
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45138 650

A Survey on Context-Aware Middleware

Chitra G. Sahu
1
, Dr. D. S. Adane

2

Research Scholar, Department of Computer Science and Engineering, ShriRamdeobaba College of Engineering and

Management, Nagpur, India.
1

Head of Department, Department of Information Technology, ShriRamdeobaba College of Engineering and

Management, Nagpur, India.
2

Abstract: The middleware deals with different functionality such as service discovery, asynchronous messaging,

publish/subscribe event management,managingand storage of context information, constructing the user interface and

management of the local and network resources. Also, it allows controlling the connectivity of the device; the

middleware is proficient to switch traffic from one network connection to another.

In this literature review paper, we are presenting the experience of several research papers related to the next generation

of middleware systems. Our work is concerned with providing basic understanding about the current requirements of

mobile computing systems and how they can be achieved by modifying the existing middleware systems. Initially, we

have defined Mobile Computing, its functions and different Mobile Platforms. Further, we have defined middleware

and described its common features. Purposely, we have indicated the major challenges in mobile computing systems

and analyzed the requirements of mobile computing. Following this, we review the different categories of mobile

middleware technologies and show their relative strengths and weaknesses. On a broader perspective, we have tried to

identify the major requirements for context-aware middleware systems and discussed how context-aware middleware

can resolve the major issues in the development of application for pervasive computing. Also, we have highlighted the

latest trend in context-aware computing; Internet of Things (IoT).

Keywords: Mobile Computing; Middleware; Context-Aware Middleware; Internet of Things.

I. INTRODUCTION

The availability of lightweight, portable computers and

wireless technologies has created a new class of

applications called mobile applications, presenting

challenging problems to the designers. These applications

often run on scarce resource platforms such as personal

digital assistants, notebooks, and mobile phones, each of

which have limited CPU power, memory, and battery life.

They are usually connected to wireless links, which are

characterized by lower bandwidths, higher error rates and

more frequent disconnections. To support designers

building mobile applications, research in the field of

middleware systems has proliferated. Middleware aims at

facilitating communication and coordination of distributed

components, concealing complexity raised by mobility

from application developers as much as possible. Most

distributed applications and services were designed with

the assumption that the terminals were powerful and

connected to fixed networks. Conventional middleware

technologies distribution and thus, have focused on

concealingthe problems of heterogeneity to enable the

development of distributed systems. They let the

application developers to focus on application

functionality rather than on handling explicitly with

distribution issues. Traditional middleware systems such

as CORBA, DCOM and Java RMI have shown their

suitability for standard client-server applications.

However, under the highly variable computing

environmental conditions that characterize mobile

platforms, it is believed that existing traditional

middleware systems are not capable of providing adequate

support for the mobile wireless computing environment.

There is a great demand for designing modern middleware

systems that can support new requirements imposed by

mobility and as context aware middleware deals with the

current context of the user, we found in our survey that it

is the only middleware that can meet the changing

requirements as it can adapt itself according to the

changing context. Thus we have focused our survey on

context-aware middleware as it is the most efficient

middleware for mobile computing systems.

In this paper Section II defines middleware and gives

common features and functions of middleware. In Section

III we present a detailed description of context-aware

middleware, defines context describes its life cycle and

highlights main characteristics of context information;

Section IV focuses on the issues related to context-aware

middleware. Section V points out future directions of

research in the area of context-aware middleware for

mobile computing and Section VI concludes the paper.

II. MIDDLEWARES

Middleware plays a vibrant role in hiding the

complexity of distributed applications. These applications

usually operate in an environment that may include

heterogeneous computer architectures, operating systems,

network protocols, and databases. It is unpleasant for an

application developer to deal with such heterogeneous

plumbing. Middleware’s primary role is to conceal this

complexity from developers by deploying an isolated layer

of APIs. This layer bridges the gap between application

program and platform dependency.

Middleware is defined as follows by Linthicum D.[1] –

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45138 651

“Middleware is an enabling layer of software that resides

between the application program and the networked layer

of heterogeneous platforms and protocols. It decouples

applications from any dependencies on the plumbing layer

that consists of heterogeneous operating systems, hardware

platforms and communication protocols”.

Fig 1.Middleware Layer

A. Common Features of Middleware

The following common features of wireless middleware

products are needed to support mobile computing

applications [2]:

Connection and message delivery: Middleware helps

establish connections between mobile clients and servers

over wireless networks and delivers messages over the

connection. It also stores and forwards messages if the user

is disconnected from the network.

Transformation: The middleware transforms data from one

format to another (e.g., HTML to WML). The

transformation may be intelligent enough to transform

different types of data to different types of devices.

Detection and storage: Wireless middleware products can

detect and store mobile device characteristics in a

database. Upon detecting the type of mobile device or

channel being used, the middleware can optimize the

wireless data output according to device attributes.

Optimization: Middleware products can compress data to

minimize the amount of data being sent over a slow

cellular wireless link.

Security: Security features can be imbedded in wireless

middleware to ensure end-to-end security. For example,

digital certificates for handheld devices can be managed by

a middleware service.

Operation support: Middleware can offer network and

systems management utilities and tools to allow

monitoring and troubleshooting wireless devices and

networks.

Fig 2. Functions of Wireless Middleware

The figure shows how middleware allows device,

application server and database to work together as a

mobile application. It also identifies the device and the

communication protocol used which lets other parties

know how to communicate with the device, it gives

database and device a transparent route to each other’s

data and it also provide API to the application server for

working with the device.

III. CONTEXT-AWARE MIDDLEWARE

Mobile systems run in an extremely dynamic

environment. The execution context changes frequently

due to the user’s mobility. Mobile hosts often roam around

different areas, and services that are available before

disconnecting may not be available after reconnecting.

Also, the bandwidth and connectivity quality may quickly

alter based on the mobile host movements and their

locations. The application developers cannot predict all the

possible execution contexts that allow the application to

know how to react in every scenario. The middleware has

to expose the context information to the application to

make it aware of the dynamic changes in execution

environment. The application then instructs the

middleware on how to adapt its own behavior in order to

achieve the best quality of service. Many research groups

gave special attention in particular to location awareness.

For example, location information was exploited to

provide travelers directional guidance, to discover

neighboring services and to broadcast messages to users in

a specific area. Most location-aware systems depend on

the underlying network operating system to obtain location

information and generate a suitable format to be used by

the system. The heterogeneity of coordination information

is not supported and hence different positioning systems

are required to deal with different sensor technologies,

such as the Global Positioning System (GPS) outdoors,

and infrared and radio frequency indoors.

Context awareness involves performing data acquisition

from sensors, context recognition and other tasks

necessary to complete before the context can actually be

used. Delegating the data acquisition and context

processing tasks to applications makes them almost

impossible to reuse. One solution to such a problem is to

decouple the tasks from applications and move desired

functionality to the lower layers. Such layers, which serve

the needs of applications, usually form a special layer

called middleware. This middleware layer hides the

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45138 652

heterogeneity and distributed nature of devices measuring

the context information. A context-aware middleware

serves the context needs of applications.

A context-aware middleware has to provide the

applications with the following context-oriented

functionality [3]:

 support of a variety of sensor devices

 support of the distributed nature of context

information, because the data comes from

different sources

 providing for transparent interpretation of

applications and abstraction of context data

 maintenance of context storage

 control of the context data flow

Mobility introduces a number of constraints to the

middleware [4]:

 the bandwidth is low and hosts can be

unreachable due to network partitions or poor

coverage

 the local resources like memory capacity and

CPU power of the device are very limited

 the communication between the system

components is asynchronous

 the execution environment is dynamic

Current Context Aware Middleware free developers from

the implementation of low-level details related to the

network, like Concurrency Control, Transaction

management, Network Communication, so focus is on

application requirements. Modern distributed applications

need a middleware that is capable of adapting to

environment changes.

Fig 3. Architecture of a context-aware system

As per Marco B. and Leonardo B. [6], Context-awareness

involves acquisition of contextual information, reasoning

about context and modifying one’s behavior based on the

current context. A middleware for context awareness

would provide support for each of these tasks. It would

also define a common model of context, which all agents

can use in dealing with context. It would also ensure that

different agents in the environment have a common

semantic understanding of contextual information.

 “A context attribute is an element of the context model

describing the context. A context attribute has an

identifier, a type and a value, and optionally a collection of

properties describing specific characteristics [7].”

As per Perera C. et al.[8], there are two main forms of

context that are often used by the applications-

Primary context: Any information retrieved without using

existing context and without performing any kind of sensor

data fusion operations (e.g. GPS sensor readings as

location information).

Secondary context: Any information that can be computed

using primary context. The secondary context can be

computed by using sensor data fusion operations or data

retrieval operations such as web service calls (e.g. identify

the distance between two sensors by applying sensor data

fusion operations on two raw GPS sensor values). Further,

retrieved context such as phone numbers, addresses, email

addresses, birthdays, list of friends from a contact

information provider based on a personal identity as the

primary context can also be identified as secondary

context.

Fig 4. Context categorization in two different perspectives:

conceptual and operational

With advances in technology sensors are being deployed at

a significant rate. It generate enormous amount of raw

data, all the raw data gathered from sensors are understood

and added value by their collection, modelling, distribution

and reasoning about the context. Huebscher M. C.,

McCann J. A., [9] has given the layers involved in context

provision and is as depicted in the figure below:

Fig 5. Layers in context provision

Sensors are at the bottom layer todeliver raw sensor data.

These could be wireless sensor networks, ultrasonic

badges for location, RFID tags for identification, video

cameras for tracking, or others. These produce raw sensor

data, often preprocessed for saving communication cost as

much as the sensor devices allow. These data are passed

up one level in to the context providers.

Context providers (CPs) are components (software or

hardware) that aggregate and interpret the sensor data to

produce some higher-level context, e.g. location, identity,

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45138 653

type of activity, health condition of a person. As illustrated

in the figure, more than one CP may access the same group

of sensors. Similarly, it is possible for one CP to use

sensor data from a group of sensors, as data redundancy

often improves the total reliability of the derived context.

Context services (CSs) connects below to different context

providers that provide the same type of context, e.g.

location, but implemented using different underlying

sensors, and above connect to the applications. They allow

an application to use a type of context while abstracting

from the actual instance of a context provider. An

application can poll for context information or subscribe

for notification when a certain condition on the context

information is met, e.g. when the temperature exceeds

26ºC or when Alice enters the kitchen.

Certain CPs and applications may use context information

from a CS to provide higher-level context. For instance, a

CS may provide location in the form of 2D or 3D

coordinates in the home. A CP may then use this

information to determine the room in the home this

location maps to. Again, this higher-level context would be

delivered through a context service.

A. Context Life Cycle

Dey provided a definition for context as follows [5]:

“Context is any information that can be used to

characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the

interaction between a user and an application, including

the user and applications themselves.”

This section shows the movement of context in context-

aware systems. In addition to the life cycles, [10]

identified three phases in a typical context management

system: context acquisition, information processing, and

reasoning and decision. Perera C.et al. [8] derived an

appropriate (i.e. minimum number of phases but includes

all essential) context life cycle as depicted in Figure 6.

This is the simplest form of a context life cycle. These four

steps are essential in context management systems and

middleware solutions.

Fig 6. Context life cycle

This context life cycle consists of four phases. First,

context needs to be acquired from various sources. The

sources could be physical sensors or virtual sensors

(context acquisition). Second, the collected data needs to

be modeled and represent according to a meaningful

manner (context modeling). Third, modeled data needs to

be processed to derive high-level context information from

low-level raw sensor data (context reasoning). Finally,

both high-level and low-level context needs to be

distributed to the consumers who are interested in context

(context dissemination).

1) Context Acquisition:

There are three ways to acquire context: sense, derive,

and manually provided.

Sense: The data is sensed through sensors, including the

sensed data stored in databases (e.g. retrieve temperature

from a sensor, retrieve appointments details from a

calendar).

Derive: The information is generated by performing

computational operations on sensor data. These operations

could beas simple as web service calls or as complex as

mathematical functions run over sensed data (e.g. calculate

distance between two sensors using GPS coordinates). The

necessary data should be available to apply any numerical

or logical reasoning technique.

Manually provided: Users provide context information

manually via predefined settings options such as

preferences. This method can be used to retrieve any type

of information.

2) Context Modelling:

“A context model identifies a concrete subset of the

context that is realistically attainable from sensors,

applications and users and able to be exploited in the

execution of the task. The context model that is employed

by a given context-aware application is usually explicitly

specified by the application developer, but may evolve

over time [7].” Context modelling is also widely referred

to as context representation. Typically, there are two steps

in representing context according to a model:

Context modelling process: In the first step, new context

information needs to be defined in terms of attributes,

characteristics, relationships with previously specified

context, quality-of context attributes and the queries for

synchronous context requests.

Organize context according to the model: In the second

step, the result of the context modelling step needs to be

validated. Then the new context information needs to be

merged and added to the existing context information

repository. Finally, the new context information is made

available to be used when required.

3) Context Reasoning:

Context reasoning can be defined as a method of

deducing new knowledge, and understanding better, based

on the available context [11]. It can also be explained as a

process of giving high-level context deductions from a set

of contexts [12]. The requirement of reasoning also

emerged due to two characteristics of raw context:

imperfection (i.e. unknown, ambiguous, imprecise, or

erroneous) and uncertainty. Context reasoning is broadly

divided into three phases.[13]

Context pre-processing: This phase cleans the collected

sensor data. Due to inefficiencies in sensor hardware and

network communication, collected data may be not

accurate or missing. Therefore, data needs to be cleaned by

filling missing values, removing outliers, validating

context via multiple sources, and many more. These tasks

have been extensively researched by database, data

mining, and sensor network research communities over

many years.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45138 654

Sensor data fusion: It is a method of combining sensor

data from multiple sensors to produce more accurate, more

complete, and more dependable information that could not

be achieve through a single sensor [14]. In the IoT, fusion

is extremely important, because there will be billions of

sensors available. As a result, a large number of alternative

sources will exist to provide the same information.

Context inference: Generation of high-level context

information using lower-level context. The inferencing can

be done in a single interaction or in multiple interactions.

For example, in the first iteration, longitude and latitude

values of a GPS sensor may be inferred as PurplePickle

cafe in canberra. In the next iteration PurplePickle café in

canberra may be inferred as John’s favourite cafe. Each

iteration gives more accurate and meaningful information.

4) Context Distribution:

Context distribution is a straight forward task. It

provides methods to deliver context to the consumers.

From the consumer perspective this task can be called

context acquisition. There are two methods to that are

often used in context distribution:

Query: Context consumer makes a request in terms of a

query, so the context management system can use that

query to produce results.

Subscription (also called publish / subscribe): Context

consumer can be allowed to subscribe with a context

management system by describing the requirements. The

system will then return the results periodically or when an

event occurs (threshold violation). In other terms,

consumers can subscribe for a specific sensor or to an

event.

B. Characteristics of Context Information

Several requirements have to be taken into account

when modeling context information [15]:

Heterogeneity and mobility:Context data obtained from

databases or digital libraries like geographic map data are

often static. Many context-aware applications are also

mobile or depend on mobile context information sources.

This adds to the problem of heterogeneity as the context

information provisioning must be adaptable to the

changing environment. Also, location and spatial layout of

the context information play important roles due to this

requirement.

Relationships and dependencies: There exist various

relationships between types of context information that

have to be captured to ensure correct behavior of the

applications. One such relationship is dependency whereby

context information entities/facts may depend on other

context information entities.

Timeliness:Context-aware applications may need access to

past states and future states (prognosis). Therefore,

timeliness (context histories) is another feature of context

information that needs to be captured by context models.

Imperfection:Due to its dynamic and heterogeneous

nature, context information may be of variable quality. In

fact, it may even be incorrect. Most sensors feature an

inherent inaccuracy and the sensed values age if the

physical world changes, so that this inaccuracy increases

over time. Thus, a good context modeling approach must

take these problems into account to enable proper

reasoning about context information changes to achieve

appropriate adaptations for the application, and thus

provide an experience for the user that is consistent with

the physical world.

Reasoning:Context-aware applications use context

information to evaluate whether there is a change to the

user and/or to the environment situation; taking a decision

whether any adaptation to that change is necessary often

requires reasoning capabilities. Reasoning techniques can

also be adopted to derive higher level context information.

IV. ISSUES WITH CONTEXT-AWARE MIDDLEWARE

With the birth of context-aware middleware many

issues are came out, like security, balance of user control,

threat to privacy of the user. In the following sections we

examine the issues with the new middleware approach.

A. Balance of user control

In order to increase software autonomy, applications

depend on context information to dynamically adapt their

behavior to match the environment and user requirements

[6]. Therefore, context-aware applications not only require

middleware for distribution transparency of components,

but also to support personalization and adaptation based on

context-awareness. However, context-aware applications

may not always adapt as the user expects, and may cause

users to feel loss of control over the behavior of their

application.

Fig 7. Continuum of user control versus software autonomy

However we can see in figure, at the leftmost end (A),

users is given full control over application behavior, and

applications have very little autonomy. Applications

designed in this way are the most interactive. Conversely,

at the other end (C), applications only require a small

amount of user control. Applications can also occupy any

intermediate position on the continuum (position B). The

appropriate position along the continuum will be dictated

by the user’s needs, situation and expertise.

But, context-aware applications may not always adapt as

the user expects, and may cause users to feel loss of

control over the behavior of their applications. Thus, an

autonomous context-aware system must provide

mechanisms to strike a suitable balance between user

control and software autonomy.

In traditional applications, the trade-off between user

control and software autonomy has been fixed at design-

time. In contrast, context-aware applications may need to

adjust the balance of user control and software autonomy

at run-time by adjusting the level of feedback to users and

the amount of user input.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45138 655

B. Privacy

Privacy is the right of the individual to control his

personal information by posing specific obligations on the

subjects that process his data. Privacy sensitive

information is available to pervasive service providers

continuously making it difficult to protect it. Stealing

sensitive information through analysis of traffic might be

constrained with use of cryptography but it is still possible

to glean some information like identity, location and

activities. Under any situation it is important to ensure that

users don’t feel they are being spied on and using the

services exposes them to unexpected threats and misuse of

context and private information.

New technologies like RFID (Radio Frequency

Identification) have on one hand made pervasive

computing a reality but on the other hand have caused

concerns about privacy as users are tracked when they

move around. Laws such as the Patriot Act are also

causing concerns that not only can hackers but also law

enforcement agencies can intrude on the privacy of

individuals. Protection of private and sensitive information

is mandated under laws such as HIPAA (Health Insurance

Portability and Accountability Act) and the European

Union’s Data Protection Directive, but their

implementation in the Pervasive Computing realm is

complicated ([16], [17]).

Privacy of location information deals with controlling

access to the huge amount of sensitive information that

might be generated when location systems continuously

track users [18]. The user would not want to stop all access

because some applications can use this information to

provide critical services like public safety, transportation,

emergency response, and disaster management [19], but

there is a need for the user to be in control [18].

C. Security

When it comes to security, one size does not fit all [20].

Hence, the security architecture deployed should be able to

provide different levels of security services based on

system policy, context information, environmental

situations, temporal circumstances, available resources,

etc. Scenarios which require a higher-level of assurance or

greater security may require users to interact with the

security subsystem explicitly by, say, authenticating

themselves using a variety of means to boost system’s

confidence.

Often, traditional security is somewhat static and context

insensitive. Pervasive computing integrates context and

situational information, transforming the computing

environment into a sentient space. The security aspects of

it are no exceptions. Security services should make

extensive use of context information available. For

example, access control decisions may depend on time or

special circumstances. Context data can provide valuable

information for intrusion detection mechanisms. The

principal of “need to know” should be applied on temporal

and situational basis. For instance, security policies should

be able to change dynamically to limit the permissions to

the times or situations when they are needed. However,

viewing what the security policy might become in a

particular time or under a particular situation should not be

possible. In addition, there is a need to verify the

authenticity and integrity of the context information

acquired. This is sometimes necessary in order to thwart

false context information obtained from rogue or

malfunctioning sensors.

Pervasive computing environments can host hundreds or

thousands of diverse devices. The security services should

be able to scale to the “dust” of mobile and embedded

devices available at some particular instance of time. In

addition, the security services need to be able to support

huge numbers of users with different roles and privileges,

under different situational information.

V. REQUIREMENTS OF CURRENT MIDDLEWARE SYSTEM

The middleware must address many of the requirements

of traditional distributed systems, such as heterogeneity,

mobility, scalability and tolerance for component failures.

In addition, it must protect user’s privacy. The large

number of components that are present in context-aware

systems introduces a requirement for straight- forward

techniques for deploying, configuring and managing

networks of sensors [21][22].

Support for heterogeneity: hardware components ranging

from resource-poor sensors, actuators and mobile client

devices to high-performance servers must be supported, as

must a variety of networking interfaces and programming

language.

Support for mobility: all components can be mobile and

the communication protocols must therefore support

appropriately flexible forms of routing. Context

information may need to migrate with context-aware

components.

Scalability: context processing components and

communication protocol must perform adequately in very

changing domains.

Support for privacy: flows of context information between

the distributed components of a context-aware system

must be controlling according to user’s privacy needs and

expectations.

Tolerance for component failures: sensors are likely to

fail in the ordinary operation of a context-aware system;

disconnection may also occur.

Ease of deployment and configuration: it must be easily

deployed and configured to meet user and environmental

requirements.

Dynamic reconfiguration: detecting changes in available

resources and reallocating them or notify the application to

change its behavior.

Adaptivity: the ability of a system to recognize unmet

needs within its execution context and to adapt itself to

meet those needs.

Asynchronous paradigm: decoupling the client and server

components and delivering multicast messages.

VI. CONCLUSION

The current state-of-the-art of context-aware

middleware explores quite different approaches to support

pervasive and mobile computing based on context

information. With the rapid development of information

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45138 656

technology, it is inevitable that the distributed mobile

computing will evolve to pervasive computing. The shift

to the pervasive computing paradigm brings forth new

challenges of security and privacy.

Based on our survey we conclude that context-aware

middleware is the only middleware that can meet the new

requirements imposed by mobility as it can sense the user

activity continuously. In our future work we propose to

provide dynamic reconfiguration to the context-aware

middleware so that it can adapt and reconfigure itself to

enhance the behavior of the application. This will help

designers building mobile applications to better utilize the

scarce resources of mobile device like CPU power, battery

life and memory.

REFERENCES

[1] Linthicum D., B2B Application Integration: e-Business-Enable

Your Enterprise, 2001

[2] Umar A., e-Business and Distributed Systems Handbook:
Middleware Module. 2nd ed. NGE Solutions, 2004.

[3] Salber D., Dey A., Abowd G., “The Context Toolkit: Aiding the

Development of Context-Enabled Applications”, in Proceedings of
ACM SIGHI Conference on Human Factors in Computing

Systems (CHI-99), Pittsburgh, Pennsylvania, USA, 1999.

[4] Carpa L. et al.: Middleware for Mobile Computing, InProceedings
of the 8th Workshop on Hot Topics in Operating Systems, Elmau,

Germany, 2001.

[5] Abowd G. D., Dey A. K., Brown P. J., Davies N., Smith M., and
Steggles P., “Towards a better understanding of context and

context-awareness,” in Proceedings of the 1st international

symposium on Handheld and Ubiquitous Computing, ser. HUC

’99.London, UK: Springer-Verlag, 1999, pp. 304–307.

[6] Marco B. and Leonardo B., “A survey about context-aware

middleware”, Retrieved from
http://www.slideshare.net/LeoBruni/a-survey-about-contextaware-

middleware, June 16, 2009.

[7] Henricksen K., “A framework for context-aware pervasive
computing applications,” Computer Science, School of

Information Technology and Electrical Engineering, The

University of Queensland, September 2003,
http://henricksen.id.au/publications/phd-thesis.pdf [Accessed

on:2012-01-05].

[8] Perera C., Zaslavsky A., Christen P. and Georgakopoulos D.,
“Context Aware Computing for The Internet of Things: A

Survey”, published in Communications Surveys & Tutorials,
IEEE (Volume:16 , Issue: 1), 03 May 2013.

[9] Huebscher M. C., McCann J. A., “Adaptive middleware for

contextaware applications in smarthomes”, Published in
Proceedings MPAC ’04 Proceedings of the 2nd workshop on

Middleware for pervasive and ad-hoc computing, Pages 111 – 116.

[10] Bernardos A., Tarrio P., and Casar J., “A data fusion framework
for context-aware mobile services,” in Multisensor Fusion and

Integration for Intelligent Systems, 2008. MFI 2008. IEEE

International Conference on, aug. 2008, pp. 606 –613.
[11] Bikakis A., Patkos T., Antoniou G. and Plexousaki D., “A survey

of semantics-based approaches for context reasoning in ambient

intelligence,” in Ambient Intelligence 2007 Workshops, M. M, F.
A, and A. E, Eds., vol. 11. Springer-verlag berlin, 2008.

[12] Guan D., Yuan W., Lee S., and Lee Y.K., “Context selection and

reasoning in ubiquitous computing,” in Intelligent Pervasive
Computing, 2007. IPC. The 2007 International Conference on, oct.

2007, pp. 184 –187. [Online].

[13] Nurmi P. and Floréen P., “Reasoning in Context-Aware Systems.”
Position paper Department of Computer Science, University of

Helsinki., Dec 2004.

[14] Hall D. and Llinas J., “An introduction to multisensor data fusion,”
Proceedings of the IEEE, vol. 85, no. 1, pp. 6 –23,jan 1997.

[15] Shehzad A., Ngo H.Q., Pham K.A., Lee S. Y., “Formal Modeling

in Context Aware Systems”, In Proceedings of the 1 st
International Workshop on Modeling and Retrieval of Context

(MRC’2004).

[16] Stanford V., “Pervasive health care applications face tough

security challenges”, Pervasive Computing, IEEE, Volume 1, Issue
2, April-June 2002, pp. 8-12.

[17] Jacobs A. R., Abowd G. D., “A Framework for comparing

perspectives on privacy and pervasive technologies”, Pervasive
Computing, IEEE, Volume 2, Issue 4, Oct-Dec 2003, pp. 78-84

[18] Beresford A. R., Stajano F., “Location Privacy in Pervasive

Computing”, Pervasive Computing, IEEE, Volume 2, Issue 1, Jan-
Mar2003,pp.46-55.

[19] Lee C.K., Lee W.C., Leung H.V., “Nearest Surrounder Search”,

IEEE International Conference on Data Engineering, April 2006.
[20] Campbell R., Al-Muhtadi J., Naldurg P., Sampemane G., and

Dennis Mickunas M.,“Towards Security and Privacy for Pervasive

Computing” ISSS'02 Proceedings of the 2002 Mext-NSF-JSPS
international conference on Software security: theories and

systems, pages 1-15.

[21] Hadim S., Al-Jaroodi J. and Mohamed N., “Trends in middleware

for mobile ad hoc networks”, JCM,1(4):11–21, 2006.

[22] Henricksen K., Indulska J., McFadden T. and Balasubramaniam S.,

“Middleware for distributed context-aware systems”, In
International Symposiumon Distributed Objects and Applications

(DOA, pages 846–863. Springer, 2005

BIOGRAPHIES

Miss. Chitra Sahuis PG Scholar. She

holds B.E in Computer Engineering and

pursuing her M.Tech from

ShriRamdeobaba College of

Engineering and Management, Nagpur.

Her areas of interests are Computer

Networks, Context Aware Middleware, Pervasiveand

Ubiquitous Computing.

Dr.D. S. Adane is currently working as

Professor and Head, Information

Technology Department, Shri

Ramdeobaba College of Engineering

and Management, Nagpur. He is PhD in

Computer Science and Engineering and has over 22 years

of experience in teaching and research. His areas of

interest are Distributed and Mobile Computing, Wireless

Sensor Networks, Mobile Agents and Network Security.

He is also Life member of ISTE and Institution of

Engineers India (MIE).

