
 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4964 297

Dead Line Scheduling In Grid Computing

Environments

R. Ananthi Lakshmi
1
, S.Vidhya

2

M Phil Scholar, Computer Science, Kg College of Arts and Science, Coimbatore, India
1

 Assistant Professor, Computer Science, Kg College of Arts and Science Coimbatore, India
2

Abstract: Grid, it is extensively used in science and technology. It fully provides a resource sharing among different

organizations. Now days, grid’s usage is rapidly increasing in industry also. In Dead Line Scheduling creates a

fundamental in choosing the right order of task scheduling. In the traditional dead line scheduling such as Earliest

Deadline First (EDF), provides a results in consuming more resources. On the other hand, we can use the tasks in

decreasing order of their deadlines in Latest Deadline First (LDF).

Keywords: Dead Line Scheduling, Computational Model, Task Model, Redundant Scheduling.

I. INTRODUCTION

Grids infrastructures, large scale computational platforms

and it are a cycle sharing systems have grown in running

the areas High Energy Physics, climate production and bio

formatics. These systems provide high computational

power in distributed around the internet.

Many of these applications are fully composed by

computational tasks that require specific deadlines to meet

for the successful applications. These deadlines are time-

constrained or real time nature of applications first. The

nodes in such a systems are very highly speed. In addition,

the capacity of individual nodes is also varying loads.

In a redundant scheduling, the tasks assigned to multiple

nodes to improve the completion and employed in such

systems. These systems provide a scalability and

enormous computational power by idle processing cycles

from computing hosts distributed around the internet.

Their low deployment and operational cost in addition to

their scalability has made these infrastructures attractive

for hosting large scale time-critical applications.

II.PROPOSED WORK

The redundant scheduling, it creates a dilemma in

choosing the right order of task scheduling. It gives a low

dead line asks. As in dead line based scheduling

algorithms such as Earliest Deadline First (EDF), it

consumes more resources. Since this tasks have more level

deadlines and need more resources for their timely

completion. On the other hand, the tasks decreasing order

of their dead lines such as Latest Dead line First (LDF)

will provide better resource utilization. It provides a

tighter deadline tasks.

In this paper, we propose a new scheduling algorithm

called Limited Resource Earliest Deadline (LRED).That is

specifically designed to address the dynamic

computational environments. LRED, it couples redundant

scheduling with the dead line driven scheduling. LRED by

limiting the number of resources consumed per tasks. An

important feature of LRED is that it can achieve the

desired work scheduling.

The design of the LRED algorithm has resulted in the

following key research contributions. We define a

statistical notion of timeliness for a computational node

which can incorporate both inter node heterogeneity as

well as intra node dynamism .LRED uses these timeliness

values to couple redundant scheduling with dead line

driven scheduling in a seamless manner. LRED is a

generalization of EDF and LDF. So that, by tuning this

parameter, LRED reduces to EDF in one extreme and to

LDF in another extreme.

III.LIMITED RESOURCE EARLIEST DEADLINE

SCHEDULING

In this section, we present the Limited Resource Earliest

Deadline Scheduling (LRED): In a general deadline driven

scheduler, explicitly incorporates the redundant

scheduling, and it provides a flexible way to exploit the

computation system. The shorter deadline tasks consumes

a larger number of resources and more likely to fail with

the passage of time. LRED uses these insights to exploit

the throughput fairness trade off. We first present the high

level intuition behind the algorithm it is followed by the

key concepts used by this algorithm and then describe the

algorithm working in detail.

 N: Total no. of tasks in the task pool

 L: Total no. of workers available at the scheduler

 Sk: Set of tasks with ascending deadline values each

 of which can be completed with probability TSR

 by the workers{W1…WK}for k=1,2,…,max .Sk

 could be empty.Sx=Set of tasks

T1 . . . Te Tf . . . Ti . . . Tm . . . Tp . . . Tx . . . TN

 Sx Smax Sn S1

W1 W2 . . . Wn
W

n+1 . . .
W

max . . . WL

Figure 1.Partitioning of the task list by LRED

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4964 298

 Direction of

scheduling

 Beginning set in the

schedule

Sœ
S
max Sn S2 S1

 EDF start------> LREDstart--------> LDFstart

Figure 2. Scheduling by LDF, EDF and LRED

The LRED works by limiting the number of resources

consumed per task while scheduling the selected tasks in

earliest deadline order. To achieve this goal, we can sorts

the task pool in LRED for increasing the order of

deadlines. So that shorter deadline tasks requires more

resources compared to the higher deadline tasks. Then the

LRED schedules the tasks earliest deadline first order

starting from the first task we required. The LRED to

control the throughput fairness tradeoff the system.

IV.KEY CONCEPTS

Consider a set of N workers and L tasks in the systems.

Let us assume that the task list is sorted in increasing order

of task deadlines. Then we assume the workers queue is

sorted in decreasing order of the mean timeliness of the

workers.

Definition 1: k-dependent task

A task is said to be k-dependent if it needs exactly the k

most timely workers in the worker queue to work

successfully.

Definition 2: k-dependent task (Sk)

The set of all k-dependent tasks in the task queue.

Similarly the tasks Tf to Ti belongs to the set Smax, while

tasks Tx to TN belongs to the set S1.S represents the tasks

that cannot be successfully completed with any number of

works from{W1….WL} and with the current worker

pools. Where max is the maximum number of workers

required by any task in the task list. Note that the size of

these set Sk could be zero. Which means that no tasks

which means completely within the tasks.

ALGORITHM 1 LRED

 1: W Set of all available workers

 2: Sort W in decreasing order of T

 3: Sort the task pool in increasing order of D

 4: While W is non-empty do

 5: Organize the task pool into the list {S1,S2,…Smax}

 Based on T of workers in W

 6: V Set of all tasks in the list{Sn,…,S2,S1}

 7: if V is non-empty then

 8: T First task from the first non-empty set Sk in V

 9: Schedule T to k most timely workers

10: Update W by removing the k assigned workers

11: else if n <max then

12. LRED(n+1)

Algorithm 1 shows the pseudo code for LRED.It takes a

parameter n which corresponds to the set Sn to be used as

the set pointer LRED start. The basic algorithm works by

scheduling the group of the n most timely workers among

the available worker list to the shortest deadline task T in

Sn. The value of n signifies which task among all the tasks

in the task pool will be chosen to be scheduled first. When

n=1, the execution of LRED(1) corresponds to LDF.

When n=1, the execution of LRED(1) corresponds to LDF

When n=max, it schedules tasks from Smax until either

Smax becomes empty or all the capable workers are

moving on to Smax-1.This corresponds to an execution of

EDF. Also,to make the algorithm work conserving once it

exhausts all tasks in the sets Sk for k=1,……….n,it

recursively calls LRED(n+1).

 S1

 S2

An

example schedule by LRED (n) for values

of n=1,2.L=6,n=3

The figure gives an illustration of these schedule created

by the LRED (N) algorithm for values of n=1,2.The

figure shows that a higher value of n=2 produces a lower

throughput but completes more short deadline tasks,

whereas with a smaller value of n=1,short deadline tasks

strave while increasing the throughput .

But completes more short deadline tasks whereas with a

smaller value of n=1, short deadline tasks strave while

increasing the net throughput. We next provide detailed

quqntitave evaluation of this algorithm using a simulation

study.

V. THROUGHPUT FAIRNESS TRADEOFF

Figure a and b plot the fairness index FI and throughput

respectively for the different scheduling algorithms. As

expected, the fairness of LRED increases as n increases.

While through put decreases as shown in the figures.EDF

shows the highest fairness and lowest throughput.

It consists the benefits of rescheduling to availability of

newly added resources. The algorithmic scheduling is

helps to achieve the minimum execution time of the

application. In [1], the author proposed the job scheduling

algorithm to schedule the data intensive jobs.

The figure shows the Work Flow Scheduling (WFS)

Architecture [4]. It consists Resource Discovery

&Monitoring, Grid Information Server, Work Flow task

Scheduler, Execution Manager. Grid Information Server is

used to maintain the available grid resources. Resource

Discovery and Monitoring is to monitor and discovered

the grid resources. Execution Manager is to rescheduling

the unexecuted tasks. The Resource Discovery and

Monitoring component notifies either the overload or

new resources to the Execution Manager. The new

Task

pool

Deadline LRED(2) LRED(1)

T
1

D
1

T
1

€{W
1

,W
2

)

T
2

D
1

T
3

D
1

T
4

D
2

T
4

€{W
3

}

T
4

€{W
1

}

T
5

D
2

T
5

€{W
2

}

T
6

D
2

T
6

€{W
3

}

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4964 299

schedules generated are submitted to the Execution

Manager.

(a) FAIRNESS

(b) THROUGH PUT

Comparing F1 and Throughput of LDF and Rand with

LRED for n=1, 4, 7 in a low TE.

(a) Ratio of completed tasks in deadline bins

(b) Ratio of tasks completed in k-dependent sets

Figure a and b plot the fairness index F1 and throughput

respectively for the different scheduling algorithms. As

expected ,the fairness of LRED increases as n increases,

while throughput decreases as shown in figures.EDF

shows the highest fairness and lowest throughput.LDF has

the lowest fairness, however its throughput is lower than

that of LRED(1) which demonstrates the benefit of

scheduling tasks in the increasing order of deadlines

within a k-dependent set (S1 in this case).Rand shows

slightly higher fairness and lower throughput than LDF

because it happens to schedule a greater number of lower

deadline tasks than LDF due to the randomness in

choosing tasks.EDF does not show any dramatic

improvement over LRED(1),because the majority of the

tasks that could be finished with unlimited number of

workers needed only a size of 7 at maximum.

VI.CONCLUSION

 In this paper, we examined the problem of deadline driven

task scheduling in a grid environment. We propose a new

algorithm called Limited Resource Earliest Dead

line(LRED).Our results show that load and the timeliness

level of the underlying environment have a significant

impact on the throughput fairness tradeoff of task

scheduling .We find that LRED provides a powerful

mechanism to achieve desired throughput or fairness under

high loads and low timeliness environments, where these

tradeoffs are most critical.

REFERENCES

[1]. E. Bagarinao, L. F. G. Sarmenta, Y. Tanaka, K. Matsuo, and T.
Nakai. Real-Time Functional MRI Analysis Using Grid Computing.

High Performance Com-putting and Grid, 2004.

[2] P. Bonetto, M. Guarracino, and F. Inguglia. Integrating Medical
Imaging into a Grid Based Computing Infrastructure.

Computational Science and Its Applications - ICCSA, 3044:505–

514, Apr 2004.

[3] K. Budati, J. Sonnek, A. Chandra, and J. Weissman. RIDGE:

Combining Reliability and Performance in Open Grid Platforms.

HPDC, Jun 2007.
[4] E. Caron, P. K. Chouhan, and F. Desprez. Deadline Scheduling with

Priority for Client-Server Systems on the Grid. ACM GRID, Nov
2004.

[5] C. Germain, V. Breton, P. Clarysse, Y. Gaudeau, T. Glatard, E.

Jeannot, Y. Legre, C. Loomis, J. Montagnat, J.-M. Moureaux, A.
Osorio, X. Pennec, and R. Texier. Grid-enabling medical image

analysis. CC- Grid May 2005.

[6] A. K. F. Khattab and K. M. F. Elsayed. Channel- Quality Dependent
Earliest Deadline due Fair Scheduling Schemes for Wireless

Multimedia Networks. ACM MSWiM, 2004.

[7] T. Lam and K. To. Performance guarantee for Online Deadline
Scheduling in the Presence of Overload. ACM SODA, 2001.

[8] C. L. Liu and J. W. Layland. Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment. Journal of
the Association for Computing Machinery 20, 1:46–61, Jan 1973.

[9] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund.

Dynamic Matching and Scheduling of a Class of Independent Tasks

onto Heterogeneous Computing Systems. Heterogeneous Comput-

ing Workshop, Apr 1999.

[10] A. Takefusa, S. Matsuoka, H. Casanova, and F. Berman. A Study of
Deadline Scheduling for Client-Server Systems on the

Computational Grid. HPDC, 2001.

0
1
2
3
4
5
6

 LRED(1)

 LRED(2)

 LRED(3)

0
1
2
3
4
5

 LRED(1)

 LRED(2)

 LRED(3)

0

2

4

6

87 94 101 120

 LRED(1)

 LRED(2)

 LRED(3)

0

1

2

3

4

5

6

 S1 S2 S3 S4

 LRED(1)

 LRED(2)

 LRED(3)

