
 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4760 263

A Study on Market Basket Analysis using
Data-set Condensing and Intersection Pruning

Mr.Murlidher Mourya
1
, Mr. J. Phani Prasad

2

Assistant Professor, CSE, Vardhaman College of Engineering, Shamshabad, Telangana
1,2

Abstract: Mining of frequent item sets is one of the most fundamental problems in data mining applications. A typical

example is Market Basket analysis. In this method or approach it examines the buying habits of the customers by

identifying the frequent items purchased by the customers in their baskets. This helps to increase in the sales of a

particular product. This paper mainly focuses on the study of the existing data mining algorithm for Market Basket

data. DCIP algorithm uses data-set condensing and intersection pruning to find the maximal frequent item set. The

condensing process is performed by deleting items in infrequent 1-itemset and merging duplicate transactions

repeatedly; the pruning process is performed by generating intersections of transactions and deleting unneeded subsets

recursively. This algorithm differs from all classical maximal frequent item set discovering algorithms; experiments

show that this algorithm is valid with moderate efficiency; it is also easy to code for use in KDD applications.

Keywords: Association Rule Mining, Market Basket Analysis, Mining frequent item sets, intersection pruning, and

data-set condensing.

I. INTRODUCTION
 Association rules can be mined and this process
of mining the association rules is one of the most
important and powerful aspect of data mining. One of the
main criteria of ARM is to find the relationship among
various items in a database. An association rule is of the
form A→B where A is the antecedent and B is the
Consequent. and here A and B are item sets and the
underlying rule says us purchased by the customers who
purchase A are likely to purchase B with a probability
percentage factor as %C where C is known as confidence
such a rule is as follows:
“Seventy per cent of people who purchase beer will also
like to purchase diapers” This helps the shop managers to
study the behavior or buying habits of the customers to
increase the sales. Based on this study items that are
regularly purchased by the customers are put under closed
proximity. For example persons who purchase milk will
also likely to purchase Bread.
The interestingness measures like support and confidence
also plays a vital role in the association analysis. The
support is defined as percentage of transactions that
contained in the rule and is given by Support = (# of
transactions involving A and B) / (total number of
transactions). The other factor is confidence it is the
percentage of transactions that contain B if they contain A
Confidence = Probability (B if A) = P (B/A)

Confidence = (# of transactions involving A and B) /
(total number of transactions that have A).
Consider the following example as

Customer
Item

Purchased
Item

Purchased

1 Burger Coke

2 puff Mineral water

3 Burger Mineral water

4 Puff Tea

If A is “purchased Burger “and B is “purchased mineral
water” then

Support=P (A and B) =1/4
Confidence=P (B/A) =1/2

Item sets that satisfy minimum support and minimum
confidence are called strong association rules.

II. RELATED WORK

PRELIMINARIES

First we provide some useful definitions
Let product set {puff, tea, soda, pizza, beer, burger,
mineral water ,salad, coke, ice-cream} are represented as
{I1,I2,I3,I4.I5,I6,I7,I8,I9,I10} respectively.

Boolean database
Let D = {t1 . . . tN} be a collection of Boolean tuples over
the product={a1 . . . aM}, where each tuple t is a bit-vector
where a 0 implies the absence of a product in the basket
and a 1 implies the presence of a product in the basket.

Table 1: Database

ID Items

01 I1, I2, I4, I5, I7

02 I1, I2, I5, I6, I7

03 I10, I3, I5, I7

04 I10, I3, I8

05 I1, I2, I3, I4, I7

06 I2, I3, I7, I8

07 I3, I6, I9

08 I1, I3, I5, I9

09 I1, I2, I6

10 I3, I4, I8, I9

III. PROPOSED TECHNIQUE: DCIP ALGORITHM

The first step of DCIP algorithm is to reduce the length of

itemsets and the volume of data-set.

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4760 264

According to Lemma 1, any maximal frequent itemset is

also a maximal frequent itemset corresponding to one

transaction in D, so find all maximal frequent itemsets

correspond to every transaction through intersection

pruning, merge them into one set (denoted as FS

hereinafter), then delete all infrequent maximal itemset in

FS, and the remaining set is maximal frequent itemset. The

two main processes are described as follows.

A. Condensing the Data-set
This process first sorts the data-set with descending order
according to the length of its itemsets, then moves those
high-dimensional transactions whose support are bigger
than minimal support threshold to a frequent itemset, and
deletes all subsets of those transactions to condense the
data-set. These steps are as follows:
Step 1: Scan the data-set, finding all frequent 1-itemset;
Step 2: Scan the data-set, deleting all items infrequent 1-

itemset from all transactions; then add up identical
transactions(i.e., if transaction T1=T2, let support(T1)
=support(T1) + support(T2), and delete T2 from data-
sets). Sorting the data-set descendingly according to the
length of itemsets to form a new data-set which we
denote as C;

Step 3: Process every transaction Ti in C whose support
are bigger than minimal support threshold: move
Ti to FS and delete all Tj (Tj ⊂Ti, j>i);

Step 4: Delete non-MFI from FS;

Step 5: End.

B. Intersection Pruning
Any maximal frequent itemset is also the maximal
frequent itemset corresponding to a certain transaction in
D; merge all maximal frequent itemset corresponding to
every transaction into one set (which we denote as FS),

then delete all non-frequent maximal itemsets in FS, and
the remaining set is the maximal frequent itemset. These
steps are as follows:
Assume we have a data-set denoted as D, and the minimal
support threshold is S.
Step 1: Condense data-set D using the method described in

3.1; if |D|<S, terminate the processing for the current
data-set;

Step 2: Find intersection of T1 and Ti(1<i≤n); merge all

intersections into a new data-set D1; establish the

vertical data format of D; delete transaction Ti (Ti ⊂T1);

if |D1| ≥ S, then go to step 1 to perform another

intersection pruning circle for D1;
Step 3: Use the vertical data format of D to find the

intersection of Tj and Ti (j=2, 3, 4, ..., m<n; j<i≤n),

merge all intersections into a new data-set D1, go to step

1 to perform another intersection pruning circle for D1;

when the volume of the remaining data-set is less than

S, stop finding intersections of Tj and Ti, terminate the

process for current data-set.
Step 4: End;

Note: Data-set condensing can be performed at the
beginning of the intersection pruning process, as well as in
the process of step 3.

C. Instance Analysis
The following example shows how to discover MFI using

DCIP for transaction database D (Table I) with minimum
support threshold as 4 (i.e., minsup=4).

TABLE I: TRANSACTION DATA-SET D

TID Items

01 I1, I2, I4, I5, I7

02 I1, I2, I5, I6, I7

03 I10, I3, I5, I7

04 I10, I3, I8

05 I1, I2, I3, I4, I7

06 I2, I3, I7, I8

07 I3, I6, I9

08 I1, I3, I5, I9

09 I1, I2, I6

10 I3, I4, I8, I9

Step 1: Condense transaction data-set D using the method
in 3.1, the result is shown in Table II;

TABLE II: RESULT OF CONDENSED D

TID Items Count del

1 I1,I2,I5,I7 2

2 I1,I2,I3,I7 1

3 I3,I5,I7 1

4 I2,I3,I7 1 1

5 I1,I3,I5 1

6 I1,I2 1 1

Attribute Count is the count of corresponding transactions;
attribute del indicate whether the corresponding
transaction can be ignored in later processing, for
example, after step 2, T6 can be ignored.
Step 2: Find intersections of T1 and T i (i=2, 3... 7), merge
all intersections into data-set D1, as shown in Table III:

TABLE III: INTERSECTION DATA-SET FOR T1 IN TABLE II

TID items Count del

1 I1,I2,I7 1(+2)

2 I5,I7 1(+2)

3 I2,I7 1(+2) 1

4 I1,I5 1(+2)

5 I1,I2 1(+2) 1

Establish vertical data format for D; because in Table II,

T6 ⊂ T1, T6.del=1 (see Table II) . The (+2) for attribute

Count in table III is the count of T1 in Table II.

Step 3: Condense the data-sets in Table III; as this
example, the result remains no change.

Step 4: Find intersections of T1 and Ti (i=2, 3, 4, 5) in
Table III respectively, merge them into a new data-set D1,
as shown in Table IV.

TABLE IV: INTERSECTION DATA-SET FOR T1 IN TABLE III

TID items Count del

1 I2,I7 1(+2+1)

2 I1,I2 1(+2+1)

Because T3 and T5 are subset of T1 in Table III, delete T3

and T5;

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4760 265

Step 5: Condense the data-set in Table IV, produce

frequent itemset {{I2, I7}:4, {I1, I2}:4}; Table IV is now

empty after condensing;

Step 6: Back to Table III, T3 and T5 has been deleted, we

only need to find the intersection of T2 and T4; but the

length of T2 and T4 are both 2, no need to find intersection

of them.

Step 7: Back to Table II, because T6 has been deleted, we

only need to find the intersections of T2 and Ti (i=3, 4, 5);

merge all intersections into a new data-set D1, as shown in

Table V.

TABLE V: INTERSECTION DATA-SET FOR T2 IN TABLE 2

TID items Count del

1 I3,I7 1(+1)

2 I2,I3,I7 1(+1)

3 I1,I3 1(+1)

Because T4 ⊂ T2 in Table II, it should be deleted.

Step 8: Condense the data-set in Table V; after
Condensing the result is empty;

Step 9: The original data- set D has 10 transactions; Table
II shows that 30% (3 transactions) of them has been
processed; condense again the remaining data-set in Table
II, and the result is empty. The process ends.

Step 10: Merge all resulting frequent item sets, and delete
all non-frequent maximal item sets, the final result of MFI
is {{I2, I7}: 4, {I1, I2}: 4}.

The steps above use 14 times of intersection calculations
for MFI; compared with other Apriori-like algorithms, its
simplicity and efficiency is explicit.
Note: Because the volume of the example data-set D is
small (only 10), the above process does not include the
utilizing of vertical data format; the reason of introducing
vertical data format is to reduce the number of times of
finding the intersections.

IV. PERFORMANCE STUDY

If the length of the longest transaction item set is L, the

depth of recursive calling of the algorithm itself is less

than L-2. The number of calculations for intersections is

negatively correlated with support, number of deleted

transactions, and number of duplicated transactions. This

algorithm can also be implemented parallels for each

transaction's maximal frequent itemset to get more

efficiency. It is valid for both long and short frequent

pattern mining applications; for vast volume of data-set, its

usability retains because of the time & space cost increases

not very drastically.
Another advantage of DCIP algorithm is its easy

implementation. It is coded and tested using PowerBuilder

script language on a microcomputer with Pentium

IV/1.80GHz CPU, 512M memory running Windows XP

operation system. Testing dataset is extracted from a

supermarket's sales record.3000, 5000, 10000 and 20000

transactions are tested respectively with each record

having 2-10 categories of commodity (the average number

of categories is 6). Figure 1 shows the running time for

different volume of datasets with minimum support

threshold of 5%, 20% and 50%respectively. The bigger

minimum support threshold, the lesser time needed for

MFI.

Figure 1:Performance test for multiple data-set &supports

V. CONCLUSION

DCIP provides a new and efficient algorithm for

discovering MFI; it condenses data-set by deleting items in

infrequent 1-itemsets and merging duplicate transactions

repeatedly, and utilizes the intersections of (1-s)*|D|+1

transactions with other transaction item sets to perform

pruning; along with the discovering process, with the

increasing of the number of deleted transactions, the

number of times needed for calculating intersections will

decrease rapidly. It's time & space cost increases not

drastically when data-set volume increases, so its usability

retains for MFI applications for high volume data-sets.
The DCIP algorithm can be further optimized in various
aspects, such as keep a record of all resulting intersections
to avoid duplicated generation of identical intersections to
further improve the efficiency of this algorithm. While the
problems considered in this paper are novel and important
to the area of ad hoc data exploration and retrieval, we
observe that our specific problem definition does have
limitations. After all, a query log is only an approximate
surrogate of real user preferences, and moreover, in some
applications neither the database, nor the query log may be
available for analysis; thus, we have to make assumptions
about the nature of the competition as well as about the
user preferences.

REFERENCES
[1]D. Burdick, M. Calimlim, and J. Gehrke (2001)“MAFIA: A Maximal

Frequent Item Set Algorithm for Transactional Databases,”

Proc. Int’l Conf. Data Eng. (ICDE), 2001.
[2]M.R. Garey and D.S. Johnson (1979), “Computers and

Intractability:A Guide to the Theory of NP-Completeness”.

[3]W Yanthy, T. Sekiya, K. Yamaguchi , “Mining Interesting Rules by

association and Classification Algorithms”, FCST 09.

[4]Chiu, K.S.Y., Luk, R.W.P, Chan, K.C.C., and Chung, K.F.L, “Market-

basket Analysis with Principal Component Analysis:An
Exploration”, IEEE International Conference on Systems, Man and

Cybernetics, Vol.3, 2002.

[5]Cunningham , S.J. and Frank, E., “Market Basket Analysis of Library
Circulation Data”, International Conference on Neural Information

Processing, Vol.2. 1999.

