
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.47118 518

Web Optimization Using Web Mining Technique

Mahendra Pratap Singh Dohare
1
, Dr. R S. Jadon

2

Ph. D. Scholar, Dept of Computer Application, Madhav Institute of Technology & Science, Gwalior
1

Prof& HOD, Dept of Computer Application, Madhav Institute of Technology & Science, Gwalior
2

Abstract: A Web Optimization maintains and catalogs the content of Web pages in order to make them easier to find.

The importance of WPO is only rising, as well as it grows, the need for tools that can assist developers in making the

right also decisions grows. Hence that is the goal of this thesis: to build a tool that can be used for the continuous

profiling of a web site's performance. Usually Search Engines search through Web pages for specified keywords. In

response they return a list containing those documents containing the specified keywords. This list is sorted by a

relevance criterion which tries to put at the very first positions the documents that best match the inquiry of user. In

meticulous, since the size of the Web is quickly rising, the central issues observe elevated presentation algorithms for

information management. Furthermore, nowadays Web Optimizations receive more searches per day over a collection

of several billion web pages indexed. These particular, can easily explain why in such environments the efficiency, as

the effectiveness, of Search and Index algorithms have issues became. Intended for this manner in this paper we are

going toward proposing novel techniques aimed at enhancing the performance of a Web Optimization from different

angles.

Keywords: Web Mining, Web Optimization, k-means Algorithm.

I. INTRODUCTION

Web search services have proliferated in the last years.

Users have to deal with different formats for inputting

queries, different results presentation formats, and,

especially, differences in the quality of retrieved

information. Also performance (i.e. search and retrieval

time plus communication delays) is a problem that has to

be faced while developing such a type of application

which may receive thousands of requests at the same time.

Most search engine developments is done within

competitive companies which do not publish technical

details. Parallel and Distributed processing is an enabling

technology for efficiently searching and retrieving

information on the Web. Despite this fact, enhancements

to sequential IR methods are very important. Various

access methods have been developed to support efficient

search and retrieval over text document collections.

Inverted files have traditionally been the index structure of

choice for the Web. Commercial search engines use

custom network architectures and high–performance

hardware to achieve sub–second query response times

using such inverted indexes. When the collection is small

and indexing is a rare activity, optimizing index–building

is not as critical as optimizing run–time query processing

and retrieval. However, with a Web scale index, and it

build time also became a critical factor for two reasons:

Scale and growth rate, and Rate of change. Popular search

engines receive millions of queries daily, a load never

experienced before by any IR system. Also search engines

have to deal with a growing number of Web pages to

discover, to index, and to retrieve information. To

compound the problem, search engine users want to

experience small response times as well as precise and

relevant results for their queries. In this system, the

development of techniques to improve the performance

and the scalability of the results becomes a fundamental

topic of research in IR. One effective alternative for

improving performance and scalability of information

systems is caching. The effectiveness of caching strategies

depends on some key aspects, such as the presence of

reference locality in the access stream, and the frequency

at which the database is being cached and updated. Users

usually look only at the very first pages returned by a Web

Optimization, it is very important to effectively rank the

results returned for the submitted queries. The two main

techniques used in ranking algorithms for Web pages are:

Statistical (i.e. based on words occurrence in the pages),

and Link Based (i.e. based on importance inferred from

information on the structure of the Web graph). In this

paper we focus our attention on link based techniques [1]

and [3-5].

II. LITERATURE SURVEY

Various access methods have been developed to support

efficient search and retrieval over text document

collections. Inverted files have traditionally been the index

structure of choice for the Web. Commercial search

engines use custom network architectures and high–

performance hardware to achieve sub–second query

response times using such inverted indexes. When the

collection is small and indexing is a rare activity,

optimizing index–building is not as critical as optimizing

run–time query processing and retrieval. However, with a

Web–scale index, index build time also became a critical

factor for two reasons: Scale and growth rate, and Rate of

change. An inverted list implementation that supports

jumping forward in the compressed list using skip

pointers. This is useful for document based access into the

list during conjunctive style processing. The purpose of

these skip pointers is to provide synchronization points for

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.47118 519

decompression, allowing just the desired portions of the

inverted list to be decompressed. Data structure to perform

efficient on-line update of the index with low performance

loss. The structure they use is organized as block of disk

storage allocated for index blocks. Together, the index

blocks make up the index, that combines the functions of

the dictionary and postings file, thus the index contains

both index terms and postings into a single file. Updates

are buffered in main memory until they can be applied to

disk. A background process continuously cycles through

index storage applying updates and re-writing the index.

Update throughput is thus a function of the size of the

main memory buffer and the period of an update cycle [3]

and [5].

Popular search engines receive millions of queries daily, a

load never experienced before by any IR system.

Additionally, search engines have to deal with a growing

number of Web pages to discover, to index, and to

retrieve. To compound the problem, search engine users

want to experience small response times as well as precise

and relevant results for their queries. In this scenario, the

development of techniques to improve the performance

and the scalability of the results becomes a fundamental

topic of research in IR. One effective alternative for

improving performance and scalability of information

systems is caching. The effectiveness of caching strategies

depends on some key aspects, such as the presence of

reference locality in the access stream, and the frequency

at which the database is being cached and updated.

Caching is a very effective technique to make scalable a

service that distributes data to a multitude of clients. As

suggested by many researchers, caching can also be used

to improve the efficiency of a Web Optimization. This is

motivated by the high locality present in the stream of

queries processed by a Web Optimization, and by the

relatively infrequent updates of Web Optimization indexes

that allow us to think of them as mostly read-only data.

III. TECHNIQUES

3.1 Parallel Crawling

As the size of the Web grows, it becomes more difficult to

retrieve the whole or a significant portion of the Web

using a single process. Therefore many Web optimizations

run multiple crawler processes in parallel. We refer to this

type of crawler as a parallel crawler. Only few works

discuss the architecture of parallel crawlers. Heydon and

Najork describe the software architecture of Atrax the

distributed version of Mercator: a scalable and extensible

web crawler. Crawling is performed by multiple worker

threads. Each thread repeatedly performs the steps needed

to download and process a document. All Mercator threads

are run in a single process. However, Mercator can be

configured as a multi–process distributed systems. In this

configuration, one process is designated the queen, and the

others are drones. Both the queen and the drones run

worker threads, but only the queen runs a background

thread responsible for logging statistics, terminating the

crawl, and initiating checkpoints. Moreover, in its

distributed configuration the state of a Mercator crawl is

fully partitioned across the queen and drone processes;

there is no replication of data. In a distributed crawl, when

a link has been extracted it is checked to see if it is

assigned or not to this process. If not it is routed to the

appropriate peer process. Since about 80% of links are

relative, the vast majority of discovered URLs remain

loyal to the crawling process that discovered them.

Mercator was written in Java, which gives flexibility

through pluggable components but also posed a number of

performance problems that have been addressed by the

authors.

Various challenges are in the development of an effective

Crawler. In particular he had addressed the parallelization

of the Crawling phase. The goal is to propose some

guidelines for crawler designers, helping them selecting

operational parameters like: number of crawling processes,

or inter-process coordination and communication schemes.

The author considers a general architecture of a parallel

crawler as composed by several crawling processes named

C-procs. Each C-proc performs the basic tasks that a

single-process crawler conducts. The C-procs may be

running either on a LAN (Intra-site Parallel Crawler) or on

the Internet [12-15].

The software architecture consists of a number of agents,

each one delegated to deal with a specified portion of the

web domain under investigation. The main components of

the crawler are: the Store that deals with the storage of the

crawled pages and the checking of the duplicates; the

Frontier that retrieves new pages on the basis of the

actually fetched pages; the Controller that serves as crash-

failure detector. The uses of mobile agents are to improve

the performance of Web Optimizations. The performance

gains translate to improved web coverage and freshness of

search results. The proposed approach was consisting of

uploading a software agent to participating servers and

using this agent to collect pages and sending them to the

search engine site. The authors also give explanations of

the security issues related to this approach and show that,

due to its simplicity; their proposal does not introduce new

security concerns. Moreover, security can be enforced by

simple conventional techniques which are computationally

inexpensive [8] and [10].

3.2 Parallel Indexing

Despite their simple structure, the task of building inverted

files for very large text collections such as the Web is very

expensive. Therefore, faster indexing algorithms are

always desirable and the use of parallel or distributed

hardware for generating the index is an obvious solution.

An important feature of the IF index organization is that

indices generated following this can be easily partitioned.

In particular depending on the moment the partitioning

phase is done one can devise two different partitioning

strategies. The first approach requires to horizontally

partition the whole inverted index with respect to the

lexicon, so that each query server stores the inverted lists

associated with only a subset of the index terms. This

method is also known as term partitioning or global

inverted files. The other approach, known as document

partitioning or local inverted files, requires that each query

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.47118 520

server becomes responsible for a disjoint subset of the

whole document collection (vertical partitioning of the

inverted index). Following this last approach the

construction of an IF index become a two-staged process.

In the first stage each index partition is built locally and

independently from a partition of the whole collection.

The second phase is instead very simple, and is needed

only to collect global statistics computed over the whole

IF index [10] and [11] and [12].

3.3 Efficient Query Brokering

Common software architecture for parallel IRSs follows

the Master/Worker model. In this model the Workers are

the actual search module which receive queries from and

return results to the Master that, in this schema, is known

as the Query Broker (QB). Since realistic Web

Optimization usually manage distinct indexes, the only

way to ensure timely and economic retrieval is designing

the QB module so that it forward a given query only to the

workers managing documents related to the query topic.

The Collection Selection techniques play a fundamental

role in the reduction of the search space. Particular

attention should be paid in using this technique since it

could results in a loss of relevant documents thus

obtaining dramatic effectiveness performance

degradations [13] and [15].

3.4 Indexing in Web Optimizations

Several sequential algorithms have been proposed, which

try to well balance the use of core and out-of-core memory

in order to deal with the large amount of input/output data

involved. The Inverted File (IF) index is the data structure

typically adopted for indexing the Web. This is mainly due

to two different reasons. The first is that an IF index

allows the resolution of queries on huge collections of

Web pages to be efficiently managed, and works very well

for common Web queries, consisting of the conjunction of

a few terms. An IF index on a collection of Web pages

consists of several interlinked components. The principal

ones are: the lexicon, i.e. the list of all the index terms

appearing in the collection, and the corresponding set of

inverted lists, where each list is associated with a distinct

term of the lexicon. Each inverted list contains, in turn, a

set of postings. Each posting collects information about

the occurrences of the corresponding term in the

collection‟s documents. For the sake of simplicity, in the

following discussion we will consider that each posting

only includes the identifier of the document where the

term appears, even if postings actually store other

information used for document ranking purposes that

means in our implementation each posting also includes

the positions and the frequency of the term within the

document, and context information like the appearance of

the term within specific html tags. Another important

feature of the IF indexes is that they can be easily

partitioned. In fact, let us consider a typical parallel query

analyzer module: the index can be distributed across the

different nodes of the underlying architecture in order to

enhance the overall system‟s throughput. The two

different partitioning strategies can be devised. The first

approach requires to horizontally partition the whole

inverted index with respect to the lexicon, so that each

query server stores the inverted lists associated with only a

subset of the index terms. This method is also known as

term partitioning or global inverted files. The other

approach, known as document partitioning or local

inverted files, requires that each query server becomes

responsible for a disjoint subset of the whole document

collection (vertical partitioning of the inverted index).

Following this last approach the construction of an IF

index become a two-staged process. In the first stage each

index partition is built locally and independently from a

partition of the whole collection. The second phase is

instead very simple, and is needed only to collect global

statistics computed over the whole IF index [14] and [16].

III. PROPOSED TECHNIQUES

In Web Optimization we can identify three principal

modules: the Spider, the Indexer, and the Query Analyzer.

It can be exploit parallelism in all the three modules. For

the Spider we can use a set of parallel agents which visit

the Web and gather all the documents of interest.

Furthermore, parallelism can be exploited to enhance the

performance of the Indexer, which is responsible for

building an index data structure from the collection of

gathered documents to support efficient search and

retrieval over them. Finally, parallelism and distribution is

crucial to improve the throughput of the Query Analyzer,

which is responsible for accepting user queries, searching

the index for documents matching the query, and returning

the most relevant references to these documents in an

understandable form.

4.1 Indexing in Web Optimizations-

Several sequential algorithms have been proposed, which

try to well balance the use of core and out-of-core memory

in order to deal with the large amount of input/output data

involved. The Inverted File (IF) index is the data structure

typically adopted for indexing the Web. This is mainly due

to two different reasons. The first is that an IF index

allows the resolution of queries on huge collections of

Web pages to be efficiently managed, and works very well

for common Web queries, consisting of the conjunction of

a few terms. Second, an IF index can be easily compressed

to reduce the space occupancy

in order to better exploit the memory hierarchy. An IF

index on a collection of Web pages consists of several

interlinked components.

The principal ones are: the lexicon, i.e. the list of all the

index terms appearing in the collection, and the

corresponding set of inverted lists, where each list is

associated with a distinct term of the lexicon. Each

inverted list of contains, and turn a set of postings. Each

posting collects information about the occurrences of the

corresponding term in the collection‟s documents. For the

sake of simplicity, in the following discussion we will

consider that each posting only includes the identifier of

the document where the term appears, even if postings

actually store other information used for document ranking

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.47118 521

purposes means in our implementation each posting also

includes the positions and the frequency of the term within

the document, and context information like the appearance

of the term within specific html tags.

Another feature of the IF indexes is that they can be easily

partitioned. In fact, let us consider a typical parallel Query

Analyzer module: the index can be distributed across the

different nodes of the underlying architecture in order to

enhance the overall system‟s throughput the number of

queries answered per each second. For this purpose, two

different partitioning strategies can be devised. The first

approach requires to horizontally partition the whole

inverted index with respect to the lexicon, so that each

query server stores the inverted lists associated with only a

subset of the index terms. This method is also known as

term partitioning or global inverted files. The other

approach, known as document partitioning or local

inverted files, requires that each query server becomes

responsible for a disjoint subset of the whole document

collection (vertical partitioning of the inverted index).

Following this last approach the construction of an IF

Index becomes a two-staged process. In the first stage

each index partition is built locally and independently

from a partition of the whole collection. The second phase

is instead very simple, and is needed only to collect global

statistics computed over the whole IF index.

 4.2 We proposed two different assignment schemes:

• Top-down assignment: we start from the collection as a

whole, and we recursively partition it by assigning, at each

level, similar documents to the same partition. At the end

of this partitioning phase a merging phase is performed

until a single and ordered group of documents is obtained.

The assignment function π is then deduced by the ordering

of this last single group. This is the approach also

followed by B&B. Within this scheme we propose two

different algorithms which will be discussed in the

following: TRANSACTIONAL B&B and Bisecting;

• Bottom-up assignment: we start from a flat set of

documents and extract from this set disjoint sequences

containing similar documents. Inside each sequence the

documents are ordered, while we do not make any

assumption on the precedence relation among documents

belonging to different sequences. The assignment function

π in this case is deduced by first considering an arbitrary

ordering of the produced sequences and then the internal

ordering of the sequences themselves. In our case to order

the produced sequences we simply consider the same

order in which the sequences are produced by the

algorithms themselves. Within this approach we propose

two different algorithms: single-pass k-means and k-scan.

4.3 Top-down assignment

Center selection: according to some heuristic H, we

select two (groups of) documents from D which will be

used as partition representatives during the next step;

 Redistribution: according to their similarity to the

centers, we assign each unselected document to one of the

two partitions D‟ and D‟‟. Actually, we adopt a simple

heuristic which consists in assigning exactly | D|/2

documents to each partition in order to equally split the

computational workload among the two partitions;

Recursion: we recursively call the algorithm on the two

resulting partitions until each partition becomes a

singleton;

Margin: the two partitions built at each recursive call

are merged (operator X-OR) bottom-up thus establishing

an ordering (<=) between them. The precedence relation

<= is obtained by comparing the borders of the partitions

to merge (D‟ and „D‟‟) and, according to the distance

measure adopted, we put D‟ before D‟‟ if the similarity

between the last document(s) of D‟ and the first

document(s) of D‟‟ is greater than the similarity computed

by swapping the two partitions. It is also possible to devise

a general cost scheme for such top-down algorithms.

The TRANSACTIONAL B&B algorithm is basically a

porting under our model of the algorithm. It starts by

computing a sampled similarity graph: it chooses a

document out of | D|
p
 (p is the document sampling factor 0

<p < 1) only considering terms appearing in less than

documents. After this reduced similarity graph has been

built, it applies graph partitioning algorithm, which splits

the graph in two equally sized partitions. The algorithm

than proceeds with the redistribution, recursion, and

merging steps of the generic top-down algorithm.

However, since in our model we do not have an IF index

previously built over the document collection, we cannot

know which terms appear in less than documents, and thus

we did not introduce sampling over the maximum term

frequency as in the original implementation.

4.4 Bisecting

The second algorithm we propose is called Bisecting. In

this algorithm we adopt a center selection step which

simply consists of uniformly choosing two random

documents as centers. The cost of the centers selection

step is thus reduced considerably. The algorithm is based

on the simple observation that, since in

TRANSACTIONAL B&B the cost CH may be high, the

only way to reduce it is to choose a low sampling

parameter p, thus selecting at each iteration a very small

number of documents as centers of the partitions. Thus we

thought to just get rid of the first three phases, i.e.

sampling, graph building.

4.5 Bottom-up assignment

These algorithms consider each document of the collection

separately, and proceed by progressively grouping

together similar documents. Our bottom-up algorithms

thus produce a set of non-overlapping sequences of

documents. The two different assignment algorithms

presented here are both inspired by the popular k-means

clustering algorithm:

• A single-pass k-means algorithm;

• K-scan which is based on a centroid search algorithm

which adapts itself to the characteristics of the processed

collection.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.47118 522

4.6 K-means technique

K-means is a popular iterative clustering technique which

defines a Centroid Voronoi Tessellation of the input space.

The k-means algorithm works as follows. It initially

chooses k documents as cluster representatives, and

assigns the remaining |D‟| - k documents to one of these

clusters according to a given similarity metric. New

centroids for the k clusters are then recomputed, and all

the documents are reassigned according to their similarity

with the new k centroids. The algorithm iterates until the

position of the k centroids become stable. The main

strength of this algorithm is the O (|D‟|) space occupancy.

On the other hand, computing the new centroids is

expensive for large values of |D‟|, and the number of

iterations required to converge may be high. The single-

pass k-means consists of just the first pass of this

algorithm where the k centers are chosen using the

technique “Buckshot”. We will not describe here the

Buckshot technique, the only thing to keep into account is

that the complexity of this step do not influence the

theoretical linear performance of k-means which remains

O (k| D‟|). Since the k-means algorithm does not produce

ordered sequences but just clusters, the internal order of

each cluster is given by the insertion order of documents

into each cluster.

The other bottom-up algorithm developed is k-scan. It

resembles to the k-means one. It is, indeed, a simplified

version requiring only k steps. At each step i, the

algorithm selects a document among those not yet

assigned and uses it as centroid for the i-th cluster. Then, it

chooses among the unassigned documents the |D‟|/k - 1

ones most similar to the current centroid and assign them

to the i-th cluster. The time and space complexity is the

same as the single-pass k-means one and produces sets of

ordered sequences of documents. Such ordering is

exploited to assign consecutive DocIDs to consecutive

documents belonging to the same sequence. It takes as

input parameters the set D‟ and the number k of sequences

to create. It outputs the ordered list of all the members of

the k clusters. This list univocally defines π, an assignment

of D‟ minimizing the average value of the d-gaps.

V. RESULTS ANALYSIS

We presented an analysis of several efficient algorithms

for computing approximations of the optimal Doc ID

assignment for a collection of textual documents. We have

proved that our algorithms are a viable way to enhance the

compressibility (up to 26%) of IF indexes. The algorithms

proposed operate following two opposite strategies: a top-

down approach and a bottom-up approach. The first group

includes the algorithms that recursively split the collection

in a way that minimizes the distance of lexicographically

closed documents. The second group contains algorithms

which compute an effective reordering employing linear

space and time complexities. Although our algorithms

obtain gains in compression ratios which are slightly

worse than those obtained by the previous algorithm, their

performance in terms of space and time are instead

remarkably higher. We also wanted a classification of

user. Which identify uses their own web access manner.

We will try to improve accessibility time and provide

better more relevant result according user requirement.

Just for the sake of completeness we must say that the

actual B&B algorithm complexity is higher and this is

mainly due to two reasons. First B&B needs an IF to be

built in order to start its computations. Then it needs to

load the entire IF into main memory before starting the

actual reordering phase.

Figure: The scalability of the B&B algorithm with varying

the size of the collection reordered.

To conclude, the B&B algorithm is very good for

computing an optimal reordering of the document

identifiers in order to reduce the space occupancy of a

compressed IF but, to do so, it must first build a sort of

Inverted List Index before starting. This step should be

avoided in real Web Optimization Systems. The

observations made above may bring us to consider the

problem from another point of view. In fact we would not

start from an already built IF. Instead, we would like to

assign identifiers to documents as they arrive to the

indexers.

 V I. CONCLUSION AND FUTURE WORKS

The design and implementation, as well the analysis, of

efficient, and effective Web Optimizations, are becoming

more and more important as the size of the Web has

continually kept growing. Furthermore, the development

of systems for Web Information Retrieval represents a

very challenging task whose complexity imposes the

knowledge of several concepts coming from many

different areas: databases, parallel computing, artificial

intelligence, statistics, etc. In this paper three important

issues related to Web optimization technology have been

investigated. As future work we plan to test the

performance of our algorithms on some recently proposed

encoding methods. In particular we would like to evaluate

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.47118 523

the method for which we should be able to obtain good at

most relevant results. Furthermore, we will want to

investigate possible adaptations of the algorithms

proposed to collections which change dynamically in the

time.

REFERENCES

[1] Hiroyuki Kawano, “Overview of Mondou Web search engine using
text mining and information visualizing technologies”, IEEE 2001.

[2] Animesh Tripathy, Prashanta K Patra, “A Web Mining Architectural

Model of Distributed Crawler for Internet Searches Using
PageRank Algorithm” IEEE 2008.

[3] Sadegh Kharazmi, Ali Farahmand Nejad, Hassan Abolhassani.”

Freshness of Web Optimizations: Improving Performance of Web
Optimizations Using Data Mining Techniques” IEEE 2009.

[4] Rowena Chau, Chung-Hsing Yeh, “Intelligent Techniques for Global

E-Business Web Portal Development”, Published IEEE
Conference.

[5] Dan Blandford and Guy Blelloch. Index compression through

document reordering. In IEEE, editor, Proceedings of the DATA
COMPRESSION CONFERENCE (DCC‟02). IEEE, 2002.

[6] V. N. Anh and A. Moffat. Index compression using fixed binary

codewords. In K.- D. chewe and H.Williams, editors, Proc. 15th
Australasian Database Conference, Dunedin, New Zealand, January

2004.

[7] M.W. Berry and M. Browne. Understanding Search Engines:
Mathematical Modeling and Text Retrieval. SIAM Book Series:

Software, Environments, and Tools, June 1999.

[8]S. Brin and L. Page. The Anatomy of a Large–Scale Hypertextual
Web Search Engine. In Proceedings of the WWW7 conference /

Computer Networks, volume 1–7, pages 107–117, April 1998.

[9] Soumen Chakrabarti. Mining the Web - Discovering Knowledge from
Hypertext Data. Morgan Kaufmann Publishers, San Francisco,

2003.

[10] Junghoo Cho. Crawling the Web: Discovery and Maintenance of
Large-Scale Web Data. PhD paper, Stanford University, October

2001.

[11] Junghoo Cho and Hector Garcia-Molina. The Evolution of the Web

and Implications for an Incremental Crawler. In The VLDB

Journal, pages 200–209, 2000.

[12] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide–Area Cooperative Storage with CFS. In Proceedings of the

18th ACM Symposium on Operating Systems Principles, October

2001.
[13] P. Elias. Universal codeword sets and representation of the integers.

IEEE Transactions on Information Theory, 21(2):194–203,

February 1975.
[14] T. Feder, R. Motwani, R. Panigrahy, S. Seiden, R. van Stee, and A.

Zhu. Web caching with request reordering. In Proceedings of the

13th Annual Symposium on Discrete Algorithms, pages 104–105,
2002.

[15] Vijay Gupta and Roy Campbell. Internet Search Engine Freshness

by Web Server Help. In Proceedings of the 2001 Symposium on
Applications and the Internet (SAINT 2001). IEEE, 2001.

[16] B.S. Jeong and E. Omiecinski. Inverted File Partitioning Schemes in

Multiple Disk Systems. IEEE Transactions on Parallel and
Distributed Systems, (2), February 1995.

