
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4987 402

SQL Injection Attack Prevention for Web

Applications

Prem Shanker Dwivedi
1
, Atma Prakash Singh

2

Student (M.Tech.), Dept of Computer Science & Engg, Azad Institute of Engineering & Technology, Lucknow, India
1

Assist. Prof., Dept. of Computer Science & Engg, Azad Institute of Engineering & Technology, Lucknow, India
2

Abstract: Presently web users heavily depend on database- driven web applications for an increasing amount of

activities, such as banking, reservation and shopping. When performing such activities, we entrust our personal

information to these web applications and their underlying databases. Web applications are often vulnerable to attacks,

which can give an attacker complete access to the applications‟ underlying database. In an SQL Injection Attack, an

attacker attempts to exploit vulnerabilities in custom web applications by entering SQL code in an entry field such as a

login. If successful, such an attack can give the attacker access to the data on the database used by the application and

the ability to run malicious code on the Web site. Attacks occur when developers combine hard-coded strings with

user-provided input to create dynamic queries. Intuitively, if user input is not properly validated, attackers may be able

to change the developer‟s intended SQL command by inserting new SQL keywords or operators through specially

crafted input strings. As the SQL Injection Attack passes through all the stages as like a normal request from genuine

user the core components of the server may not be able to detect the attack on the Database. Several methods have been

proposed to detect and prevent SQL injection attacks. We devise a method that uses defensive coding and secure hash

algorithm to prevent SQL injection attacks. This method is illustrated by overview, diagrams and step by step

procedure for implementing the technique to protect web application against SQL Injection. We show that this

technique can be used effectively to prevent SQL Injection Attacks through bypass authentication in web application

without degrading the system‟s performance. Finally the method is implemented by using a web application and

MySQL database.

Keywords: SQL, Hash, Web application, Database, vulnerable.

I. INTRODUCTION

In today‟s technology environment the Internet become an

integral part of human life and many enterprises dependent

on it in different ways like storing employee profiles,

accessing the files on remote servers and maintaining user

information, and so on. The Internet is also an inexpensive

solution for the enterprises to maintain a wide area

network, and individual use the Internet for many other

uses like shopping, meeting friends, reading news, and so

on. Due to the rapid developments in Internet transfer

speeds and the flexibility depending on the web

applications is improved a lot. Because of the extensive

use of internet in day-to-day life it became easier for

hackers to attack on personal computers and to theft

identity information like credit cards and personnel files.

The enterprises can protect their employees by taking high

security measures like one-time passwords and unique

identification numbers. However, for a normal consumer it

is more likely to lose their personal information due to the

attacks on internet. Due to the pressure on the employees

who are developing the application, they try to deliver the

application quickly more than considering about all the

security measures that need to consider when developing

the application. This leads the program to be vulnerable to

internet attacks. One type of the attack need to be

considered when developing is SQL injection by which

the hacker can attack the background database application

and get the credit card details of a customer to use it for

unauthorized transactions.

The SQL injection attacks are done on the internet

applications more than the intranet applications. Normally

the administrator would not able to recognize that there is

an attack happened on the database, because of the fact

that the hacker can execute the SQL command as normal

user. As the SQL injection, attack is executed as normal

script that is executed by the application it is highly

difficult for the administrator that there is an attack is

running on the background. The web applications are

being subjected to bombardment of attacks that can pose

risk to an entire enterprise. The hackers deploy a wide

variety of attack vectors against the web applications

ranging from SQL Injection Attacks (SQLIA) to Cross-site

scripting (XSS), Remote File Execution, etc. Most of these

attacks result in severe information breach which can lead

to exposing confidential information like credit card

details of its customers, malicious content being posted on

the organization‟s website, take control of the personal

computers using botnets for sending to pide, stealing

passwords etc. Hence there is a strong need to test the web

applications for potential vulnerabilities and flaws before

they are being deployed. This testing is currently

performed using automated tools for identifying some of

the vulnerabilities and the rest of them are being done

manually by security experts which consumes

considerable time and effort. This attracts more Research

to develop efficient tools and techniques to identify the

vulnerabilities effectively in an automated fashion.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4987 403

Fig.1. Architecture of web application

SQL Injection attack is one of the most important attacks

in the Open Web Application Security Project (OWASP)

top 10 vulnerability list and it has resulted in massive

attacks on a number of websites in the past few years.

SQL Injection vulnerabilities are easy to detect and

exploit , that is why SQL Injection Attacks are

frequently employed by malicious users. Furthermore,

SQL Injection Attack techniques have become more

common, more ambitious, and increasingly sophisticated,

so there is a deep need to find and effective and feasible

solution for this problem in the computer security

community. Detection and prevention against SQL

Injection Attacks is a topic of active research in the

industry and academia. To achieve those purposes,

automatic tools and security systems have been

implemented, but none of them are complete or accurate

enough to guarantee an absolute level of security on web

applications. One of the important reasons of this

shortcoming is that there is a lack of common and

complete methodology for the evaluation of performance.

So we feel that there should be such type of mechanism

which will be easily deployable and provide a good

performance. To achieve this, our research work is driven

to the way of developing a new modified SQL Injection

Prevention Technique.

II. OVERVIEW OF SQL INJECTION

SQL Injection is an attack in which malicious code is

inserted into strings that are later passed to an instance of a

database server for parsing and execution.

The basic principle of SQL injection is to take advantage

of insecure code on a system connected to the Internet in

order to pass commands directly to a database and then to

take advantage of a poorly secured system to leverage an

attacker‟s access. A single suspect responsible for the

majority of SQL Injection problems: the single quote („),

also known as tick. The SQL Injection process uses an

iterative methodology. You first try a single invalid

character and examine the effect. Then you try a simple

SQL command and examine the effect. Eventually, you

will reach the point where you have the correct number of

ticks, parenthesis or other formatting characters. An SQL

injection attack has a set of properties, such as assets under

threat, vulnerabilities being exploited and attack

techniques utilized by threat agents.

A. SOURCES OF SQL INJECTION INPUT

 There are several sources for SQL Injection inputs

given as follows:

1) Injection through user input: In this case, attackers

inject SQL commands by providing suitably crafted

user input. A Web application can read user input in

several ways based on the environment in which the

application is deployed. In most SQL Injection Attacks

that target Web applications, user input typically comes

from „form submissions‟ that are sent to the Web

application via HTTP GET or POST requests.

2) Injection through cookies: Cookies are files that

contain state information generated by Web

applications and stored on the client machine. When a

client returns to a Web application, cookies can be used

to restore the client‟s state information. Since the client

has control over the storage of the cookie, a malicious

client could tamper with the cookie‟s contents. If a

Web application uses the cookie‟s contents to build

SQL queries, an attacker could easily submit an attack

by embedding it in the cookie.

3) Injection through server variables: Server variables

are a collection of variables that contain HTTP,

network headers, and environmental variables. Web

applications use these server variables in a variety of

ways, such as logging usage statistics and identifying

browsing trends. If these variables are logged to a

database without sanitization, this could create SQL

injection vulnerability. Because attackers can forge the

values that are placed in HTTP and network headers,

they can exploit this vulnerability by placing an SQLIA

directly into the headers.

4) Second-order injection: In second-order injections,

attackers add malicious inputs into a system or

database to indirectly trigger an SQLIA when that

input is used at a later time. Second-order injections

are not trying to cause the attack to occur when the

malicious input initially reaches the database. Instead,

attackers rely on knowledge of where the input will be

subsequently used and craft their attack so that it

occurs during that usage. An example of a second order

injection attack is the following:

A user registers on a website using a seeded user name,

such as “admin‟ –”. The application properly escapes

the single quote in the input before storing it in the

database, preventing its potentially malicious effect. At

this point, the user modifies his/her password, an

operation that typically involves the following: (1)

checking that the user knows the current password and

(2) changing the password if the check is successful.

To do this, the Web application might construct an

SQL command as follows:

SQL String = ―UPDATE users SET password=‘‖ +

newPassword +‖‘ WHERE 403piderin=‘‖ + 403piderin

+ ―‘ AND password=‘‖ + oldPassword + ―‘‖

In the query, newPassword and oldPassword are the new

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4987 404

and old passwords, respectively, and 404piderin is the

name of the user currently logged-in (i.e., „„admin‟--‟‟).

Therefore, the query string that is sent to the database is

(assuming that newPassword and oldPassword are

“newpwd” and “oldpwd”):

UPDATE users SET password=‘newpwd‘ WHERE

404piderin=‘admin‘—‗AND password=‘oldpwd‘

Because “--” is the SQL comment operator, everything

after it is ignored by the database. Therefore, the result

of this query is that the database changes the password of

the administrator (“admin”) to an attacker-specified value.

Second-order injections can be especially difficult to

detect and prevent because the point of injection is

different from the point where the attack actually

manifests itself.

B. TYPES OF SQL INJECTION ATTACK
 SQL Injection Attacks are discriminated on the basis of

the query injected. The different types of attacks are

generally not performed in isolation; many of them are

used together or sequentially, depending on the specific

goals of the attacker.

1) Tautology based Attack: The general goal of a

tautology-based attack is to inject code in one or more

conditional statements so that they always evaluate to

true. The consequences of this attack depend on how

the results of the query are used within the application.

The most common usages are to bypass authentication

pages and extract data. In this type of injection, an

attacker exploits an inject-able field that is used in a

query‟s WHERE conditional. Transforming the

conditional into a tautology causes all of the rows in

the database table targeted by the query to be returned.

In general, for a tautology-based attack to work, an

attacker must consider not only the inject-

able/vulnerable parameters, but also the coding

constructs that evaluate the query results. Typically,

the attack is successful when the code either displays

all of the returned records or performs some action if at

least one record is returned.

For example, an attacker submits “ ‟ or 1=1 - - ” for the

login input field (the input submitted for the other

fields is irrelevant). The resulting query is:

SELECT accounts FROM users WHERE login=‘‘ or

1=1–AND pass=‘‘ AND pin=12

The code injected in the conditional (OR 1=1)

transforms the entire WHERE clause into a tautology.

The database uses the conditional as the basis for

evaluating each row and deciding which ones to return

to the application. Because the conditional is a

tautology, the query evaluates to true for each row in

the table and returns all of them.

 Fig.2. Tautology based SQL injection.

2) Illegal/ Logically Incorrect Queries: This technique is

usually used during the information gathering stage of

the attack. Through injecting illegal/logically incorrect

requests, an attacker may gain knowledge that aids the

attack, such as finding out the inject-able parameters,

data types of columns within the tables, names of

tables, etc. This is usually done using the HAVING

and GROUP BY clause. This attack lets an attacker

gather important information about the type and

structure of the back-end database of a Web

application. The attack is considered a preliminary,

information gathering step for other attacks. The

vulnerability leveraged by this attack is that the default

error page returned by application servers is often

overly descriptive. In fact, the simple fact that an error

messages is generated can often reveal

vulnerable/inject-able parameters to an attacker.

Additional error information, originally intended to

help programmers debug their applications, further

helps attackers gain information about the schema of

the back-end database. When performing this attack, an

attacker tries to inject statements that cause a syntax,

type conversion, or logical error into the database.

Syntax errors can be used to identify inject-able

parameters. Type errors can be used to deduce the data

types of certain columns or to extract data. Logical

errors often reveal the names of the tables and columns

that caused the error. Consider the following example:

In this example, an attacker‟s goal is to cause a type

conversion error that can reveal relevant data. To do

this, the attacker injects the following text into input

field pin: “convert (int, (select top 1 name from

sysobjects where xtype=‟u‟))”. The resulting query is:

SELECT accounts FROM users WHERE login=‟‟

AND pass=‟‟ AND pin= convert (int, (select top 1

name from sysobjects where xtype=‟u‟))

In the attack string, the injected select query attempts

to extract the first user table (xtype=‟u‟) from the

database‟s metadata table (assume the application is

using Microsoft SQL Server, for which the metadata

table is called sysobjects). The query then tries to

convert this table name into an integer. Because this is

not a legal type conversion, the database throws an

error. For Microsoft SQL Server, the error would be:

”Microsoft OLE DB Provider for SQL Server

(0x80040E07) Error converting nvarchar value

‟CreditCards‟ to a column of data type int.”

There are two useful pieces of information in this

message that aid an attacker. First, the attacker can

see that the database is an SQL Server database, as the

error message explicitly states this fact. Second, the

error message reveals the value of the string that

caused the type conversion to occur. In this case, this

value is also the name of the first user-defined table in

the database: “CreditCards.” A similar strategy can be

used to systematically extract the name and type of

each column in the database. Using this information

about the schema of the database, an attacker can then

create further attacks that target specific pieces of

information.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4987 405

3) Piggy Backed Queries: In this attack type, an attacker

tries to inject additional queries into the original query.

We distinguish this type from others because, in this

case, attackers are not trying to modify the original

intended query; instead, they are trying to include new

and distinct queries that “piggy-back” on the original

query. As a result, the database receives multiple SQL

queries. The first is the intended query which is

executed as normal; the subsequent ones are the

injected queries, which are executed in addition to the

first. This type of attack can be extremely harmful. If

successful, attackers can insert virtually any type of

SQL command, including stored procedures, into the

additional queries and have them executed along with

the original query. Vulnerability to this type of attack is

often dependent on having a database configuration

that allows multiple statements to be contained in a

single string. Consider the following Example:

 If the attacker inputs “‟; drop table users - -” into the

pass field, the application generates the query:

SELECT accounts FROM users WHERE

login=‘doe‘ AND pass=‘‘; drop table users –‘

AND pin=123

After completing the first query, the database would

recognize the query delimiter (“;”) and execute the

injected second query. The result of executing the

second query would be to drop table users, which

would likely destroy valuable information. Other types

of queries could insert new users into the database or

execute stored procedures. Note that many databases

do not require a special character to separate distinct

queries, so simply scanning for a query separator is not

an effective way to prevent this type of attack.

4) Union Query: In union-query attacks, an attacker

exploits a vulnerable parameter to change the data set

returned for a given query. With this technique, an

attacker can trick the application into returning data

from a table different from the one that was intended

by the developer. Attackers do this by injecting a

statement of the form: UNION SELECT <rest of

injected query>. Because the attackers completely

control the second/injected query, they can use that

query to retrieve information from a specified table.

The result of this attack is that the database returns a

dataset that is the union of the results of the original

first query and the results of the injected second query.

Referring to the previous example, an attacker could

inject the text “‟ UNION SELECT cardNo from

CreditCards where acctNo=10032 - -” into the login

field, which produces the following query:

SELECT accounts FROM users WHERE login=‘‘

UNION SELECT card No from CreditCards where

acct No=10032 – AND pass=‘‘ AND pin=

Assuming that there is no login equal to “”, the original

first query returns the null set, whereas the second

query returns data from the “CreditCards” table. In this

case, the database would return column “cardNo” for

account “10032.” The database takes the results of

these two queries, unions them, and returns them to the

application. In many applications, the effect of this

operation is that the value for “cardNo” is displayed

along with the account information.

 5) Stored Procedures: SQL Injection Attacks of this type

try to execute stored procedures present in the

database. Today, most database vendors ship databases

with a standard set of stored procedures that extend the

functionality of the database and allow for interaction

with the operating system. Therefore, once an attacker

determines which backend database is in use, SQL

Injection Attacks can be crafted to execute stored

procedures provided by that specific database,

including procedures that interact with the operating

system. It is a common misconception that using stored

procedures to write Web applications renders them

invulnerable to SQL Injection Attacks. Developers are

often surprised to find that their stored procedures can

be just as vulnerable to attacks as their normal

applications. Additionally, because stored procedures

are often written in special scripting languages, they

can contain other types of vulnerabilities, such as

buffer overflows, that allow attackers to run arbitrary

code on the server or escalate their privileges.

Fig.3. Stored procedure for checking credentials.

Consider the Example: This example demonstrates how a

parameterized stored procedure can be exploited via an

SQL Injection Attack. In the example, we assume that the

query string constructed at lines 5 and 6 of our example

has been replaced by a call to the stored procedure defined

in Figure 2. The stored procedure returns a true/false value

to indicate whether the user‟s credentials authenticated

correctly. To launch an SQLIA, the attacker simply injects

“ ‟ ; SHUTDOWN; - -” into either the 405piderin or

password fields. This injection causes the stored procedure

to generate the following query:

SELECT accounts FROM users WHERE login=‘doe‘

AND pass=‘ ‘; SHUTDOWN; -- AND pin=23

 At this point, this attack works like a piggy-back attack.

The first query is executed normally, and then the second,

malicious query is executed, which results in a database

shut down. This example shows that stored procedures can

be vulnerable to the same range of attacks as traditional

application code.

 6) Inference: In this attack, the query is modified to

recast it in the form of an action that is executed based on

the answer to a true/ false question about data values in the

CREATEPROCEDURE DBO.isAuthenticated

@userName varchar2, @pass varchar2, @pin

int AS EXEC("SELECTaccountsFROM

usersWHERElogin=‘"+@userName+"‘and

pass=‘" +@password+ "‘ and pin="

+@pin‖);GO

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4987 406

database. In this type of injection, attackers are generally

trying to attack a site that has been secured enough so that,

when an injection has succeeded, there is no usable

feedback via database error messages. Since database error

messages are unavailable to provide the attacker with

feedback, attackers must use a different method of

obtaining a response from the database. In this situation,

the attacker injects commands into the site and then

observes how the function/response of the website

changes. By carefully noting when the site behaves the

same and when its behavior changes, the attacker can

deduce not only whether certain parameters are

vulnerable, but also additional information about the

values in the database. There are two well-known attack

techniques that are based on inference. They allow an

attacker to extract data from a database and detect

vulnerable parameters.

Blind SQL Injection: In this technique, the information

must be inferred from the behavior of the page by asking

the server true/ false questions. If the injected statement

evaluates to true, the site continues to function normally. If

the statement evaluates to false, although there is no

descriptive error message, the page differs significantly

from the normally-functioning page.

Timing Attacks: A timing attack allows an attacker to gain

information from a database by observing timing delays in

the response of the database. This attack is very similar to

blind sql injection, but uses a different method of

inference. To perform a timing attack, attackers structure

their injected query in the form of an if/then statement,

whose branch predicate corresponds to an unknown about

the contents of the database. Along one of the branches,

the attacker uses a SQL construct that takes a known

amount of time to execute, (e.g. the WAITFOR keyword,

which causes the database to delay its response by a

specified time). By measuring the increase or decrease in

response time of the database, the attacker can infer which

branch was taken in his injection and therefore the answer

to the injected question.

Referring to the running example, we illustrate two ways

in which Inference based attacks can be used. The first of

these is identifying inject-able parameters using blind

injection.

Consider two possible injections into the login field. The

first being “legalUser‟ and 1=0 - -” and the second,

“legalUser‟ and 1=1 - -”. These injections result in the

following two queries:

SELECT accounts FROM users WHERE

login=‘legalUser‘ and 1=0 – ‘ AND pass=‘‘ AND pin=0

SELECT accounts FROM users WHERE

login=‘legalUser‘ and 1=1 – ‘ AND pass=‘‘ AND pin=0

Now, let us consider two scenarios. In the first scenario,

we have a secure application, and the input for login is

validated correctly. In this case, both injections would

return login error messages, and the attacker would know

that the login parameter is not vulnerable. In the second

scenario, we have an insecure application and the login

parameter is vulnerable to injection. The attacker submits

the first injection and, because it always evaluates to false,

the application returns a login error message. At this point

however, the attacker does not know if this is because the

application validated the input correctly and blocked the

attack attempt or because the attack itself caused the login

error. The attacker then submits the second query, which

always evaluates to true. If in this case there is no login

error message, then the attacker knows that the attack went

through and that the login parameter is vulnerable to

injection. The second way inference based attacks can be

used is to perform data extraction. Here we illustrate how

to use timing based inference attack to extract a table

name from the database.

In this attack, the following is injected into the login

parameter:

„„legalUser‟ and ASCII (SUBSTRING ((select top 1 name

from sysobjects), 1, 1)) > X WAITFOR 5 –‟‟.

This produces the following query:

SELECT accounts FROM users WHERE

login=‘legalUser‘ and ASCII (SUBSTRING((select top

1 name from sysobjects),1,1)) > X WAITFOR 5 – ‘

AND pass=‘‘ AND pin=0

In this attack the SUBSTRING function is used to extract

the first character of the first table‟s name. Using a binary

search strategy, the attacker can then ask a series of

questions about this character. In this case, the attacker is

asking if the ASCII value of the character is greater-than

or less-than-or-equal-to the value of X. If the value is

greater, the attacker knows this by observing an additional

5 second delay in the response of the database. The

attacker can then use a binary search by varying the value

of X to identify the value of the first character.

7) Deny Database service: This attack used in the

websites to issue a denial of service by shutting down

the SQL Server. A powerful command recognized by

SQL Server is SHUTDOWN WITH NOWAIT. This

causes the server to shutdown, immediately stopping

the Windows service. After this command has been

issued, the service must be manually restarted by the

administrator.

Select password from user_info WHERE LoginId=‘;

shutdown with nowait; --‗and Password=‘0‘

The „–„character sequence is the „single line comment‟

sequence in Transact – SQL, and the „;‟ character denotes

the end of one query and the beginning of another.

If he has used the default sa account, or has acquired the

required privileges, SQL server will shut down, and will

require a restart in order to function again. This attack is

used to stop the database service of a particular web

application.

Select * from user_info where LoginId=‘1;

xp_cmdshell ‗format c:/q /yes ‗; drop database mydb; -

-AND pass1 = 0

III. RELATED WORK

Several techniques have been proposed by researches to

detect and prevent SQL injection attacks. These

techniques can be broadly classified into two categories,

static approach and dynamic approach.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4987 407

A. Static Code Checkers
JDBC-Checker is a technique for statically checking the

type correctness of dynamically-generated SQL queries

[12, 13]. This technique was not developed with the intent

of detecting and preventing general SQLIAs, but can

nevertheless be used to prevent attacks that take advantage

of type mismatches in a dynamically-generated query

string. JDBC-Checker is able to detect one of the root

causes of SQLIA vulnerabilities in code improper type

checking of input. However, this technique would not

catch more general forms of SQLIAs because most of

these attacks consist of syntactically and type correct

queries.

Wassermann and Su propose an approach that uses static

analysis combined with automated reasoning to verify that

the SQL queries generated in the application layer cannot

contain a tautology [26]. The primary drawback of this

technique is that its scope is limited to detecting and

preventing tautologies and cannot detect other types of

attacks.

B. Combined Static and Dynamic Analysis
AMNESIA is a model-based technique that combines

static analysis and runtime monitoring [17, 16]. In its static

phase, AMNESIA uses static analysis to build models of

the different types of queries an application can legally

generate at each point of access to the database. In its

dynamic phase, AMNESIA intercepts all queries before

they are sent to the database and checks each query against

the statically built models. Queries that violate the model

are identified as SQLIAs and prevented from executing on

the database. In their evaluation, the authors have shown

that this technique performs well against SQLIAs. The

primary limitation of this technique is that its success is

dependent on the accuracy of its static analysis for

building query models. Certain types of code obfuscation

or query development techniques could make this step less

precise and result in both false positives and false

negatives.

Similarly, two related approaches, SQLGuard [6] and

SQLCheck [7] also check queries at runtime to see if they

conform to a model of expected queries. In these

approaches, the model is expressed as a grammar that only

accepts legal queries. In SQLGuard, the model is deduced

at runtime by examining the structure of the query before

and after the addition of user-input. In SQLCheck, the

model is specified independently by the developer. Both

approaches use a secret key to delimit user input during

parsing by the runtime checker, so security of the

approach is dependent on attackers not being able to

discover the key. Additionally, the use of these two

approaches requires the developer to either rewrite code to

use a special intermediate library or manually insert

special markers into the code where user input is added to

a dynamically generated query.

C. Taint Based Approaches
WebsSARI detects input-validation related errors using

information flow analysis [18]. In this approach, static

analysis is used to check taint flows against preconditions

for sensitive functions. The analysis detects the points in

which preconditions have not been met and can suggest

filters and sanitization functions that can be automatically

added to the application to satisfy these preconditions. The

WebSSARI system works by considering as sanitized

input that has passed through a predefined set of filters. In

their evaluation, the authors were able to detect security

vulnerabilities in a range of existing applications. The

primary drawbacks of this technique are that it assumes

that adequate preconditions for sensitive functions can be

accurately expressed using their typing system and that

having input passing through certain types of filters is

sufficient to consider it not tainted. For many types of

functions and applications, this assumption is too strong.

Livshits and Lam [19] use static analysis techniques to

detect vulnerabilities in software. The basic approach is to

use information flow techniques to detect when tainted

input has been used to construct an SQL query. These

queries are then flagged as SQLIA vulnerabilities. The

authors demonstrate the viability of their technique by

using this approach to find security vulnerabilities in a

benchmark suite. The primary limitation of this approach

is that it can detect only known patterns of SQLIAs and,

because it uses a conservative analysis and has limited

support for untainting operations, can generate a relatively

high amount of false positives. Several dynamic taint

analysis approaches have been proposed. Two similar

approaches by Nguyen-Tuong and colleagues [22] and

Pietraszek and Berghe [23] modify a PHP interpreter to

track precise per-character taint information. The

techniques use a context sensitive analysis to detect and

reject queries if untrusted input has been used to create

certain types of SQL tokens. A common drawback of

these two approaches is that they require modifications to

the runtime environment, which affects portability. A

technique by Haldar and colleagues [15] and SecuriFly

[20] implement a similar approach for Java. However,

these techniques do not use the context sensitive analysis

employed by the other two approaches and track taint

information on a per-string basis (as opposed to per

character). SecuriFly also attempts to sanitize query

strings that have been generated using tainted input.

However, this sanitization approach does not help if

injection is performed into numeric fields. In general,

dynamic taint-based techniques have shown a lot of

promise in their ability to detect and prevent SQLIAs. The

primary drawback of these approaches is that identifying

all sources of tainted user input in highly-modular Web

applications and accurately propagating taint information

is often a difficult task.

D. New Query Development Paradigms
Two recent approaches, SQL DOM [21] and Safe Query

Objects [7], use encapsulation of database queries to

provide a safe and reliable way to access databases. These

techniques offer an effective way to avoid the SQLIA

problem by changing the query-building process from an

unregulated one that uses string concatenation to a

systematic one that uses a type-checked API. Within their

API, they are able to systematically apply coding best

practices such as input filtering and rigorous type checking

of user input. By changing the development paradigm in

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4987 408

which SQL queries are created, these techniques eliminate

the coding practices that make most SQLIAs possible.

Although effective, these techniques have the drawback

that they require developers to learn and use a new

programming paradigm or query-development process.

Furthermore, because they focus on using a new

development process, they do not provide any type of

protection or improved security for existing legacy

systems.

E. Intrusion Detection Systems
Valeur and colleagues [25] propose the use of an Intrusion

Detection System(IDS) to detect SQLIAs. Their IDS

system is based on a machine learning technique that is

trained using a set of typical application queries. The

technique builds models of the typical queries and then

monitors the application at runtime to identify queries that

do not match the model. In their evaluation, Valeur and

colleagues have shown that their system is able to detect

attacks with a high rate of success. However, the

fundamental limitation of learning based techniques is that

they can provide no guarantees about their detection

abilities because their success is dependent on the quality

of the training set used. A poor training set would cause

the learning technique to generate a large number of false

positives and negatives.

F. Proxy Filters
Security Gateway [24] is a proxy filtering system that

enforces input validation rules on the data flowing to a

Web application. Using their Security Policy Descriptor

Language (SPDL), developers provide constraints and

specify transformations to be applied to application

parameters as they flow from the Web page to the

application server. Because SPDL is highly expressive, it

allows developers considerable freedom in expressing

their policies. However, this approach is human-based

and, like defensive programming, requires developers to

know not only which data needs to be filtered, but also

what patterns and filters to apply to the data.

G. Instruction Set Randomization.

SQLrand [5] is an approach based on instruction-set

randomization. SQLrand provides a framework that allows

developers to create queries using randomized instructions

instead of normal SQL keywords. A proxy filter intercepts

queries to the database and de-randomizes the keywords.

SQL code injected by an attacker would not have been

constructed using the randomized instruction set.

Therefore, injected commands would result in a

syntactically incorrect query. While this technique can be

very effective, it has several practical drawbacks. First,

since it uses a secret key to modify instructions, security of

the approach is dependent on attackers not being able to

discover the key. Second, the approach imposes a

significant infrastructure overhead because it require the

integration of a proxy for the database in the system.

H. CANDID
This paper [2, 4] modifies web applications written in Java

through a program transformation. This tool dynamically

mines the programmer-intended query structure on any

input and detects attacks by comparing it against the

structure of the actual query issued. CANDID‟s natural

and simple approach turns out to be very powerful for

detection of SQL injection attacks.

IV. PROPOSED TECHNIQUE

Our research work proposes the technique, SOL Injection

Attack Prevention for Web Application (SIAPWA). In the

papers [1][3] encryption methods have been used in

conjunction with adding some extra columns in a Login

table to avoid SQL injection attacks. These techniques

requires much more extra space, when we have a large

number of users in a Login table and also introduces a

significant amount of delay during comparison of

credentials. However our proposed technique requires no

extra columns in a login table, due to which no extra space

will be required and comparison delay is also negligible.

In this technique the credentials provided by the user are

directly stored into a Login table in encrypted form. For

the encryption of credentials (username, password) we use

SHA2(secure hash algorithm 2). SHA2 is more stronger

than SHA1,the latter has been already broken by hackers.

The hash values of username and password are calculated

and stored in Login Table when the user‟s account is first

time created with the web application. Whenever user

wants to login to database his/her identity is checked by

comparing username and password entered by the user

with the already stored values in the Login table .

Whenever comparison returns to be true, the user able to

access the database otherwise database access denied.

These hash values are calculated at runtime using stored

procedure when user wants to login into the database.

If only username and password are used for authentication,

and the attacker enters Username = „ OR 1=1 – – and

Password = pwd;

 The query becomes like this:

Fig.4. Query without using hash values

There the user will be to bypass authentication. Whereas

using PSIAW approach, the query for authentication will

become like this:

Fig.5. Query using encrypted values

Thus using encrypted values for password and username,

the hacker cannot bypass authentication as attacker does

not know the hash values of username and password and

hence can‟t access the database of the web application.

Thus, web application is secured. The error messages

generated by application should not show that any hash

values are calculated at the back end and it‟s getting

matched with the entered one. This prevents the attacker

from accessing database as he is not aware of any hash

Select * from Login where Username = ‗'

OR 1=1 – –‘ and Password = ‗pwd‘;

Select* from Login where

Hashusername=‗hash_valueof(OR1=1--)‘and

Hashpasswordd= ‗hash_valueof(‗pwd‘);

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4987 409

values used and does not know the hash values of

username and password as hash values are calculated at

runtime. Only two text boxes are provided at the interface

for entering username and password, he will not be able to

enter hash values from anywhere. Hence, the attacker will

not be able to attack database and web application is

secured. When user changes password, encrypted value of

old password supplied as well as new password is

calculated. Encrypted value of old password must matched

with the stored encrypted value and new value is stored

with the new password in the Login Table.

Every time database is accessed, encrypted values of

supplied parameters are calculated and matched with the

stored one. Whenever it does not match it simple generates

the message, username and password do not match. So the

attacker does not get to know about the encrypted values

concept.

A. ARCHITECTURE

Architecture for SQL Injection Attack prevention in Web

Application (SIAPWA) technique consists of four

components: User Login Interface, Encryption algorithm

(SHA2), SQL Query Component and Database.

Fig.6. Architecture of the proposed technique

Here, user login interface is just the user entry form

containing two columns for username and password. Main

component of SIAPW is SQL Query Component. SQL

Query component is the component where hash value of

username and password is calculated. These values are

then compared with username and password, whenever a

user try to login. Every time the user enters username and

password, their hash values are calculated. The query

formed is then sent to database. Subcomponents of SQL

Query component are username hash value of username

and hash value of password. User Login table is the

component where hash value of username and hash value

of password are stored.

 TABLE I User Login table.

V. CONCLUSION AND FUTURE WORK

Many web applications employ a middleware technology

designed to request from a relational database in SQL

parlance. SQL Injection is a common technique that

hackers employ to attack these webs based applications.

These attacks reshape the SQL queries, thus altering the

behavior of the program for the benefit of the hacker. In

our research work, we have presented a technique for

protecting authentication against SQL Injection. This

technique requires no additional column in a login table.

Username and Password are directly stored into the Login

table in encrypted form. When the user gets itself

registered with a web application, it selects its username

and password.

At the same time, hash value of username and password is

computed at the coding side and stored in the Login table

with Username and Password. When user logs in to the

web application, hash value of username and password are

matched at the backend and user is allowed to access the

data. If SQL Injection attack string is entered for logging

into the database, its hash value does not match with the

hash values stored in the table and hence attacker cannot

access the database.

This technique is tested with different SQL Injection

Attack strings. This technique was successful in

preventing the login with these strings. Hence, this

technique is quite useful in protecting authentication

against SQL Injection Attack.

This technique introduce delays log in time by

approximately 1ms which is negligible in comparison to

the security of database obtained due to this technique.

This technique has a limitation also. This technique can be

implemented in the beginning of website development.

This technique can‟t be implemented with the websites

already developed as Database has to be changed.

Reengineering of website will have to be done to

implement this technique on the existing website.

This technique is able to protect only authentication

mechanism. Rest of the SQL Injection techniques can‟t be

prevented using this technique. So, there is a need to

protect SQL injection attack at other places in web

application. Then, this technique will be able to prevent

SQL Injection Attack completely.

REFERENCES

[1] Ravindra Kumar, Neha singh, “SQL INJECTIONS – A HAZARD

TO WEB APPLICATIONS” International Journal of Advanced
Research in Computer Science and Software Engineering, Volume

2, Issue 6, June 2012.

[2] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, CANDID:
Preventing SQL Injection Attacks using Dynamic Candidate

Evaluation. Proceedings of the 14th ACM conference on Computer

and communications security. ACM, Alexandria,Virginia,
USA.page:12-24.

[3] Ms. Zeinab Raveshi, Mrs. Sonali R. Idate, Efficient Method to Secure
Web applications and Databases against SQL Injection Attacks,

International Journal of Advanced Research in Computer Science

and Software Engineering, Volume 3, Issue 5, May 2013.
[4] P. Bisht, P. Madhusudan. CANDID: Dynamic Candidate Evaluations

for Automatic Prevention of SQL Injection Attacks. ACM

Transactions on Information and System Security Volume: 13,
Issue: 2, 2010.

[5] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL

Injection Attacks. In Proceedings of the 2nd Applied Cryptography
and Network Security (ACNS) Conference, pages 292–302, June

2004.

[6] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using Parse Tree
Validation to Prevent SQL Injection Attacks. In International

Workshop on Software Engineering and Middleware (SEM), 2005.

Username password

Wertr08992nnqsyuyttgghjj

678799

Ttgghjikaannnm556

67787ygtfd

Ddscvgghhcdnloewupkdpj

pjbwe

Kihdswdfhahwgtd8

55458ujhdm

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4987 410

[7] W. R. Cook and S. Rai. Safe Query Objects: Statically Typed Objects

as Remotely Executable Queries. In Proceedings of the 27th

International Conference on Software Engineering (ICSE 2005),
2005.

[8] Mayank Namdev , Fehreen Hasan, Gaurav Shrivastav, Review of

SQL Injection Attack and Proposed Method for Detection and
Prevention of SQLIA, International Journal of Advanced Research

in Computer Science and Software Engineering, Volume 2, Issue 7,

July 2012.
[9] Sonam Panda, Ramani , “Protection of Web Application against Sql

Injection Attacks”, International Journal of Modern Engineering

Research (IJMER) Vol.3, Issue.1, Jan-Feb. 2013 pp-166-168 ISSN:
2249-6645.

[10] Shubham Srivastava, Rajeev Ranjan Kumar Tripathi, “Attacks Due

to SQL Injection and Their Prevention Method for Web-
Application”,(IJCSIT) International Journal of Computer Science

and Information Technologies, Vol. 3 (2) , 2012,3615-3618.

[11] Shaukat Ali, Azhar Rauf, Huma Javed,” SQLIPA: An
Authentication Mechanism Against SQL Injection”, European

Journal of Scientific Research ISSN 1450-216X Vol.38 No.4

(2009), pp 604-611.

[12] C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A Static Analysis

Tool for SQL/JDBC Applications. In Proceedings of the 26th

International Conference on Software Engineering (ICSE 04) –
Formal Demos, pages 697–698, 2004.

[13] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically

Generated Queries in Database Applications. In Proceedings of the
26th International Conference on Software Engineering (ICSE 04),

pages 645–654, 2004.

[14] Sunita Gond, Neha Mishra, Defenses To Protect Against SQL
Injection Attacks, International Journal of Advanced Research in

Computer and Communication Engineering,Vol. 2, Issue 10,

October 2013
[15] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation

for Java. In Proceedings 21st Annual Computer Security
Applications Conference, Dec. 2005.

[16] W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring

for NEutralizing SQL-Injection Attacks. In Proceedings of the
IEEE and ACM International Conference on Automated Software

Engineering (ASE 2005), Long Beach, CA, USA, Nov 2005.

[17] W. G. Halfond and A. Orso. Combining Static Analysis and

Runtime Monitoring to Counter SQL-Injection Attacks. In

Proceedings of the Third International ICSE Workshop on Dynamic

Analysis (WODA 2005), pages 22–28, St. Louis, MO, USA, May
2005.

[18] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo.

Securing Web Application Code by Static Analysis and Runtime
Protection. In Proceedings of the 12th International World Wide

Web Conference (WWW 04), May 2004.

[19] V. B. Livshits and M. S. Lam. Finding Security Errors in Java
Programs with Static Analysis. In Proceedings of the 14th Usenix

Security Symposium, pages 271–286, Aug. 2005.

[20] M. Martin, B. Livshits, and M. S. Lam. Finding Application Errors
and Security Flaws Using PQL: A Program Query Language. In

Proceedings of the 20th annual ACM SIGPLAN conference on

Object oriented programming systems languages and
applications(OOPSLA 2005), pages 365–383, 2005.

[21] R. McClure and I. Kr¨uger. SQL DOM: Compile Time Checking of

Dynamic SQL Statements. In Proceedings of the 27th International
Conference on Software Engineering (ICSE 05), pages 88–96,

2005.

[22] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D.

Evans. Automatically Hardening Web Applications Using

Precise Tainting Information. In Twentieth IFIP International

Information Security Conference (SEC 2005), May 2005.
[23] T. Pietraszek and C. V. Berghe. Defending Against Injection Attacks

through Context-Sensitive String Evaluation. In Proceedings of

Recent Advances in Intrusion Detection (RAID2005), 2005.
[24] D. Scott and R. Sharp. Abstracting Application-level Web Security.

In Proceedings of the 11th International Conference on the World

Wide Web (WWW 2002), pages 396–407, 2002.
[25] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to

the Detection of SQL Attacks. In Proceedings of the Conference on

Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), Vienna, Austria, July 2005.

[26] G. Wassermann and Z. Su. An Analysis Framework for Security in

Web Applications. In Proceedings of the FSE Workshop on

Specification and Verification of Component-Based Systems
(SAVCBS 2004), pages 70–78, 2004.

