
           ISSN (Online) 2278-1021 
ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 6, June 2015 
 

Copyright to IJARCCE                                                             DOI 10.17148/IJARCCE.2015.46112                                               518 

High Capacity Data Embedding in Image 

Steganography using Hard Sudoku puzzle 
 

Usha B A
1
, Dr N K Srinath

2
, Anvith E

3
 

Assistant Professor, Department of CSE, R.V.C.E, Bangalore
1 

Professor and Dean, Department of CSE, R.V.C.E, Bangalore
2 

B.E, 8th Semester, Department of CSE, R.V.C.E, Bangalore
3 

   
Abstract: The practice of concealing a file, message, image, audio or any other media in another file, image, audio or 

video in such a way that only the sender and receiver know about the message being transmitted is called 

steganography. In this paper, first an enhancement is proposed to the work of Sanmitra Ijeri et al. wherein a hard 

sudoku is used instead of a soft sudoku. The embedding and extraction algorithms are generalized to work with any 

NxN sudoku where N is a perfect square. A comparison is then made between the hard and soft sudoku techniques. A 

study is also performed to compare parameters such as PSNR and payload capacity for different sudoku sizes. 
 

Keywords: Image steganography, Cover Image, Stego Image, Hard Sudoku, Reference Matrix, Pixel, PSNR 

 
1. INTRODUCTION 

Security of information is a vital aspect for most 

communication mediums today. Encryption, which is the 

process of converting messages that need to be transmitted 

securely to a format that can only be understood by 

authorised parties, plays an important role in the secure 

transmission of data. However, the fact that a message is 

in fact being sent is not hidden in the case of encrypted 

communication. Encrypted messages, no matter how 

unbreakable, arouse interest if they are plainly visible. The 

practice of concealing a file, message, image, audio or any 

other media in another file, image, audio or video is called 

steganography. Encryption deals with only the protection 

of data whereas steganography is concerned with 

concealing the fact that a message is even being sent in the 

first place, along with protecting the contents of the 

message being sent. The two techniques can even be 

combined by sending encrypted data using steganographic 

means. The use of images as a medium to conceal other 

forms of data is called image steganography. A technique 

that uses a Sudoku for embedding secret data in images is 

discussed in this report. Roshan Shetty B R et al. [1], 

whose work was inspired by C. Chang et al. [2], made use 

of the red and green components of a 24-bit RGB image to 

store secret data. Data embedding and extraction was done 

with the help of a 27x27 reference matrix that was 

constructed by repeating a 9x9 sudoku 9 times. The 

embedding capacity was 3 bits per pixel. Sanmitra Ijeri et 

al. [3] proposed a revised version of Roshan Shetty B R et 

al. [1], where the red, green and blue components of the 

cover image is used. The embedding capacity was 

increased to 4.5 bits per pixel. The reference matrix used 

here was 9x9. Before sending data compression and 

encryption was used so that more, and various forms of 

digital data could be securely embedded in the cover 

image. 

Embedding capacity per pixel, visual quality and security 

are three important factors that are used to judge an image  

 

steganography technique. The work covered in this report 

seeks to further build upon the embedding capacity and 

security of Sanmitra Ijeri et al. [3], discussed in section 2, 

while maintaining the visual quality above permissible 

levels. Embedding capacity is improved by generalising 

the previous algorithm to work for any NxN reference 

matrix where N is a perfect square, and this is covered in 

section 3. The embedding capacity increases to 6 bits per 

pixel for a 16x16 reference matrix, 7.5 bits per pixel for a 

25x25 reference matrix, and so on. However, as 

embedding capacity increases, the visual quality of the 

image comes down. Depending on the type of application 

a balance needs to be found between embedding capacity 

and visual quality. Sanmitra Ijeri et al. [3] relied on the 

transmission of a completely solved sudoku from the 

sender to the receiver. If this reference matrix was 

intercepted by a third party, they could go on and extract 

the secret data from the cover image. The security of this 

process is improved here by sending an unsolved and 

almost empty sudoku from the sender to the receiver. This 

is also covered in section 3. Section 4 compares the 

security of this system with the previous one, and section 5 

compares other factors such as PSNR and payload 

capacity for different sudoku sizes. 

 

2. PREVIOUS WORK 
Here we discuss the soft sudoku image steganography 

technique used by Sanmitra Ijeri et al. [3]. The sender uses 

a random completely filled sudoku, referred to as a soft 

sudoku, for embedding the data in a cover image. The 

hidden data to be sent is compressed and encrypted before 

starting the data embedding procedure. Once data 

embedding is complete, the cover image containing the 

hidden data is sent to the receiver. However, the receiver 

also requires the reference 9x9 sudoku used during the 

embedding procedure to extract the data from the cover 

image. For this purpose, the complete 9x9 soft sudoku is 

encrypted and sent separately by the sender to the receiver 



           ISSN (Online) 2278-1021 
ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 6, June 2015 
 

Copyright to IJARCCE                                                             DOI 10.17148/IJARCCE.2015.46112                                               519 

by embedding it using LSB technique in another cover 

image. The receiver extracts the sudoku, decrypts it, and 

uses it to extract data from the cover image containing the 

hidden data. This data is then decrypted to obtain the 

original image.    
 

2.1 Data Embedding Procedure 

First a completely filled 9x9 sudoku is selected as a 

reference matrix. Each element in the matrix is subtracted 

by 1, as the data to be sent is in Base-9, i.e., between 0 and 

8. Next, a cover image to be used for hiding the data is 

picked. The data to be sent is compressed and encrypted. 

The encrypted data is converted to a stream of Base-9 

numbers S1, S2, S3, etc. Two pixels from the cover image 

are chosen and the RGB components are paired as follows: 

C1(R1,G1), C2(B1, R2), C3(G2, B2). This can be 

generalised as Ci(x, y). Pi(x, y) is computed as shown 

below: 
 

Pi.x = Ci.x % 9; Pi.y = Ci.y % 9 
 

The 9x9 reference matrix is considered to be an XY grid 

with 0,0 pointing to the top left element and 8,8 referring 

to the bottom right element. Therefore (Pi.x, Pi.y) refer to 

an element in the matrix. The data to be embedded is Si. 

The minimum change in Pi.x and Pi.y such that they point 

to the element Si needs to be found. Suppose Pi.x = 6, Pi.y 

= 4 and Si = 8 as shown in figure 2.1. (Pi.x, Pi.y) refers to 

the element 4 in the figure. First the column Pi.x is taken 

with the element 4 in the centre  by rotating the column in 

cyclic fashion to obtain ‘0 6 7 8 4 5 2 1 3’. The change 

required in Pi.y is -1 to make (Pi.x, Pi.y) point to 8. Next 

the row Pi.y is considered. Again, the element 4 is brought 

to the centre and we have ‘7 2 5 1 4 6 3 8 0’. Here, a 

change of 3 is required in Pi.x in order  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Data Embedding Procedure[3] 

for the coordinates (Pi.x, Pi.y) to refer to 8. Lastly, the 3x3 

sub-matrix is analysed. Here, Pi.x and Pi.y need to be 

changed by 3 each leading to a total resultant change of 6 

in order for (Pi.x, Pi.y) to refer to 8. From these 3 

scenarios, the one requiring the least total absolute change 

in Pi.x and Pi.y is selected and the values of Pi.x and Pi.y 

are changed accordingly so that they point to the element 

containing the serial data Si to be embedded. This entire 

process is repeated for all 3 pairs obtained by taking 2 

pixels at a time from the cover image and pairing the RGB 

components, till no more data is left to embed. The first 10 

pixels in the image are used to store the total length of the 

data that is embedded in the image. 
 

2.2 Data Extraction Procedure 

The receiver first needs to obtain the encrypted sudoku 

from the sender via another cover image. Once the sudoku 

has been received and decrypted, it is used as the 9x9 

reference matrix. This reference matrix needs to be the 

same as the one used while embedding the data at the 

sender end. Two pixels from the cover image with hidden 

data are chosen and the RGB components are paired as 

follows: C1(R1,G1), C2(B1, R2), C3(G2, B2). This can be 

generalised as Ci(x, y). Pi(x, y) is computed as shown 

below: 
 

Pi.x = Ci.x % 9; Pi.y = Ci.y % 9 
 

The 9x9 reference matrix is considered to be an XY grid 

with 0,0 pointing to the top left element and 8,8 referring 

to the bottom right element. Therefore (Pi.x, Pi.y) refer to 

an element in the matrix. This element is the hidden data 

element Si. The process is repeated for all 3 pairs obtained 

by taking 2 pixels at a time from the cover image and 

pairing the RGB components. The length of data to be 

extracted is stored in the first 10 pixels of the cover image. 

 

3. ENHANCEMENTS 

The work that was detailed in section 2 is extended in this 

paper by generalising the algorithm to be used with a NxN 

reference matrix. Also, the soft sudoku sent from the 

sender to receiver in the previous case is replaced by a 

hard sudoku, i.e, one that is partially filled. 
 

First, the sender uses the sudoku generation algorithm to 

generate a NxN sudoku that has only N elements filled in. 

It then feeds this hard sudoku to a sudoku solver that 

completes the NxN sudoku based on a seed value. The 

seed value can be any arbitrarily selected number, the 

creation time of the selected cover image for data hiding in 

milliseconds, the time in milliseconds for 12pm on the day 

the cover image is to be sent to receiver, or any other 

value. The NxN sudoku fed to the sudoku solver has only 

N elements filled in, due to which it has multiple 

solutions. The solution that is picked depends on the seed 

value chosen. Once the complete NxN sudoku is obtained, 

the sender uses this as a reference matrix to embed the 

required data onto the cover image selected. The data is 

compressed, encrypted and converted to a serial stream of 

Base-N numbers prior to embedding. Once embedding is 

complete, the cover image is sent to the receiver. The 

sender also needs to send the partially filled NxN hard 

sudoku to the receiver. This can be sent as an 

inconspicuous puzzle through a mail, or by encrypting and 

embedding it in a separate cover image like was the case 

in section 2. The receiver also needs to be made aware of 

the seed value used by the sender. If the seed value is a 

predetermined dynamic value such as the creation time of 

the cover image, it does not need to be explicitly 

communicated. The receiver extracts and decrypts the 

NxN sudoku that it receives from the sender and feeds it 

 



           ISSN (Online) 2278-1021 
ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 6, June 2015 
 

Copyright to IJARCCE                                                             DOI 10.17148/IJARCCE.2015.46112                                               520 

into the same sudoku solver algorithm as was used by the 

sender, along with the seed value. The output NxN 

complete sudoku obtained is used as a reference matrix by 

the receiver to extract data from the cover image. The 

extracted data is decrypted to obtain the original message. 

In the following sub sections, the algorithms for sudoku 

generation, sudoku solving, data embedding and data 

extraction are detailed. 
 

3.1    SUDOKU Generation and Solver Algorithm 

The generation phase uses back tracking to obtain a 

completely filled sudoku. It uses the  system time at which 

it is executed as the seed value. It starts with the first cell. 

For the current cell being filled by the algorithm, the 

procedure is as follows: 

 A random number between 0 and N-1 which hasn’t been 

tried yet for this cell is selected and placed in the cell 

and the number is marked as tried.  If no numbers are 

left to try, the algorithm clears all data associated with 

the present cell and moves back 1 cell. Step 1 is 

repeated.  

 The sudoku is then validated by checking the row, 

column and box containing the current cell to see if the 

number that was filled into the cell is already present. 

 If the sudoku is in a valid state, the algorithm moves to 

the next cell and starts again from step 1. 

 If it is in an invalid state, the algorithm moves back to 

step 1 for the same cell. 

 The process stops once the entire sudoku is filled, and is 

in a valid state. 
 

After a complete NxN sudoku is generated, all but N 

elements are randomly removed from the sudoku. 
 

The solver phase uses the same approach as the generation 

phase above to fill the sudoku. The only difference is that 

the cells that are already filled in the input are skipped by 

the algorithm, and the seed value to be used is given by the 

user. It is assumed that the pseudo random number 

generator function used gives the same sequence of 

random numbers for a given seed value. This is true for 

the ‘rand’ function available in the ‘stdlib’ header file for 

C and C++ programs. The pseudo code for this algorithm 

is given below, where ‘rand’ refers to the pseudo random 

number generator: 
 

sudoku -> NxN array initialised to 0 if generating new 

sudoku, else contains the sudoku to be solved. 

tried -> NxNxN array initialised to 0. tried(x,y,0) set to -1 

for any sudoku(x, y) not equal to 0. 
 

i = 0 

j = 0 

flag = 1 

backTracking = 0 

set seedValue to current time if generating new sudoku, 

else input from user 

while (i < N) 

 if (flag) 

             r = (rand() mod N) + 1 

         if (tried[i][j][0] EQUALS -1) 

          if (backTracking EQUALS 1) 

              if (j EQUALS 0) 

                   j = N - 1 

                       i = i - 1 

                  else 

                       j = j - 1 

   end if 

   flag = 1 

              continue to next iteration 

  end if 

         else if (tried[i][j][r] EQUALS 0) 

          tried[i][j][r] = 1 

             if (r is can be placed at position i,j in sudoku) 

                  sudoku[i][j] = r 

             else 

              flag = 1; 

                  continue to next iteration 

  end if 

         else if (tried[i][j][r] EQUALS 1) 

  if (tried array is checked and a number is 

yet to be tried for position i,j) 

   if(r EQUALS N) 

                       r = 1 

                  else 

                       r = r+1 

   end if 

                  flag = 0 

                  continue 

             else 

              backTracking = 1 

   clear tried array for i,j 

                  sudoku[i][j] = 0 

                  if(j EQUALS 0) 

                  j = N-1 

                       i = i-1 

                 else 

                       j = j-1 

                  end if 

   flag = 1 

                  continue 

  end if 

 end if            

 backTracking = 0 

         if(j EQUALS (N-1)) 

          j = 0 

             i = i+1 

        else 

             j = j+1 

 end if 

 flag = 1 

end while 

 

The above algorithm is only to give the reader an idea as 

to how the same sudoku solution can be generated for a 

given input sudoku with multiple solutions and a given 

seed value. Since a sudoku solver is not the primary aim of 

this report, the efficiency of the algorithm was not of 

concern. By using standard sudoku solving techniques, the 

algorithm efficiency can be greatly improved for large 

values of N such as 25 and above. The above algorithm 

performs satisfactorily for a 4x4, 9x9 and 16x16 sudoku. 

 



           ISSN (Online) 2278-1021 
ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 6, June 2015 
 

Copyright to IJARCCE                                                             DOI 10.17148/IJARCCE.2015.46112                                               521 

3.2    Data Embedding Algorithm 

Once a completely filled NxN sudoku is obtained from the 

sudoku solver algorithm, it is used as a reference matrix. 

Each element in the matrix is subtracted by 1, as the data 

to be sent is in Base-N, i.e., between 0 and N-1. Next, a 

cover image to be used for hiding the data is picked. The 

data to be sent is compressed and encrypted. The 

encrypted data is converted to a stream of Base-N numbers 

S1, S2, S3, etc. Two pixels from the cover image are 

chosen and the RGB components are paired as follows: 

C1(R1,G1), C2(B1, R2), C3(G2, B2). This can be 

generalised as Ci(x, y). Pi(x, y) is computed as shown 

below: 

 

Pi.x = Ci.x % N; Pi.y = Ci.y % N 

 

The NxN reference matrix is considered to be an XY grid 

with 0,0 pointing to the top left element and N-1,N-1 

referring to the bottom right element. Therefore (Pi.x, 

Pi.y) refer to an element in the matrix at position (x,y). 

The data to be embedded is Si. The minimum change in 

Pi.x and Pi.y such that they point to the element Si needs 

to be found. First the column Pi.x is taken into 

consideration, and the position of Si is found. Then, the 

minimum change required in Ci.y to make (Pi.x,Pi.y) point 

to Si is computed and stored as D1. Next the row Pi.y is 

considered. Again, the minimum change required in Ci.x 

to make (Pi.x,Pi.y) point to Si is computed and stored as 

D2. Lastly, the 3x3 sub-matrix is analysed. Here, change 

in Ci.x and Ci.y in order for (Pi.x, Pi.y) to refer to Si is 

computed and the total change required stored as D3x + 

D3y = D3. From these 3 scenarios, the one requiring the 

least total absolute change in Ci.x and Ci.y is selected and 

the values of Ci.x and Ci.y are changed accordingly so that 

they point to the element containing the serial data Si to be 

embedded. This entire process is repeated for all 3 pairs 

C1, C2 and C3 obtained by taking 2 pixels at a time from 

the cover image and pairing the RGB components, till no 

more data is left to embed. The first 10 pixels in the image 

are used to store the total length of the data that is 

embedded in the image. 

 

Pseudo code for finding change required in column Pi.x: 

 

FOR i from 0 to N in steps of 1 DO 

 if (sudoku(Pi.x, i) EQUALS Si) 

  D1 = i 

  break out of loop 

 end if 

end for 

D1 = D1 - Pi.x 

 

if ( |D1| > (N - |D1|) ) 

 D1 = (N - |D1|) * (-D1/|D1|) 

end if 

 

Note - Suppose Ci.x is 28 and N = 9. Pi.x (= 28 mod 9) = 

1. If Pi.x needs to be changed to 8, we can increase Ci.x by 

7 to 35. Now Pi.x (= 35 mod 9) = 8. Or we can decrease 

Ci.x by (9 - 7 =) 2 to 26. Even now, Pi.x (= 26 mod 9) = 8. 

However, the distortion in pixel value will be less if the 

change is less in this case. The above if condition makes 

use of this property of the mod operator to ensure that the 

value of the pixel is changed by the minimum amount 

required. 

 

Pseudo code for finding change required in row Pi.y: 

 

FOR i from 0 to N in steps of 1 DO 

 if (sudoku(i, Pi.y) EQUALS Si) 

  D2 = i 

  break out of loop 

 end if 

end for 

D2 = D2 - Pi.y 

 

if ( |D2| > (N - |D2|) ) 

 D2 = (N - |D2|) * (-D2/|D2|) 

end if 

 

Note - Same reason as that stated above. 

 

Pseudo code for finding change required in box 

containing (Pi.x, Pi.y): 

 

boxX1 = x-lower bound of box 

boxY1 = y-lower bound of box 

boxX2 = x-upper bound of box 

boxY2 = y-upper bound of box 

FOR i from boxX1 to boxX2 in steps of 1 DO 

 FOR j from boxY1 to boxY2 in steps of 1 DO 

  if (sudoku(i, j) EQUALS Si) 

   D3x = i 

   D3y = j 

   break out of both loops 

  end if 

 end for 

end for 

D3x = D3x - Pi.x 

D3y = D3y - Pi.y 

D3 = |D3x| + |D3y| 
 

3.3    Data Extraction Procedure 

The receiver passes the hard NxN sudoku it gets from the 

sender, along with the seed value obtained from the 

sender, to the sudoku solver algorithm. The sudoku solver 

algorithm selects one of the multiple solutions for the hard 

sudoku based on the seed value. This solution is used as 

the NxN reference matrix for extraction of data. This 

reference matrix is the same as the one used while 

embedding the data at the sender end. Two pixels from the 

cover image with hidden data are chosen and the RGB 

components are paired as follows: C1(R1,G1), C2(B1, 

R2), C3(G2, B2). This can be generalised as Ci(x, y). Pi(x, 

y) is computed as shown below: 

 

Pi.x = Ci.x % N; Pi.y = Ci.y % N 



           ISSN (Online) 2278-1021 
ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 6, June 2015 
 

Copyright to IJARCCE                                                             DOI 10.17148/IJARCCE.2015.46112                                               522 

The NxN reference matrix is considered to be an XY grid 

with 0,0 pointing to the top left element and N-1,N-1 

referring to the bottom right element. Therefore (Pi.x, 

Pi.y) refers to an element in the matrix. This element is the 

hidden data element Si. The process is repeated for all 3 

pairs C1, C2 and C3 obtained by taking 2 pixels at a time 

from the cover image and pairing the RGB components. 

The first 10 pixels of the cover image represent the length 

of data stored in the image. 

 

4. SECURITY COMPARISON 

Improvement in the security of image steganography using 

hard sudoku as opposed to the same using soft sudoku is 

discussed here. A sudoku which is not completely filled is 

called a hard sudoku. Soft sudoku is a sudoku in which all 

the cells are filled with a number. 

 

In the work by Sanmitra Ijeri et. al. [3], an image 

containing a completely solved sudoku or soft sudoku, 

which is to be used as reference matrix by the receiver, is 

sent along with the cover image containing the secret data. 

If a third party looking for secret data in images comes 

across this completely solved sudoku, it may raise 

suspicion. The third party may then proceed to analyse the 

image containing the secret data, and successfully extract 

the embedded data from it using the complete sudoku in 

their possession as the reference matrix. 

 

Now the hard sudoku image steganography technique 

proposed in this report is considered. Here, on the senders 

end, a sudoku generation algorithm is used to generate a 

random fully solved NxN sudoku, S. All but N numbers in 

the sudoku are then removed and we get an unsolved 

sudoku or hard sudoku S2. Since only N numbers are 

filled in S2, it will always have multiple solutions. A 

sudoku solver algorithm is now used to solve this sudoku, 

based on a seed value. The seed value is a predetermined 

value such as the creation time of the cover image. 

Depending on the seed value,  one of the many solutions 

of S2 is picked. Let the solution picked be S3. Unlike in 

the case of Sanmitra Ijeri et. al. [3], the complete sudoku 

S3 is not sent to the receiver. Instead the hard sudoku S2 is 

sent. This can be sent inconspicuously, as a daily email 

claiming to contain just another sudoku puzzle for the day, 

or by embedding in another image like was done by 

Sanmitra Ijeri et. al. [3]. Since the seed value is 

predetermined to be something like the creation time of 

the cover image, or the time the email is received, it need 

not be communicated every time. The receiver takes the 

sudoku S2 and runs in through the same sudoku solver 

algorithm that was used on the sender side, using the seed 

value that was either predetermined or communicated to 

the receiver. The solver generates the same sudoku S3 that 

the sender had used as reference matrix for embedding 

secret data. This sudoku is then used to extract data from 

the cover image. 

 

Therefore, one must possess the unsolved sudoku S2, the 

seed value, and the sudoku solver algorithm used by the 

sender in order to be able to generate the required sudoku 

S3 and extract the embedded data from the cover image. 

Sending this sudoku from sender to receiver can also be 

done in as inconspicuous way, as it looks only like a 

sudoku puzzle that the sender wants to share with the 

receiver. Thus the overall security of the image 

steganography technique using sudoku is improved. 

 

5. COMPARISON BETWEEN DIFFERENT 

SUDOKU SIZES 

Here, the generalised image steganography using NxN 

sudoku is analysed for different values of N. The payload 

capacity, execution time, and distortion in cover image is 

compared for 4x4, 9x9, 16x16 and 25x25 reference 

sudoku matrices. As the secret data to be sent is 

compressed and encrypted just like is done in the case of 

Sanmitra Ijeri et. al. [3], the data is made more secured 

and also the overall size of the data is reduced. This 

compressed data is then converted to a serial sequence of 

Base-N numbers, i.e., numbers between 0 and N-1, by 

taking √N bits at a time. This sequence is of the form S1, 

S2, S3, etc. 

 

5.1 Payload Capacity 

For every two pixels, we get 3 pairs of RGB components 

that can be used for embedding data. Therefore 3 numbers 

from the serial sequence of data to be hidden can be 

embedded for every two pixels. In other words, the 

payload capacity is 1.5 Base-N numbers per pixel. This 

translates to 3, 4.5, 6 and 7.5 bits per pixel for a 4x4, 9x9, 

16x16 and 25x25 reference sudoku respectively. This is 

shown graphically in figure 5.1. The graph was 

constructed using the values from Table 5.1. 

 

 
Figure 5.1: Payload Capacity for Varying Reference 

Matrix Sizes 

 

 
Table 5.1: Payload Capacity for Varying Reference Matrix 

Sizes 

 



           ISSN (Online) 2278-1021 
ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 6, June 2015 
 

Copyright to IJARCCE                                                             DOI 10.17148/IJARCCE.2015.46112                                               523 

5.2 Execution Time 

In this sub section, the execution time for embedding and 

extracting data for different sizes of reference matrix is 

analysed. This entire sub section uses a 1080x675 image 

for performing the required experiments. First we consider 

the case where the same number of pixels are altered in the 

image for different values of N, i.e., the total count of 

Base-N numbers to embed is the same. Figure 5.2 shows 

the execution time for embedding 57600 Base-N numbers 

for the corresponding NxN reference matrix used, or in 

other words the execution time for altering 38400 pixels as 

2 pixels are altered for every 3 Base-N numbers. The 

reading are tabulated in Table 5.2. 

 
Figure 5.2: Execution Time for Embedding and Extracting 

57600 Base-N Numbers 
 

 
Table 5.2: Execution Time for Embedding and Extracting 

57600 Base-N Numbers 
 

The execution time for extracting data is almost the same 

in all cases because the algorithm executes the same 

number of iterations to extract the same number of Base-N 

numbers in each case. It is also clear from the above graph 

that as the size of the reference matrix increases, the 

execution time for embedding data increases. This is 

because the row, column and box in the case of a 25x25 

matrixes larger than in the case of a 4x4 box, meaning a 

slight increase in complexity for checking the row, column 

and matrix as value of N increases. However, this measure 

is a bit misleading. Although execution time is increasing 

by a small fraction, the data being embed is also increasing 

as N increases as every Base-N number represents √N bits. 

This is because 57600 Base-4 numbers represent 115200 

bits, whereas 57600 Base-25 numbers represent 288000 

bits. A more accurate measure as to whether the efficiency 

of the algorithm increases or decreases with increasing N 

is obtained by comparing execution time for different 

values of N keeping the number of bits to be embedded a 

constant. Figure 5.3 and Table 5.3 show the execution 

time for increasing N, for embedding 230400 bits. This 

translates to 115200 Base-4 numbers, 76800 Base-9 

numbers, 57600 Base-16 numbers and 46080 Base-25 

numbers. 
 

The execution time decreases as the size of reference 

matrix increases for a fixed number of bits to be 

embedded. This is because as the value of N increases, 

more bits can be represented by fewer Base-N numbers 

which means fewer pixels need to be altered, and the 

algorithm runs for fewer iterations overall. 
 

The execution time for extraction of data also decreases. 

This is because fewer Base-N numbers need to be 

extracted from the cover image as value of N increases, for 

a fixed number of data bits. 

 
Figure 5.3: Execution Time for Embedding and Extracting 

230400 Bits 

 

 
Table 5.3: Execution Time for Embedding and Extracting 

230400 Bits 
 

5.3 PSNR 

The distortion in the cover image depends upon the change 

in the value of pixels used for embedding data, as well as 

the total number of pixels of the cover image that are used 

for embedding  data. This in turn depends upon the 

number of components of the pixel used and amount of 

input data. As the size of the reference matrix increases, 

the change in value of each pixel used for embedding 

increases. However, the number of pixels that are altered 

reduces because fewer number of pixels can now store 

more data. The Peak Signal-to-Noise Ratio (PSNR) value 

helps determine distortion in an image and is calculated as 

follows,  

 

 

 

 

PSNR = 10 X log10(255
2
/MSE) dB 

 

where MSE is the mean square error between the stego 

image and original image. It is defined as follows, 

where Rij,Gij,Bij nd Rij
|
,Gij

|
,Bij

| 
are RGB value of 

original and stego images pixels respectively. M X N 

gives total number of pixels present in the image. A larger 

PSNR indicates that the the stego image is more identical 

to the original image. Figure 5.4 shows the PSNR value 

for increasing value of N. Size of the image used for 

experimentation purposes is 256x256. If the PSNR value 

is over 30 dB, the level of noise is considered to be of 

acceptable amount. 

From figure 5.4, which was constructed using table 5.4, 

we infer that the PSNR value falls as the value of N 

 



           ISSN (Online) 2278-1021 
ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 6, June 2015 
 

Copyright to IJARCCE                                                             DOI 10.17148/IJARCCE.2015.46112                                               524 

increases, if the percentage of image containing hidden 

data is kept fixed. This is because the change in value of 

the pixel increases as the size of the reference matrix 

increases. However, as the value of N increases, the total 

number of bits of hidden data embedded in the image also 

increases when the percentage of image filled with hidden 

data is kept the same. Figure 5.5 shows the variation in 

PSNR for increasing values of N when the number of bits 

of data hidden in the image is kept constant at 115200 bits. 

 

Figure 5.4: Variation in PSNR with Percentage of Image 

Filled for Different Values of N 

 

Table 5.4: Variation in PSNR with Percentage of Image 

Filled for Different Values of N 

 
Figure 5.5: Variation in PSNR for Different Values of N - 

Number of Bits of Hidden Data Kept Constant 
 

 
Table 5.5: Variation in PSNR for Different Values of N - 

Number of Bits of Hidden Data Kept Constant 

 

It can be seen from figure 5.5 that even when total number 

of bits embedded is kept constant, the PSNR value 

decreases. Therefore, the impact of increasing change in 

the value of individual pixels is greater than the effect of 

reducing the overall number of pixels altered. Table 5.5 

tabulates the values used to construct the graph in figure 

5.5. 
 

However, in all cases, the PSNR never falls below 30 dB. 

Therefore all the images are of acceptable quality. 
 

5.4 Snapshots 

Figure 5.6 is the original 256x256 image used. Figure 5.7, 

5.8, 5.9 and 5.10 are the same image with 100% data 

embedded in them using a reference matrix of size 4x4, 

9x9, 16x16 and 25x25 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Original Image 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Original Image 100% Embedded with Data 

using 4x4 Reference Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Original Image 100% embedded with Data 

using 9x9 Reference Matrix 

 



           ISSN (Online) 2278-1021 
ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 6, June 2015 
 

Copyright to IJARCCE                                                             DOI 10.17148/IJARCCE.2015.46112                                               525 

 
 

Figure 5.9: Original Image 100% Embedded with Data using 

16x16 Reference Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Original Image 100% Embedded with Data 

using 25x25 Reference Matrix 

 

6. CONCLUSION 

An image steganography algorithm based on sudoku, that 

is generalised for any NxN reference matrix where N is a 

perfect square is developed. The security of the algorithm 

is improved by making use of hard sudoku instead of soft 

sudoku. For this, sudoku generation and solver algorithms 

are detailed. 

 

Instead of just one key in the case of soft sudoku 

approach, which was the sudoku itself, the hard sudoku 

approach makes use of three keys - the hard sudoku, the 

seed value, and the solver algorithm. One must possess all 

three keys in order to obtain the hidden data from the stego 

image quickly. 

 

The payload capacity for different sizes of reference 

matrices is compared. It is found that the payload capacity 

increases as the order of reference matrix increases. The 

time required to embed and extract data decreases with 

increase in size of reference matrix. These two 

observations are favourable as payload capacity is 

increasing an execution time is decreasing. The PSNR 

value  on the other hand decreases with increase in size of 

reference matrix. However, it still does not fall below 30 

dB. This level of PSNR is acceptable for most 

applications. For applications that require a higher PSNR 

value, a balance needs to be found between payload 

capacity and PSNR value, and the reference matrix size 

adjusted accordingly. 

 

REFERENCES 
[1] Roshan Shetty, B. R., J. Rohith, V. Mukund, Rohan Honwade, and 

Shanta Rangaswamy. "Steganography using Sudoku puzzle.” In 
IEEE International Conference on Advances in Recent 

Technologies in Communication and Computing, 2009, pp. 623-

626 
[2] Chang, Chin-Chen, Yung-Chen Chou, and The Duc Kieu. "An 

information hiding scheme using sudoku.", In 3rd IEEE 

International Conference on Innovative Computing Information and 
Control, 2008, pp. 17-17 

[3]  Ijeri, Sanmitra, Shivananda Pujeri, B. Shrikant, and B. A. Usha. 

"Image steganography using Sudoku puzzle for secured data 
transmission.", International Journal of Computer Applications, 

Vol. 48, Issue 17, 2012, pp. 31-35 

[4] C.-C. Chang, T. D. Kieu, and Y.-C. Chou. High capacity data hiding 

for gray scale images. In Proceedings of the First International 

Conference on Ubiquitous Information Management and 

Communication, pages 139–148. Seoul, Korea, February 2007.  
[5] C.-C. Chang and C.-Y. Lin. Reversible steganography for vq- 

compressed images using side matching and relocation. IEEE 

Transactions on Information Forensics and Security, 1(4):493–501, 
2006.  

[6] Y.-T. Wu and F. Y. Shih. Digital watermarking based on chaotic map 

and reference register. Pattern Recognition, 40(12):3754–3763, 
December 2007. 

[7] Yung-Chen Chou, Chih-Hung Lin, Pao-Ching Li, Yu-Chiang Li A (2, 

3) Threshold Secret Sharing Scheme Using Sudoku 2010 Sixth 
International Conference on Intelligent Information Hiding and 

Multimedia Signal Processing 978-0-7695-4222-5/10, 2010  

[8] Wien Hong, Tung-Shou Chen, Chih-Wei Shiu, Steganography Using 
Sudoku Revisited Second International Symposium on Intelligent 

Information Technology Application 978-0-7695-3497-8/08, 2008 

 


