
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4674 342

Authentication Scheme to Protect Web

Applications against SQL Injection Attack

Using Hash Functions

Pooja Saini
1
, Sarita

2

M.Tech Student, Dept of Computer Science & Engg, Doon Valley Institute of Engg. & Technology, Karnal, India
1

Assistant Professor, Dept of Computer Science & Engg, Doon Valley Institute of Engg. & Technology, Karnal, India
2

Abstract: Online business expects web applications to be secure, efficient and reliableto the users against SQL

Injection Attacks. The SQL Injection Attack exploits a security vulnerability occurring in the backend database layer of

a web application which is the results of poor input validation in code and website administration. This allows attackers

to obtain unauthorized access to the user sensitive information or change the intended web application through SQL

queries. In the past, researchers have developed several methods/techniques to overcome the SQL injection problems.

However, these approaches either have limitations or fail to cover full scope of the problem. In this paper, a hash

function based authentication scheme including data validation is proposed to protect web applications against the SQL

Injection attacks. A review of the different types of SQL injection attacks and cases of how attacks of that type could be

performed is presented. The proposed techniqueis found to be quite useful and secure for protecting web applications

against SQL Injection attacks.

Keywords: SQL Injection attack, Hash function algorithm, Database Security, validation.

I. INTRODUCTION

Information and Communication technologies have

witnessed a rapid growth in businesses, enterprises,

governments and it found that web applications can give

effective, efficient and reliable solutions to conducting e-

commerce. Web applications in various sectors like e-

commerce, online banking, enterprise and supply chain

management, e-governance, etc. conclude that at least

92% of these web applications are vulnerable to some

form of attacks [1].SQLIV (Structured Query Language

Injection Vulnerabilities)are one of the most serious

threats to web applications [2]. Web applications

vulnerable to SQL injection may allow an attacker to gain

complete access to their underlying databases of

information systems. Because these databases often contain

sensitive user information, the resulting security violations

can include identity theft, loss of confidential information,

and fraud.In some cases, attackers can even use an SQL

injection vulnerability to take control of and even corrupt

the system that hosts the web applications. According to

Open Web Application Security Project (OWASP), SQL

injection attacks (SQLIA) stands firstin the top 10 threats

for web application security in 2013 [3]. In SQL injection

attack, attacker provides SQL code rather than the

legitimate input in the input fields of the web application in

order to vary the meaning of the original SQL query issued

by the backenddatabase. Once the attacker gains access to

the database, it can alter any sensitive information. To

implement security guidelines inside or outside of the

database, the access to the sensitive databases needs to be

monitored. Detection and prevention of SQL injection

attacks are a topic of active research in the academia and

industry.Several automatic tools and security system were

Implemented to achieve the purpose, but none of them

were complete or accurate enough to guarantee an absolute

level of security of web applications. The aim of the paper

is to review the different types of SQL injection attacks and

to propose a hash function algorithm based authentication

scheme to secure web applications against SQL injection

attacks.

II. SQL INJECTION BACKGROUND

Injecting a web application is the synonym of having

access to the data stored in the database. The data

sometimes could be confidential and of high value like the

financial secret of banks or transactions or secret

information of some kinds of information system, etc. An

unauthorized access to this data by a crafted user can threat

their confidentiality, integrity, and authority. As a result,

the system could bear heavy loss in giving proper services

to its users or it may face complete destruction. SQL

injection is most commonly used by hackers to steal data

from information systems of organizations. If it happens

against the information systems of a hospital, the private

information of the patients may be leaked out which could

threaten their reputation or may be a case of defamation

[4]. These attacks are designed not only to breach the

database security and steal the entire content of the

database, but also, to make arbitrary changes to both the

database schema and contents.SQL is a special-purpose

programming language used to communicate with

databases of information system. SQL can insert, retrieve,

update and delete data. Of course, any system can be

misused, and the most common form of misuse of SQL is

an SQL injection [5]. SQL injection is a technique using

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4674 343

the above operations against the database in a way that it

no more fulfils the desired results but give the attacker an

opportunity to run his own SQL command against the

database that too using the front end of websites [6]. The

SQL injection technique tricks the target into passing

malicious SQL code to a database by embedding portions

of code with user input [5]. An SQL injection is a kind of

injection vulnerability in which the attacker tries to inject

arbitrary pieces of malicious data into the input fields of

an web application, which, when processed by the

application, causes that data to be executed as a piece of

code by the backend SQL server, thereby giving undesired

results which the developer of the web application did not

anticipate, leveraging almost a complete compromise of

system in most cases. Two important characteristics of

SQLIAs used for describing attacks are injection

mechanism and attack intent.

A. Injection Mechanisms

Different injection mechanisms are used to introduce

malicious SQL statements into vulnerable web

applications. We explain the four most common

mechanisms as follows.

1) Injection through user input: In this injection

mechanism, the SQL commands are injected through the

user inputs, which in most attack scenarios, is a web form.

The input from these web forms up on submission is sent to

the backend application through HTTP GET or POST

requests.

2) Injection through cookies: A web application stores the

client‟s related state information in the client's machine,

which is used to restore the client's session in future

sessions. Since, the most web applications are using these

cookies to build SQL queries, the client who has the access

to the cookies saved in his machine, could tamper the

contents to embed his malicious code and execute an

attack.

3)Injection through server variables: Server variables are

used in trend analysis and usage statistics in most web

applications, as they contain detailed header information

such as network headers and HTTP headers. These

variables can be used in executing SQL Injection attacks

when these server variables are logged to the database

without proper sanitization to remove the malicious

contents. So, attackers can forge the headers to include the

malicious code which will trigger the attack, when the

server variable is logged in the database using the SQL

queries.

4) Second-order injection: Second-order injections are

different from the other injection mechanisms in a way that

the second-order injections will craft the injection code in

such a way that, it will not trigger initially when it reaches

the database, but the attack will be triggered at a later stage,

when the crafted data is used.Second-order injections can

be especially difficult to detect and prevent because the

point of injection is different from the point where the

attack actually manifests itself. A developer may properly

escape, type-check, and filter input that comes from the

user and assume it is safe. Later on, when that data is used

in a different context, or to build a different type of query,

the previously sanitized input may result in an injection

attack.

B. Attack Intentions

Different types of SQL Injection attacks are performed for

different intended purposes. Ten possible intents are as

follows.

1)Identifying injectable parameters:In this case, the goal of

the attacker is to identify the parameters and input fields

that are vulnerable to SQL Injection attacks.

2) Performing database finger-printing: In this case, the

attacker wants to identify the database type and version,

which will help the attacker to craft attacks specific to the

database type.

3) Determining database schema:The attackers need to

figure out the exact schema information of the database, in

order to extract data from a database. These kinds of

attacks are aimed at collecting the database schema, which

includes table name, column name.

4) Extracting data:These types of attacks have a final goal

of extracting unauthorized sensitive data from a database.

5) Adding or modifying data:These attacks are performed

to add or modify information in the database of information

systems of an organization.

6) Performing denial of service:These attacks are

performed to disrupt the service provided by a database of

a web application. This can be done, by disrupting a

particular service or by shutting down the database itself.

7) Evading detection:These attacks aim at avoiding

detection from various audit/security mechanisms in place.

8) Bypassing authentication: These attacks are performed

to bypass the authentication mechanisms in database of

web applications, since bypassing authentication allows

them to get the access privileges of legitimate users.

9) Executing remote commands: These attacks attempt to

execute malicious arbitrary commands remotely in the

database.

10) Performing privilege escalation: These attacks use the

implementation errors in the database to exploit the

database user privileges.

III. TYPES OF SQL INJECTION ATTACKS

Six different types of attacks are performed together or

sequentially depending on the goal of attacker [7]. For a

successful SQLIA, the attacker should append a

syntactically correct command to the original SQL query.

The following six classifications of SQLIAs are presented.

A. Tautologies

A tautology is a formula which is true in every possible

interpretation. In a tautologybased attack, the code is

injected using the conditional OR operator such that the

query always evaluates to TRUE. These attacks are

usually bypass user authentication and extract data by

inserting a tautology in the WHERE clause of a SQL

query. The query transform the original condition into a

tautology, causes all the rows in the database table are

open to an unauthorized user. A typical SQL tautology has

the form "or<comparison expression>", where the

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4674 344

comparison expression uses one or more relational

operators to compareoperands and generate an always true

condition. If an unauthorized user input user id is abcde

and password is anything' or 'x'='x' then the resulting

query will be:

select * from user_details where userid = 'abcde' and

password = 'anything' or 'x'='x'.

Based on operator precedence, the WHERE clause is true

for every row, therefore the query will return all records. In

this way, an attacker will be able to view all the personal

information of the users.

B. Logically Incorrect Queries

In this type of injection an attacker is try to gather

information about the type and structure of the back-end

database of a web application. The attack is considered as

preliminary step for further attacks. If an incorrect query is

sent to a database, some application servers return the

default error message and the attacker takes the advantage

of this weakness. They inject code in vulnerable or

injectable parameters which creates syntax, type

conversion, or logical error. Through this type of error one

can identify the data types of certain columns. Logical

errors often expose the names of tables and columns of

database of web application [8].

C. Union Query

This type of attack can be done by inserting a UNION

query into a vulnerable parameter which returns a dataset

that is the union of the result of the original first query and

the results of the injected query. The SQL UNION operator

combines the results of two or more queries and makes a

result set which includes fetched rows from the

participating queries in the UNION. Basic rules for

combining two or more queries using UNION as follows:

 Number of columns and order of columns of all queries

must be same.

The data types of the columns on involving table in each

query should be same or compatible.

Usually returned column names are taken from the first

query.

Suppose the attacker enters ' UNION SELECT * FROM

emp_details -- in userid field and abcde in password field

as userid and password which generates the following

query:

SELECT * FROM user_details WHERE userid ='' UNION

 SELECT * FROM EMP_DETAILS --

 ' and password = 'abcde' . The two dashes (--) comments

out the rest of the query i.e. ' and password = 'abcde'.

Therefore, the query becomes the union of two SELECT

queries. The first SELECT query returns a null set because

there is no matching record in the table user details. The

second query returns all the data from the table

emp_details.

D. Piggybacked Queries

In this attack the hacker inject additional queries to the

original query; as a result the database receives multiple

SQL queries. The first query is valid and executed

normally; the subsequent queries are the injected queries,

which are executed in addition to the first. Due to

misconfiguration a system is vulnerable to piggy-backed

queries and allows multiple statements in one query. Let an

attacker inputs abcde as usrerid and '; drop table xyz -- as

password in the login form. Then the application will

generate the following query:

select * from user_details where userid = 'abcde' and

password = ''; drop table xyz -- '

After completing the first query the database would

recognize the query delimiter (";") and execute the injected

second query. The result of executing the second query

would be to drop table xyz, which would destroy valuable

information.

E. Stored Procedure

A stored procedure is a type of SQL injection try to

execute store procedures present in the database. Most of

the databases have standard set of procedures that extend

the functionality of the database and allow for interaction

with the operating system. The attacker initially tries to

find the database type with other injection method like

illegal/logically incorrect queries. Once an attacker

determine which databases is used in backend then he try

to execute various procedures through injected code.

Stored procedures can be vulnerable to execute remote

commands, privilege escalation, buffer overflows and

even provide administrative access to the operating

system.

If an attacker injects ';SHUTDOWN; --into either the

userid or password fields then it will generate the

following SQL code : select * from user_details where

userid = 'abcde' and password = ''; SHUTDOWN; -- '

The above command cause database to shut down [8].

F. Inference

By this type of attack, intruders change the behaviour of a

database of web application.

There are two well-known attack techniques that are based

on inference: blind injection and timing attacks.

1) Blind Injection: In this type of injection the attack is

applied on well secured databases which do not return any

usable feedback or descriptive error messages. The attack

is normally created in the style of true false statement.

After finding the vulnerable parameter, the attacker injects

various conditions (that he wants to know whether they are

true or false) through query and carefully observe the

situation. If statement evaluates to true, the page continues

to function normally. If false, the page behaves

significantly different from the normal functioning. This

type of injection is called Blind Injection [9].

2) Timing Attacks:In this type of attack an attacker design

a conditional statement and inject through the vulnerable

parameter and gather information based on time delays in

the response of the database. In the following code :

http://www.abc.com/product.php?product_id=100 AND

IF(version() like „5%‟, sleep(15), „false‟))-- Here an

attacker checks whether the system is using a MySQL

version is 5.x or not, making the server to delay the answer

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4674 345

in 15 seconds (the attacker can increase the delay's time)

[9].

IV. RELATED WORK

The techniques reviewed can cover a subset of the

vulnerabilities of SQL Injections. Important work on SQL

injection attacks is presented as follows.

A. Roichman and Gudes‟s Scheme

This scheme proposed a fine-grained access control to the

web databases of information systems of an organization.

This scheme developed a new method based on fine-

grained access control mechanism [10]. The access to the

database of web application is supervised and monitored

by the built-in database access control. This is

preventionto the vulnerability of the SQL session

traceability.

B. Shaukat Ali et al.‟s Scheme

This schemeproposed the hash value based approach to

improve the user authentication mechanism to protect

against SQL injection attacks [11]. They used hash values

of user name and password. The SQL Injection Protector

for Authentication (SQLIPA) prototype was developed in

order to test the SQL injection attack strings. The user

name and password hash values were created and

calculated at runtime for the first time when the particular

user registered itself.

C. Thomas et al.‟s Scheme

This scheme proposed an automated prepared statement

generation algorithm to remove SQL injection

vulnerabilities in web applications [12]. The scheme

implemented in this research work using four open source

projects namely: (i) Net-trust, (ii) Itrust, (iii) WebGoat,

and (iv) Roller. On the basis of the empirical results, their

prepared statement codes were able to successfully replace

94% of the SQL injection vulnerabilities in four open

source projects.

D. SAFELI

This scheme dealt with the Static Analysis Framework in

order to detect SQL Injection Vulnerabilities in web

applications [13]. The aim of the framework is to

identifying the SQL Injection attacks during the compile-

time. This static analysis tool has two main superiority are:

firstly, it does a White-box Static Analysis and secondly, it

uses a Hybrid-Constraint Solver. If we consider the White-

box we found the Static Analysis, the proposed approach

considered the byte-code and dealt mainly with strings.

While on the other hand, the Hybrid-Constraint Solver

implemented the methods to an efficient string analysis

tool which is able to deal with Boolean, integer and string

variables.

E. Removing SQL Query Attribute Values

In this scheme the Authors proposed an technique to detect

SQL injection attacks in web applications based on static

and dynamic analysis [14]. This method removes the

attribute values of SQL queries at runtime (dynamic

method) and compares these values with the SQL queries

analyzed in advance (static method) to detect the SQL

injection attack in web applications. When run the

application each dynamical generated query is compared

or performed XOR operation with fixed query if it results

zero, then that particular query allowed to the database and

if it results to non-zero then that query reported as

abnormal query stop sending to the database of

information system of an organization.

V. PROPOSED SCHEME

We propose anauthentication scheme for protecting web

applications against SQL injection attacks using hash

function algorithm which would prevent these attacks

effectively. In this study, a prototype website/model was

developed for testing SQL injection attacks. Two levels of

authentication schemes- data validation and hash function

mechanism were developed for securing web applications.

In this proposed technique, three approaches for data

validation, and an approach to hash values of username

and password in hash function based authentication were

tested.

A. Prevention of SQLIA using Data Validation

For validation of data, we propose the three approaches

(Escape single quotes, Reject bad input, and Accept only

good input) for prevention of SQLIA as follows.

1) escape single quotes:

functionescape (input)

input = replace(input, “”,””)

escape = input

end function

2) Reject input that is known to be bad:

functionvalidate string (input)

known_bad = array("select", "insert", "update", "delete",

"drop", "--", "'")

validate_string = true

for i = lbound(known_bad) to ubound(known_bad) if (

instr(1, input, known_bad(i), vbtextcompare) !=0) then

validate_string = false

exit function

end if

next

end function

3)Accept only input that is known to be good:

functionvalidatepassword(input)

good_password_ch="abcdefghijklmnopqrstuvwxyzABCD

EFGHIJKLMNOPQRSTUVWXYZ0123456789"

validatepassword = true

for i = 1 to len(input)

c = mid(input, i, 1)

if (InStr(good_password_ch, c) = 0) then

validatepassword = false

exit function

end if

next

end function

B. Preventionof SQLIA using Hash Functions

In the proposed approach, an authentication scheme based

on Hash function algorithm was developedfor protecting

web applications against SQL injection attacks. A

prototype website/model was developed using MS Visual

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4674 346

Studio 2008 and SQL Server Management Studio Express

2005 for testing different SQL injection attack strings.

Two extra columns were added in the login database, one

for hash values of username and other for hash values of

password. When the user gets itself registered with the

web application, it selects its username and password. At

the same time, hash value of username and password were

computed at the coding side and stored in the login table

with username and password. Whenever user log-in to the

web application, hash value of username and password

were matched at the backend and user was allowed to

access the data. If SQL Injection attack string was entered

for logging into the database, its hash value did not match

with the hash values stored in the table and hence attacker

could not access the database. During the authentication of

user, the SQL query with hash parameters was used.

Hence, if a user tries the injection to the query, and our

proposed methodology is working with SQL query, it

automatically detects the injections as the potentially

harmful content and rejects the values.

Therefore, the attacker could not bypass the authentication

process. The advantage of the proposed technique is that

the hackers do not know about the hash values of user

name and password. So, it is not possible for the

attacker/hacker to bypass theauthentication process

through the general SQL injectiontechniques.

Fig 1. Proposed Hash scheme for preventing SQLIA

The SQL injection attacks can only be done on codes

which are entered through user entry form but the hash

values are calculated at run time at backend before

creating SELECT query to the underlying database

therefore the hacker cannot calculate the hash values as it

is dynamic at runtime.

VI. RESULT

The developed prototype website/model with

authentication schemes was tested by entering all possible

SQL injection strings and it was found that none of the

string was able to penetrate. So, the attacker could not get

the unauthorized access to the backend database of web

application and could not bypass the authentication.

VII. CONCLUSION

Despite of many approaches and frameworks were

developed and implemented in many interactive web

applications, SQL Injection prevails as one of the top-10

vulnerabilities and threatens to online businesses targeting

the backend databases. In this research, a technique for

protecting authentication of web applications against SQL

Injection attacks using hash function algorithm has been

developed and testedwith different SQL injection attack

strings. Hash values of user name and password have

improved the authentication process with minimum

overhead. This technique is quite useful and secure in

protecting authentication of web applications against SQL

Injection Attack. The technique requires the alterations in

the design of existing schema database and a new

guideline for the database user before writing any new

database. Through these guidelines, we found the effective

outcomes for prevention of SQL injections. Still, we need

to improve our approach so that, it can prevent the

backend databasesandweb applications from all kind of

SQL injection attacks.

VIII. FUTURE SCOPE

In the present era of online world, web applications must

provide full security and assurance to the users. During the

review of research work, we found that in certain cases,

these approaches were not found to be effective. Hence,

these approaches were become not useful and could not

able to detect the injections to prevent them. The proposed

technique can only protect authentication mechanism of

web applications. Rest of the SQL Injection techniques

cannot be prevented using this technique. So, in future, we

will try to improve the technique by making it fully secure

and efficient for other types of SQL injection attacks also.

Then, this technique will be able to prevent SQL Injection

Attacks completely.

IX. ACKNOWLEDGMENT

I am sincerely thankful to Er. Sandeep Jain, Head and

staff of Department of Computer science and Engg, Doon

Valley Institute of Engg. & Technology, Karnal. We also

wish to thank all the anonymous reviewers for their

valuable suggestions, who helped in improving the

manuscript.

REFERENCES

[1] S. W. Boyd and A. D. Keromytis, “SQLRand: Preventing SQL

injection attacks,” in Proc. of ACNS, 2004.

[2] R. Thenmozhi, M. Priyadharshini, V. VidhyaLakshmi, K. Abirami

“Vulnerability Management in Web Applications”
http://www.ciitresearch.org/dl/index.php/dmke/article/view/DMKE

042013007

[3] Top 10 2013-A1-Injection, available at:
http://www.owasp.org/index.php/Top_10_2013-A1-Injection, last

accessed 11 June, 2013.

[4] Bojken, A. Shqiponja, A. Marin, and Xh. Aleksander,"Protection of
Personal Data in Information Systems",International Journal of

Computer Science, Vol. 10, No. 2,July 2013, ISSN (Online): 1694-

0784.
[5] Malicious SQL Injection: an introduction homepage on hackmac.

[Online]. Available: http://www.hackmac.org/tutorials/malicious-
sql-injection-an-introduction/ , 2013.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4674 347

[6] Amit Kukreti ”SQL Injection Attacks homepage on codeproject”
[Online].Available:http://www.codeproject.com/Articles/11020/SQ
Linjection-attacks/ , 2005.

[7] Prasant Singh Yadav, Pankaj Yadav, K.P.Yadav “A Modern

Mechanism to Avoid SQL Injection Attacks in Web Applications”,
IJRREST: International Journal of Research Review in Engineering

Science and Technology, Volume-1 Issue-1, June 2012.

[8] Atefeh Tajpour ,Suhaimi Ibrahim, Mohammad Sharifi “Web
Application Security by SQL Injection DetectionTools” IJCSI

International Journal of Computer Science Issues, Vol. 9, Issue 2,

No 3, March 2012.
[9] Mayank Namdev, FehreenHasan, GauravShrivastav “Review of

SQL Injection Attack and Proposed Method for Detection and

Prevention of SQLIA”International Journal of Advanced Research
in Computer Science and Software Engineering,Volume 2, Issue 7,

July 2012.

[10] Roichman, A., Gudes, E. “ Fine - grained Access Control to
Web Databases”.In: Proc.Of 12th SACMAT Symposium, France,

2007.

[11] Ali, S., Shahzad, S.K., and Javed, H., SQLIPA: An Authentication

Mechanism Against SQL Injection. European Journal of

ScientificResearch, Vol. 38, No. 4, pp. 604-611, 2009.

[12] S. Thomas, L. Williams, and T. Xie, “On automated
preparedstatement generation to remove SQL injection

vulnerabilities”. Information and Software Technology, Elsevier

51, 589–598, 2009.
[13] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao.”A

Static Analysis framework for Detecting SQL Injection

Vulnerabilities”,OMPSAC 2007, pp.87-96, 24-27 July 2007.
[14] I. Lee , S. Jeong, S. Yeoc, J. Moond, “A novel method for

SQL injection attack detection based on removing SQL query

attribute”, Journal of Mathematical and Computer Modeling,
Elsevier 2011.

	1) Blind Injection: In this type of injection the attack is applied on well secured databases which do not return any usable feedback or descriptive error messages. The attack is normally created in the style of true false statement. After finding the...
	2) Timing Attacks:In this type of attack an attacker design a conditional statement and inject through the vulnerable parameter and gather information based on time delays in the response of the database. In the following code :

