For instance, as the 2nd bit of h(b) is 

1, we know that no object in the subtrees of E4 and E6 can 

have word b in its texts – notice that signatures of E4 and 

E6 have 0 as their 2nd bits.Normally, the signatures in an 

IR2-tree may have different lengths at various levels. 
For R-trees, the best-first algorithm [10] is a well-known 
solution to NN search. It is straight forward to adapt it to 
IR

2
-trees. Specially, given a query point q and a keyword 

set Wq , the used algorithm accesses  entries of an IR2-tree 
in ascending order of  distances of their MBRs to q (the 
MBR of a leaf entry is just the point selfly), pruning the 
entries whose signatures indicate the absence of at least 

one word of Wq in their sub trees. Whenever a leaf entry, 
say of point p, cannot be pruned, a random I/O is 
performed to retrieve its text description Wp. If Wq is a 
subset of Wp, the algorithm terminates with p as the 
answer; otherwise, it continues until no more entry 
remains to be processed. In Figure 3, assume that the 
query point q has a keyword set Wq = {c, d}. It can be 
verified that the algorithm must read all the nodes of the 
tree, and fetch the documents of p2, p4, and p6 (in this 
order). The final answer is p6, while p2 and p4 are false 
hits. 

PROBLEM DEFINITION 
Let P be a set of multidimensional points. As our intention 

is to combine keyword search with the initial location 

finding services on facilities such as restaurants, hotels and 

banks etc. we will focus on dimensionality 2, but our 

method can be expanded to arbitrary dimensionalites with 

no technical hinderance. We will assume that the points in 

P have integer coordinates, such that each coordinate 

ranges in [0, t], where t is a large integer. This is not as  as 

it may seem, because even if one would like to insist on 

actual-valued coordinates, the set of different coordinates 
representable under a space limit is still finite and 

numerous; therefore, we could convert all things to 

integers with proper scaling.As with [6], each point p ∈  P 

is related with a group of words, which is represented as 

Wp and defines the document of p. For example, if p 

stands for a hotel, Wp can be its services, or if p is a bank, 

Wp can be the description of its services and facilities, or if 

p is a blood bank, Wp can be the list of its in stock blood 

groups specialities. It is clear that Wp may potentially 

contain numerous words. 

Traditional nearest neighbor search returns the data point 
nearest to a query point.After [6], we extend the problem 

to include predicates on objects’ texts. Formally, in our 

context, a nearest neighbor (NN) query specifies a point q 

and a set Wq of keywords (we refer to Wq as the document 

in the query). It returns the point in Pq that is the closest to 

q, where Pq is defined asIn other words, Pq is the set of 

objects in P whose documents contain all the keywords in 

Wq . In the case where Pq is empty, the query returns null. 

The 

problem 

definition can be generalized to k nearest neighbor search, 

which searches the k points in Pq closest to q; if Pq has less 
than k points, the entire Pq should be returned.For 

example, assume that P consists of 8 points whose 

locations are as shown in Figure 1a (the black dots),and 

their documents are given in Figure 1b. Consider a query 

point q at the white dot of Figure 1a with the set of 

keywords Wq = {c, d}. Nearest neighbor search finds p6, 

noticing that all points closer to q than p6 are missing 

either the query keyword   

c or d. If k = 2 nearest neighbors are wanted, p8 is also 

returned in addition. The result is still {p6, p8} even if k 

increases to 3 or higher, because only 2 objects have the 
keywords c and d at the same time. We assume that the 

dataset will not fix in memory, and needs to be indexed by 

efficient access methods in order to minimize the number 

of input outputs in answering a query 
 

Pq = {p ∈  P | Wq ⊆ Wp} (1) 
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PSEUDO CODE 
Pseudo code for managing Hotel Data in Spatial Index 
Tree: 

1. Admin Adds a Hotel “h” having ( Location L(L1 

and L2), set of Keywords(k) 

Location information of hotel in list is converted to 1D 

form 

2.Sorting is required in order to apply the compression 

method…. 

3.Location Data is sorted using 1D list l(l(d),n)   

4. Repeat until list is sorted 

5. Put 1in i 

6. Repeat  while i<n 

7. If l(d)[i] > l(d)[i+1] 
8. Then swap l(d)[i],l(d)[i+1] 

9. End if 

10. Increment i 

11. End repeat 

12. End repeat 

13. End sort 

 

Compression scheme is applied to the id’s as to minimize 

the size of inverted index by it. The difference between the 

id’s is calculated and only is stored. This is used as it is an 

useful approach rather than storing the precise data. The 
distances can be re-calculated back.(Algorithm contd.) 

Apply Compression Scheme  

 Record gaps Between id’s for list l 

1. Put idin l(j) 

2. Repeat till i<n 

3. Calculate the difference        diff in l(j) – l(j+1) 

4. Store difference diff in list l at index i 

5. End repeat 

6. Assign new id to Hotel (h) 

7. Put id of l(n-1) in newID 

8. Increment newID 

9. Assign newIDto new element l(n)in list 
 

To insert an item, the tree is traversed repeatedly from the 

head node. At each step, all rectangles in the current 

directory node are tested, and a candidate is picked using a 

heuristic such as picking the rectangle which requires least 

space. The search then descends into this page, until 

reaching a leaf node. If the leaf node is full, it must be split 

before the insertion is made. Again, as an exhaustive 

search is too costly, a heuristic is employed to split the 

node into two. Adding the newly created nodeto the 

previous level, this level can again overflow, and these 
overflows can propagate up to the root node; when this 

node also overflows, a new root node is created and the 

tree has increased in height 

 

      Algorithm contd.(Search) 

1. Generate R-Tree 

2. While node n in list l 

3. Traverse until leaf node ln 

4. If first element  

5. Add a nodenewN 

6. Else                                                                                                         

7.Traverse till node ln 

8.Split node and insert new node newNat parent level to   

node ln 

9.  End if 

10.End while   

SUMMARY 
Compared with the previous work the existing systems are 

not efficient to provide the real time answers. The spatial 

inverted index list and enhanced search is proposed.  The 

enhanced search is used for finding objects based on users 

priority level. We imposed this improved spatial model 

which will work efficiently and give desired results. 
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