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Abstract: Optimal Control is applied on the basis of  an effective approach for car driving in mountain area. The report 

will review the original project of an effective approach for car driving in mountain area. Then, Optimal Control will be 

investigated by applying several design concepts with detailed comments about each design applied. The thesis derives 

a formulation of the out-of-sequence measurements (OOSM) problem for nonlinear state-space models when 
developing a Car driving in the mountain area automatically. In this paper we have to try an approach how the total 

constraints effect on the path of car driving should be minimize. 
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I. INTRODUCTION 

Optimal control theory is a mature mathematical discipline 

with numerous applications in both science and 

engineering. Optimal control deals with the problem of 

finding a control law for a given system such that a certain 
optimality criterion is achieved. A control problem 

includes a cost functional that is a function of state and 

control variables. An optimal control is a set of differential 

equations describing the paths of the control variables that 

minimize the cost function. The minimization of cost 

function on the basis of Linear Quadratic Regulator 

problem in optimal control can be derived using by 

solving the Hamilton-Jacobi-Bellman equation. For 

control system gain scheduling consider as a mapping 

from process parameter to control  parameter in which 

model reference adaptive control is used into a closed loop 

control for up-gradation of the response parameters to 
create the desire model. MIT rule is use for adjustment of 

the parameters up-gradation .MIT rule given below, 
𝑑𝜃

 𝑑𝑡
=- γ 

𝛿𝐽

𝛿𝜃
 =   -γ e 

𝛿𝑒

𝛿𝜃
              ………(1) 

 

J(θ) = ½ 𝑒2(θ)    ………… (2) 
 

After more than three hundred years of evolution, optimal 

controltheory has been developed  to the based on 

theoretical foundation laid by  generation of 

mathematician. The maximum principal developed in the 
late 1950 by Pontryagin and his coworkers [1] , is among 

the biggest successes in optimal control. The linear 

analysis approach is considered on a transformation 

general non linear form for a dynamic system into a linear 

system for the analysis of controller design [2] .Now, 

linear quadratic optimal problem based on dynamic  

compensation is considered for a general quadratic 

performance index [3]. Recently modified Riccati equation 

has already been associated with tracking a target under 

measurement uncertainty [4]. In this paper some properties 

of the modified Riccati equation will be derived and  

 

proud. Current research suggests the use of linear 

quadratic  performance index for optimal control 

regulators in various application. Some examples include 

correcting the trajectory of rocket and air vehicles, 
vibration suppression of flexible structures, and airplane 

stability. The focus of all these cases is in suppressing 

system deviations rapidly[5]. In the current work we have 

try to approach a design of optimal regulator into car 

driving system in the mountain area. 

 

II. PROJECT SUMMERY 
Optimal Control is applied on the basis of  an effective 

approach for car driving in mountain area. The report will 

review the original project of an effective approach for car 

driving in mountain area. Then, Optimal Control will be 

investigated by applying several design concepts with 
detailed comments about each design applied. A 

conclusion of the work will end the report giving future 

recommendations and comments. This thesis covers areas 

within estimation and optimal control of vehicles, in 

particular four-wheeled vehicles.  

 

One topic is how to handle delayed and out-of-sequence 

measurements (OOSMs) in tracking systems. The 

algorithms improve estimation accuracy and tracking 

robustness, compared with methods that do not utilize the 

linear substructure. Optimization-based regulator control 
methods have found their way into automotive 

applications. This control for vehicles typically results in 

control inputs that give aggressive maneuvering. Another 

conclusion is that the optimal driving techniques are 

different depending on tire-road characteristics. The 

conclusions motivate the design of a novel, two-level 

hierarchical approach to optimal trajectory generation for 

wheeled vehicles. Here we consider a basic block diagram 

for a Non linear control system where the State Estimators 

is connected as a control parameter between both the plant 

input and output. In the given diagram shown below :- x(t) 
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denotes the state of the system in time „t‟ ; y(t) represent 

the system response at „t‟ ; u(t) is the system input ; 
^

'( ) ( ) ( )u t K t x t
        ………(3) 

Now the change of the state equation is described as    
.

( ) ( ) ( ) ( ) ( )x t F t x t G t u t 
and  

'( ) ( ) ( )y t H t x t
                             

(4)   

where F(t) , G(t) , H(t)  are the matrix functions of time 

with continuous entries. 

The Transfer Function of the given state equations using 

Matrixes is denoted by W(s) which is calculated below :- 
' 1( ) ( )W s H sI F G 

                                    
……  (5)   

In our project we try to implement an effective approach 

for minimization the upcoming constrains badly effects on 

the path of a driving car in mountain area as per our best 

effort. The details method will discussed later in the 

corresponding chapter of the project report.  

 

BLOCK DIAGRAM  

 
Fig1: Model Reference Adaptive Feedback Arrangement 

 

III. HAMILTON-JACOBI-BELLMAN 

EQUATIONS 

We now turn to optimal control problems where the state x 

∈ 𝑅𝑛𝑥and control u ∈U (x) ⊆ 𝑅𝑛𝑢 are real-valued vectors. 

To simplify notation we will use the shortcut minuinstead 

of𝑚𝑖𝑛𝑢∈𝑈  (𝑥) , although the latter is implied unless noted 

otherwise. Consider the stochastic differential equation 

 

dx=f(x,u)dt+F(x,u)dw                                           ……   (6) 
 

wheredwis 𝑛𝑤 -dimensional Brownian motion. This is 

sometimes called a controlled Ito diffusion, with f 

(x,u)being the drift and F (x,u)the diffusion coefficient. In 

the absenceof noise, i.e. when F (x,u) = 0, we can simply 

write 𝑥 = f (x,u). However in the stochasticcase this would 

be meaningless because the sample paths of Brownian 

motion are notdifferentiable (the term dw/dtis infinite). 

What equation (2.2) really means is that theintegral of the 

left hand side is equal to the integral of the right hand side: 
x(t)=x(0)+  𝑓 (𝑥  𝑠 ,𝑢 (𝑠)) 𝑑𝑠 

𝑡

0
 𝐹 𝑥  𝑠 ,𝑢  𝑠  𝑑𝑤

𝑡

0
                

(7) 

The last term is an Ito integral, de.ned for square-

integrable functions g (t)as 

 𝐺 𝑠 𝑑𝑤 𝑠 =
𝑡

0
𝑙𝑖𝑚𝑛→∞  𝐺(𝑠𝑘) (𝑤  𝑠𝑘+1 −

𝑛−1
𝑘=0 𝑤 (𝑠𝑘))                       

(8) 

where0 = 𝑠0<𝑠2< ……<𝑠𝑛= t 

 

We will stay away from the complexities of stochastic 

calculus to the extent possible. Instead we will discretize 

the time axis and obtain results for the continuous-time 

case in the limit of infinitely small time step. The 

appropriate Euler discretization of (6) is 

𝑥𝑘+1=𝑥𝑘+∆f(𝑥𝑘 ,𝑢𝑘)+ ∆F(𝑥𝑘 ,𝑢𝑘)𝜖𝑘                          …. (9) 

 

where∆is the time step, 𝜖𝑘~ N (0,𝐼𝑛𝑤 )and 𝑥𝑘= x (k∆).  
 

The ′ ∆‘term appears becausethe variance of Brownian 

motion grows linearly with time, and thus the standard 

deviationof the discrete-time noise should scale as  ∆.To 

define an optimal control problem we also need a cost 

function. In finite-horizon problems, i.e. when a final 

timetfis specified, it is natural to separate the total costinto 

a time-integral of a cost rate ι(x,u, t) ≥0, and a final cost h 

(x) ≥0which is onlyevaluated at the final state x (𝑡𝑓). Thus 

the total cost for a given state-control trajectory 

 𝑥  𝑡 ,𝑢 (𝑡) ∶  0 ≤ 𝑡 ≤ 𝑡𝑓 is defined as 

 

J(x( ∙ ),u( ∙ ))=h(x( 𝑡𝑓 ))+  𝜄
𝑡𝑓

0
 𝑥  𝑡 , 𝑢  𝑡 , 𝑡 dt                    

(10)   

 

Keep in mind that we are dealing with a stochastic system. 

Our objective is to find a controllaw u = π(x, t)which 
minimizes the expected total cost for starting at a given (x, 

t)andacting according )πthereafter. In discrete time the 

total cost becomes 

 

J(x.,u.)=h(𝑥𝑛 )+∆ 𝜄(𝑥𝑘 ,𝑢𝑘 ,
𝑛−1
𝑘=0 𝑘∆)                               (11) 

 

Wheren = 𝑡𝑓 /∆is the number of time steps (assume that 

𝑡𝑓/∆is integer). 

 

IV. RICCATI  EQUATION  

Relation with linear equations : 
Consider the Riccati equation(with time-varying 

coefficient matrices) 

–𝑃 =PF+F’P –𝑃𝐺𝑅−1G’P+QP(T, T)=A                 (12)       

and the linear equation 

            ….      (13) 

Then the solution of (11) exists on [ 𝑡0 ,T]  if X(t) is 

nonsingular on [𝑡0,T]. 

 

P(t,T)=Y(t)𝑋−1(t)                            …………    (14) 

 Conversely, if the solution of (6) exists on [to, T], and     

θ(t, s) denotes the transition matrix of 𝑥  (t) = [F(t) – G 

(t)𝑅−1(t)G ‘(t)P(t)]x (t) ,then X(t) = θ(t,T), Y(t) = P (t)θ(t, 

T) is the solution of (7), with X(t)  nonsingular on [to, T], 

and with (8) holding. This again is straight forward to 
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verify. If φ(t,s) is the 2n x 2n transition matrix associated 

with (7) and it is partitioned into four n x n sub matrices, 

then 

P(t,T)=[𝜑21 (t, T) + 𝜑22 (f, T)A ][𝜑11 (t,T) + 𝜑12 (t,T)A]−1    
……..     (15) 

 

V. DYNAMIC  PROGRAMMING 
Optimization problems such as the one stated above are 

efficiently solved via dynamic programming (DP). DP 

relies on the following obvious fact: if a given state-action 

sequence is optimal, and we were to remove the first state 

and action, the remaining sequence is also optimal (with 

the second state of the original sequence now acting as 

initial state). This is the Bellman optimality principle. 

Note the close resemblance to the Markov property of 

stochastic processes (a process is Markov if its future is 

conditionally independent of the past given the present 

state). The optimality principle can be reworded in similar 

language: the choice of optimal actions in the future is 
independent of the past actions which led to the present 

state. Thus optimal state-action sequences can be 

constructed by starting at the final state and extending 

backwards. Key to this procedure is the optimal  value 

function(or optimal cost-to-go function)v(x) = "minimal 

total cost for completing the task starting from state x". 

This function captures the long-term cost for starting from 

a given state, and makes it possible to find optimal actions 

through the following algorithm: 

 

Consider every action available at the current state, add its 
immediate cost to the optimal value of the resulting next 

state, and choose an action for which the sum is minimal. 

The above algorithm is "greedy" in the sense that actions 

are chosen based on local information, without explicit 

consideration of all future scenarios. And yet the resulting 

actions are optimal. This is possible because the optimal 

value function contains all information about future 

scenarios that is relevant to the present choice of action. 

Thus the optimal value function is an extremely useful 

quantity, and indeed its calculation is at the heart of many 

methods for optimal control. The above algorithm yields 

an optimal action u = π (x) ∈ U (x) for every state x. A 
mapping from states to actions is called control law or 

control policy. Once we have a control law π :X→ U(X) 

we can start at any state x0 , generate action u0 = π(x0 ), 

transition to state 𝑥1= next (𝑥0 ,𝑢0), generate action 𝑢1= 

π(𝑥1), and keep going until we reach 𝑥𝑑𝑒𝑠𝑡 Formally, an 
optimal control law π satisfies 

 

π(x)= arg 𝑚𝑖𝑛𝑢∈ 𝑈 (𝑥) {  cost(x,u)+v(next(x;u))            

……(14) 

 

The minimum in (8) may be achieved for multiple actions 

in the set U (x), which is why π may not be unique. 

However the optimal value function vis always uniquely 

de.ned, and satisfies 

 

v(x) = 𝑚𝑖𝑛𝑢∈ 𝑈  (𝑥) { cost(x,u)+v(next (x; u))}                   

…(15) 

Equations (3.1) and (3.2) are the Bellman equations. If for 

some x we already know v (next (x, u))for all𝑢 ∈  𝑈 (𝑥), 

then we can apply theBellman equations directly and 

compute u(x)and v (x). Thus dynamic programming is 

particularly simple in acyclic graphs where we can start 

from 𝑥𝑑𝑒𝑠𝑡 with v(𝑥𝑑𝑒𝑠𝑡 )= 0, and perform a backward pass 

in which every state is visited after all its successor states 
have been visited. It is straightforward to extend the 

algorithm to the case where we are given non-zero final 

costs for a number of destination states (or absorbing 

states). 

 

VI. PONTRYAGIN’S  PRINCIPLE 
Optimal control theory is based on two fundamental ideas. 

One is dynamic programming and the associated 

optimality principle, introduced by Bellman in the United 

States. The other is the maximum principle, introduced by 

Pontryagin in the Soviet Union. The maximum principle 
applies only to deterministic problems, and yields the 

same solutions as dynamic programming. Unlike dynamic 

programming, however, the maximum principle avoids the 

curse of dimensionality. 

 

VII. MINIMUM TIME SOLUTION 
Since the main purpose of the controller is to suppress 

vibrations in minimum time, the time for the system to 

come to rest is taken as the objective function. A 

functional expression for this can be written 

  𝐼 =     𝑑𝑡
𝑇 

0
,T=min                      …………   (16) 

subject to dx/dt = Ax + bf,  x(0) = xo,  x(T) = 0     .     (17) 

with control force limits 

                               …………  (18) 
 

This problem can be written in short form as 

Imin =  𝑑𝑡
𝑇

0
,dx/dt = Ax+ bf,x(0) = xo,x(T) = 0,    

(19) 

 

wherex is the state vector of dimension 2n. A is the 2n x 2n 

plant matrix, B is 2n x p control matrix, f isthe control 

force vector of dimension p, x(0) is the initial state vector, 

and x(T) = 0 is the final state ofthe system. Bo,  for this 
problem can be written as 

                …..(20) 

      Where i =1,2,…..,n; 

 

VIII. ORIGINAL PROJECT OVERVIEW 
In this section of the report, first, brief discussion of 

original project . In this section of the report, first, brief 

discussion of original project . This thesis addresses topics 

within nonlinear estimation and optimal control of ground 

vehicles. The ever-continuing advancements in computing 

power, sensors, and control theory, have led to an 

increased interest in autonomous vehicles, illustrated by, 

for example, the Google car. The inclusion of more 

sensors gives potential for better estimation and 



ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 3, March 2015 
 

Copyright to IJARCCE                                                 DOI  10.17148/IJARCCE.2015.43132 550 

understanding of the vehicle motion, which makes it 

possible to formulate control principles for improved 

autonomy. On the other hand, more sensor measurements, 

arriving with different delays and accuracy, increase 

demands on the system that is responsible for combining 

the sensor signals. 
 

IX. OPTIMAL CONTROL OF GROUND 

VEHICLES: 

Optimal control of ground vehicles is interesting for 

several reasons. One objective is to develop improved 

active[7] safety and driver-assistance systems for 

production cars. 
 

A.   GROUND-TIRE INTERACTION: 

The dominant interaction between a ground vehicle and its 

surroundings is via the tires; it is the friction forces 

between the tires and ground that generate most of the 

vehicle motion. See below the figure, where the tilt about 

the wheel x-axis has been ignored. The wheel has 

longitudinal velocity vx with respect to an inertial system, 

resolved in the wheel‟s coordinate system, and the normal 

load  Fz acts on the wheel. A torque balance around the 

center of the wheel gives, 

 
 

A wheel model for longitudinal dynamics. The input 

torque  generates a longitudinal friction force 

,Fxwhich gives rise to angular velocity w and longitudinal 

wheel velocity 𝑣𝑥 . 
 

X. ALGORITHM OF DRIVE AN  

AUTOMATIC CAR DOWN IN A MOUNTAIN: 
Step 1: Shift into second gear before starting down a 

mountain. Reduce speed before downshifting so you don‟t 

damage the transmission. 

 

Step 2: Obey the posted speed limit or “Maximum Safe 

Speed” limit. Look for steep hill warning signs. 

 

Step 3: Maintain a safe speed for road conditions. Resist 

the temptation to “zoom” down the mountain. 

 

Step 4: Apply the brakes once you reach a safe speed. For 
example, if the safe speed is 40, gently apply the brakes 

when you are traveling 40 miles per hour to reduce your 

speed to 35 miles per hour. Release the brakes. Repeat this 

until you reach the bottom of the mountain. If you need to 

reduce speed further on a steep downgrade, apply the 

brakes and downshift into first gear. 

 

Step 5: Shift into drive once you are back on flat land. Use 

your brakes for routine slowing and stopping. 

 

XI. INCLINED PULL REQUIRED TO MOVE A  

BODY 

Down An Inclined Plane : 

When the angle of inclination(β) of the inclined plane is 

less than the angle of repose, external force is necessary to 

move a body down an inclined plane. 

 
Let, 
 P   = required pull applied at an angle α with the inclined          

plane,         

F   = limiting friction, 

        W = weight of the body, 

R  = normal reaction of the inclined plane on the body, 

Β  = angle of inclination of the inclined plane with the      

Horizontal. 

The body is in equilibrium under the action of the 

following forces: 

1) „W‟ acting vertically downward through C.G. of the 

body, 
2) ‘P‟ applied externally to move the body down the 

inclined plane , 

3) ‘R’ acting along the inclined plane , and 

4) „F‟ acting along the inclined in a direction opposite to 

that in which the body has a tendency to move. 

 

Therefore,  

(a) ∑𝑋𝐴 =0 , and (b) ∑𝑌𝑃=0 where  

∑𝑋𝐴 = algebraic sum of the resolved parts of the forces 

along the inclined plane , and 

∑𝑌𝑃  = algebraic sum of the resolved parts of the forces 

along a direction perpendicular to the inclined   plane . 

 

Now ∑𝑋𝐴 =F – W sin β – P cos α       …………………(21) 

and∑𝑌𝑃  =R + P sin α – W cos β               ……………..(22)   

According  to condition (a) , we get 

      F – W sin β – P cosα  = 0   

or,  μR – W  sin β – P cos α  = 0 

or,  P cos α  = μR - W  sin β                   ………..…..  (23) 

According to condition (b) , we get 

R + P sin α – W cosβ  = 0 

or,  R = W cos β  - P sin α          ………………….. …   (24) 

Putting this value of R in equation (4.3) we get, 

P cosα  = μ(W cos β  - P sin α ) - W  sin β             

          = μWcosβ  -μP sin α - W  sin β   ……………….  (25) 

or,    P( cos α + μ sin α ) = W (μ cos β  - sin β)                      
              W (μ cosβ  - sin β) 

P =      ────────────       ………………………  (26) 

              (cos α + μ sin α ) 

Let,θ = angle of friction. Therefore μ = tan θ 
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                   W ( tan θ cos β  - sin β) 

P =           ────────────── 

                   (cos α +  tan θ sin α )    

                             W (sin θ cosβ  -cos θ sin β) 

P=                   ────────────────── 

                                         cos θ 
                       ────────────────── 

                      (cos α cos θ +  sin θ sin α )  

                   ────────────────── 

                                       cos θ 

 

                  W sin( θ – β) 

P =     ──────────                    

……………..  (27) 

                  cos (α - θ) 

 

Drive An  Automatic Car Up In A  Mountain: 
When approaching a steep hill, you can initially leave your 

vehicle in D and start up the hill. In most cases your 

transmission will downshift itself once it gets to the end of 

a gear, but if you feel comfortable, you can downshift the 

transmission yourself[8]. Usually shifting down to 2 will 

give you enough extra power to make it to the top of the 

hill with less effort. Remember never to shift into 1 if you 

are traveling over 30 mph. This is especially helpful if you 

are towing anything such as a boat or trailer. Once you 

reach the top of the hill, you can return the transmission to 

D. 

 

XII. INCLINED PULL REQUIRED TO MOVE A  

BODY UP AN INCLINED PLANE 

 
 

Resolved part of P along the inclined plane = P cos α 

Resolved part of P perpendicular to the inclined plane = P 

sin α 

 

Resolved part of W perpendicular to the inclined plane = 

W cos β 

 

Resolved part of w along the inclined plane = W sin β 

Resolved part of F along the inclined plane = F cos  

=F 

Resolved part of F perpendicular to the inclined plane = W 

sin =0 

Resolved part of R perpendicular to the inclined plane = R 

sin =R 

Resolved part of R along the inclined plane = R cos  
=0 

The body is in equilibrium on the inclined plane  under the 

action of the following forces [9]: 

1) „W‟ acting vertically downward , 

2) „P‟ applied at an angle α with the inclined plane , 

3) „R‟ acting at right angles to the inclined plane , 

4) „F‟ acting along the inclined plane in a direction 
opposite to the direction in which the body has a 

tendency to move . 

 

Therefore,  

(a)  ∑𝑋𝐴 =0 , and (b) ∑𝑌𝑃  =0 where  ∑𝑋𝐴 = algebraic sum 

of the resolved parts of the forces along the  plane , and 

∑𝑌𝑃  = algebraic sum of the resolved parts of the forces 

Along a direction perpendicular to the inclined   plane . 

 

Now , 

∑𝑋𝐴 =-F – W sin β + P cos α  ………………………..   (28) 

and∑𝑌𝑃  =R + P sin α – W cos β ………………….     (29)   

According  to condition (a) , we get 

     - F – W sin β + P cosα  = 0 

or, - μR – W  sin β + P cos α  = 0 

or,  P cos α  = μR + W  sin β …………………..…….   (30) 

According to condition (b) , we get 

R + P sin α – W cosβ  = 0 

or,  R = W cos β  - P sin α   …………………..…….   (31) 

 
Putting this value of R in equation (30) we get, 

P cosα  = μ(W cos β  - P sin α ) +W  sin β             

= μWcosβ  -μP sin α + W  sin β    

 

or,    P( cos α + μ sin α ) = W (μ cos β  + sin β) 

         W (μ cosβ  + sin β) 

P =   ────────────            …………………….  (32) 

           (cos α + μ sin α )    

Let,θ = angle of friction. Therefore μ = tan θ  

             W ( tan θ cos β  + sin β) 

P =   ────────────── 
            (cos α +  tan θ sin α )    

             W (sin θ cosβ  +cos θ sin β) 

       ────────────────── 

                           cos θ 

P =   ────────────────── 

           (cos αcos θ + sin α sin θ ) /cos θ 

               W sin( θ + β) 

P =     ──────────               …………………….   (33) 

                cos (α - θ) 

 

XIII. MOVE A BODY ROAD BANKING IN 

MOUNTAIN AREA 
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N = mg – 4m𝜋2𝑓2r                 ……….   (34) 

For contact in road N =0 

mg – 4m𝜋2𝑓2r = 0                  ……..  (35) 

or, 4m𝜋2𝑓2r = mg 

𝑜𝑟,    𝑓2 = g/(4𝜋2r) 

f =  𝑔/(4𝜋2𝑟)1/2           ……….  (36) 

 

Now using the logical optimal regulator we try to design 

the path optimally and get the following outcomes where it 

is shown that the curve try to follows the smoothness 

behaviors after the processing time on output characteristic 

of the various side angels of the car as well as velocity 

control output. 

 

 
 

 
 

 
 

 

 
 

XIV. CONCLUSION 

An approximation approach an optimal control is 

optimized by a systematic process. Hamilton – Jacobi – 

Bellman equation shows the way which are user friendly 
but the corresponding Linear Quadratic Regulator(LQR) 

attached with it can be 3 to 6 times worse . In that case we 

considered here minimum time solution process.  

 

In the A to Z process of the corresponding would be an 

effective approach to go ahead to the original hardware 

implementation . On this surcumtences are logical optimal 

regulator design for minimization the error as well as the 

interrupts fetching in the time of a car driving in mountain 

area is mostly demand , which is to be try to maintain 

through out the project.  
 

ACKNOWLEDGMENTS 

The authors would like to thank the authorities of Birbhum 

Institute of Engineering and Technology for providing 

every kind of supports and encouragement during the 

working process. The authors thanks to reviewers for 

giving us such attention and time. The authors also 

acknowledge the unknown referees for their valuable 

comments and suggestions for improvement. Last but not 

the least the authors are giving a vote of thanks to our 

nearest and dearest parents and our be loving family 
members for providing mentally support to us. 

 

REFERENCE  
[1] William Blake,”optimal control,” Nonlinear and Dynamic 

Optimization: From Theory to Practice.” B. Chachuat©2007  

Automatic Control Laboratory, EPFL, Switzerland. 

[2] J. K. Hedrick and A. Girard , “Control of Nonlinear Dynamic 

Systems: Theory and Applications” Copyright © 2010 All rights 

reserved 

[3] G. Zhang, L. Liu and W. Liu , “Linear Quadratic Optimal Control 

Based On Dynamic Compensation” Received October 2010; 

revised March 2011. 

[4] Yvo Boersand Hans Driessen ,” On the modified Riccati equation 

and its application to target tracking .” 

[5] Alexander A. Bolonkin and Robert L. Sierakowski ,” Design of  

Optimal Regulators .“San  Diego,  California, USA, 15-18 Sep 

2003. 

[6] Brian D.O. Anderson and John B. Moore ,” Optimal Control  

Linear Quadratic Methods.” @ 1989 by Prentice-Hall, Inc. A 

Division of   Simon & Schuster Englewood Cliffs, NJ 07632. 

[7] Karl Berntorp,” Particle Filtering and Optimal Controlfor Vehicles 

and Robots.” Fc 2014 by Karl Berntorp. All rights reserved. Printed 

in Sweden by Media-Tryck.Lund 2014. 

[8] Admin, “ Guideto driving Up and down hills .” Apr 23 2012. 

[9] A.R. Basu ,” Engineering Mechanics.”  

[10] Mohammad Shahab and Prof. Magdi S. Mahmoud ,” Optimal 

Control of Robotic Wheelchair .” 



ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 3, March 2015 
 

Copyright to IJARCCE                                                 DOI  10.17148/IJARCCE.2015.43132 553 

BIOGRAPHIES 

 

Dhritimoy Roy was born in India. He is a 

student in the Department of Electronics 

and Communication Engineering, Birbhum 

Institute of Engineering and Technology ( 
Govt. Aided Institution ), Suri, Birbhum-

731101 under West Bengal University of 

Technology, Kolkat since 2011. His currently research 

interest in An effective  approach for car driving in 

mountain area using Optimal  Regulator. 

 

Avinash Kumar was born in India. She is pursuing 

B.Tech in Electronics and Communication Engineering 

from Birbhum Institute of Engineering & Technology, 

Suri Affiliated to West Bengal University of Technology, 

Kolkata since 2011. His currently research interest in An 
effective  approach for car driving in mountain area using 

Optimal  Regulator. 

 

Abhik Ghosh  was born in India. He is pursuing B.Tech 

in Electronics and Communication Engineering from 

Birbhum Institute of Engineering & Technology, Suri 

Affiliated to West Bengal University of Technology, 

Kolkata since 2011.His currently research interest in An 

effective  approach for car driving in mountain area using 

Optimal  Regulator. 

 

Nirmaly a Chandra was born in India. He 
has been an Assistant Professor in the 

Department of Electronics and 

Communication Engineering, Birbhum 

Institute of Engineering and Technology ( 

Govt. Aided Institution ), Suri, Birbhum-

731101. His currently research interest in Control System, 

Adhoc Networks , Digital Modulation, Digital Signal 

Processing etc. 

 

 

 
 

 

 

 

 

 


