
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5453 208

Diversity Based Genetic Algorithm for Efficient

Test Case Selection

A. Ramarajan
1
, S. Usha

2

P.G Scholar, Department of Computer Science and Engineering, University College of Engineering, Anna University

(BIT CAMPUS), Tiruchirappalli, Tamilnadu, India
1

Assistant Professor, Department of Computer Science and Engineering, University College of Engineering, Anna

University (BIT CAMPUS), Tiruchirappalli, Tamilnadu, India
2

Abstract: The testing is a very important innovate the event of the software system cycle. The test cases are generated

multiple test suite. The regression testing is done to reduce the effort of testing by selecting a subset of test cases from

the test suite with respect to some testing criteria. Combination of Greedy and multi-objective genetic algorithms

(MOGAs) does not produce better results. The greedy algorithm which is used to find optimal solution reduces the time

but increases cost. Genetic also find next generation of test case selection from the test suite. Hence by injecting the

new diversity based genetic algorithm (DIV-GA) during the search process a better solution is provided for the

detection of test cases. A way to reduce the cost of regression testing consists of selection or prioritizing subset of test

cases. Therefore by selecting and prioritizing the subset of test cases and given as input to DIV-GA reduce the time &

cost estimation of efficient test cases.

Keywords: Regression Testing; Greedy Algorithm; Multi-Objective genetic algorithm (MOGA); Diversity Based

Genetic Algorithm (DIV-GA); Test case selection.

I. INTRODUCTION

The test case may be a set of conditions utilized by the

software system tester to examine the correct operating

conditions of the developed software system. The major

classifications of the test cases are formal and informal test

cases. The test suite contains the elaborated description

about the test case of the particular program. Some test

suites will take hours, even days; therefore developers

cannot exercise the system instantly or in cheap time [15].

The problem is clearly applied by the expansion of the test

suites because the system evolves. many methods are

planned to reduce the hassle of regression testing by

choosing a (possibly minimal) set of test cases from the

test suite with relation to some testing criteria [1], [2], [4].

In general resolution these issues needs the tester

selecting some testing criteria to be satisfied, and using an

optimization technique (e.g., greedy or search-based

algorithm) to select/order the test cases on the premise of

the chosen criteria. Such an approach is wide used once

finding multi-objective optimization problems; this might

produce less optimal results compared to Pareto-efficient

ways. Thus, Yoo and Harman [18], [19] treated the take a

look at suite optimization issues mistreatment Pareto-

efficient multi-objective genetic algorithms (MOGAs) to

handle multiple and different objectives. This

incontestable that these mechanisms don’t perpetually

facilitate in outperforming straightforward greedy

algorithms, as a result of MOGAs converged untimely to

some sub-optimal solutions. Previous study [4] it is steered

adding a diversity-preserving objective perform (measured

in keeping with a coverage criterion, like code coverage)

to typical multi-objective for- mutations aimed toward

minimizing the price and maximizing the coverage. They

introduce 2 novel genetic operators to promote diversity

between the candidate solutions (sub-sets of the take a

look at suite) within the genotype house instead of within

the composition house. Specifically, It is tend to introduce

a generative algorithmic rule to create a diversified initial

population, supported orthogonal style [11], associate

degrees, an orthogonal exploration mechanism of the

search area through Singular worth Decomposition (SVD)

[16], aimed toward conserving the variety throughout the

evolution of the population [5].It is tend to conduct an

empirical study on eleven world open-source programs.

They tend to additionally find that DIV-GA outperforms

each traditional MOGAs and greedy algorithms.

A new MOGA known as DIV-GA (Diversity based

Genetic Algorithm) that integrates orthogonal evolution

and orthogonal design into MOGAs to resolve multi-

criteria test case selection issues. DIV-GA addresses the

problem of diversity within the genotype area thus

severally of the quantity and also the reasonably take a

look at criteria.

The analysis of DIV-GA on a collection of open-source

programs from the Siemens suite the edu house Agency

suite and antelope open-source distribution. The chosen

programs were conjointly used in several previous work

[3], [4], [9], [14], [15], [17], [18], [19], [20].The

comparison of DIV-GA with previous techniques, namely

greedy algorithms and also the island version of NSGA-II

[17] (named vNSGA-II), antecedently employed by Yoo

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5453 209

and Harman for test suite optimization [4], [18], [19], [20].

The comparison issues each optimality and effectiveness.

II. RELATED WORK

2.1 TEST SUITE

The goal of the test suite minimization (TSM) problem

consists of reducing the size of the test suite by deleting

test cases that are redundant with respect to some coverage

criteria [5], such as code coverage, branch coverage, data

flow, dynamic program invariants or call stacks [21].

Clearly, one issue of the test suite minimization is that

removing some test cases from the test suite may

potentially affect its ability to detect faults, since a smaller

test suite might have a lower effectiveness [4], [5]. Finding

the minimal subset of a test suite is NP-complete, as it can

be reduced to the minimal hitting set problem in

polynomial time. McMaster and Memon[] proposed a test

suite minimization technique based on call-stack coverage.

Black et al. [2] considered a bi-criteria approach that takes

into account two testing criteria such as code Coverage

and past fault detection history. They combined the two

objectives by applying a weighted- sum approach, and

used Integer Linear Programming (ILP) optimization to

find subsets then reducing the multi-objective problem to a

single-objective one. Greedy algorithms have also been

used to solve a bi-criteria TCP problem by combating two

objectives (coverage and cost) in only one function

(coverage per unit cost) to be maximized by applying the

weighted-sum approach [7], [10]. Test case selection

(TCS) focuses on selecting a sub- set from an initial test

suite to test software changes, i.e., to test whether un-

muddied parts of a program still continue to work

correctly after changes involve other parts [13]. Once the

test cases covering the unmodified parts of programs are

identified using a given technique, an optimization

algorithm—e.g., additional greedy—can be used to select

a minimal set of such test cases according to some testing

criteria— e.g., statement coverage—with the purpose of

reducing the cost of regression testing.

2.2 SEARCH BASED TEST SUITE

Test case selection, test suite minimization, and test case

prioritization will be viewed as multi-objective problems,

were the goal is to select a Pareto-efficient subset of the

test suite, based on multiple test criteria [21]. Multi-

objective algorithms like MOGAs will then be applied to

resolve them. Selecting a subset Γ0 ⊆ Γ such Γ0 is that the

Pareto-optimal set with reference to the objective

functions. The optimality of the solutions is measured

through the ideas of Pareto| sociologist| economist|

economic expert } optimality and Pareto dominance. It’s

necessary to note that this search-based formulation is

named the test case selection drawback tackled during this

paper that doesn't need test case ordering. Identifying a

Pareto frontier is especially useful as a result of the

programmer will use the frontier to create a intelligent

decision that balances the trade-offs between the various

objectives. As an example, the programmer will select the

solution with lower execution cost or higher code

coverage on the idea of the resources accessible for

execution the selected test cases. They also evaluated

totally different optimization algorithmic programs to find

Pareto- best sub-sets of the test suite further greedy

algorithms and a variant of the multi-objective genetic

algorithm NSGA-II [2]. The additional greedy algorithmic

programs were applied by using the normal weighted add

approach to connate all the objectives in precisely one

perform to be optimized, a cost cognizant version of the

extra greedy algorithm was used for the two-objective

formulation, whereas the weighted add of code coverage

per unit of your time and fault coverage per unit of your

time was considered for the three-objective formulation.

The empirical comparison between MOGAs and greedy

algorithms didn't reveal a transparent winner between

them, and in some cases the MOGAs were not able to

exceed the greedy algorithms. Moreover the combination

between these 2 forms of algorithms wasn't al- ways in

which helpful to achieve higher results [21].

2.3DIVERSITY BASED GENECTIC ALGORITHM

(DIV-GA):

This section describes however we tend to use DIV-GA

(Diversity based Genetic Algorithm) to solve the multi-

objective test case selection drawback. Specifically, we

tend to detail however we tend to inject diversity into the

most loop of NSGA-II, that is that the sociologist efficient

multi-objective genetic algorithm designed by deb et al.

[2]. Whereas previous approaches to multi-objective test

case selection [21], [22] used the island variant of NSGA-

II (vNSGA- II), we tend to based DIV-GA on the quality

version NSGA- II. a new population is generated using a

selection operator, to pick folks and offspring in line with

the values of the objective functions.

The process of choice is performed victimization the

thought ofPareto optimality that leads the selection of non-

dominated solutions within the current population. The

situation distance is used so as to create a decision

concerning that individual to select: the people that area

unit remote from the remainder of the population has

higher chance to be chosen. Moreover, NSGA-II uses the

quick non-dominated sorting algorithm to preserve within

the next generation the people forming this Pareto frontier

(elitism). Once some generations, the algorithm converges

to ―stable‖ solutions, i.e., the Pareto-optimal set of the

problem.

III. EVALUATED DIV-GA ALGORITHM

 Population size: Since the search area of the test case

selection problem is larger for programs with a bigger

test suite, we use totally different population sizes per

the scale of the test suites to be optimized.

 Initial population: The initial population is at random

generated inside the solution area. For DIV-GA, the

initial population consists of the orthogonal arrays [0,

1].

 Range of generations: The most variety of generations

varies per the scale of the test suites to be optimized.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5453 210

 Crossover function: It is use a multi-point crossover,

known as scattered crossover with chance computer =

zero.50.

 Mutation operation: It is use a bit-flip mutation

function with chance pm = 1/n, wherever n is the size

of the test suite (or equivalently n is that the size of

the chromosomes).

 Stopping criterion: The average change of the

sociologist frontiers is lower than five-hitter for fifty

sub sequent generations, or the maximum number of

generations is reached.

3.1. INITIAL POPULATION

Generating an initial population plays an important role on

the performance of GAs [23] since it performs an initial

sampling of the search space.

A well-distributed and well-diversified initial population

makes the exploration more effective and favors GA

convergence toward global optima [23].

This issue becomes particularly critical for problems

where the length of the chromosome (number of test cases

in our case) is larger than the size of the population [24].

This is especially true for the test case selection problem.

A generic solution of the test suite minimization problem

is an array of binary digits X = {x1,...,xn} where xi is

equal to 1 if the 1-th test case is selected, 0 otherwise.

Since test case selection is a multi-objective problem

whose solutions are binary arrays?

3.2. POPULATION EVOLUTION
GAs is that a population tends to evolve search area with

better fitness as a result of at every generation a selection

operator is used to select the (best) individuals that need to

survive within the next generation.

Multi- objective problems the selection operator selects for

replica the individuals that are non-dominated by the other

solution within the current population,(which represents an

approximation of the best Pareto set).

As new generations are made the best individuals can tend

to converge towards some locally- or globally-optimal

Pareto regions.

They propose to adapt the approach planned by de Lucia

et al. [15] has been adapted at 3 main points, like

encryption of solution (binary-coded chromosomes rather

than real-coded ones), selection of best individuals that is

performed using the thought of Pareto optimality (while

within the work by de Lucia et al. [15] and by Kifetew et

al. [9] the best people were selected consistent with the

dentition of attest individuals in single-objective

paradigm), and once the new individual was generated

through SVD, these customizations for the test case

selection problem are provided within the following once

describing the most steps of the planned algorithm of DIV-

GA.

3.3 PROPOSED

IV. RESULT AND DISCUSION

SYSTEM

POPULATI

ON SIZE

NO OF

GENERATIO

NS

Calculator 300 400

Calendar 400 600

Clock 200 500

Flex 400 1000

Grep 200 1000

Gzip 300 500

Table: 4.1Example of open source program

Program Loc
Test

Case
Description

Calculator 255 250
Lexical

analyzer

Calendar 234 200
Code

optimization

Clock 220 175
Code

generation

Flex 6,560 300
Fast lexical

analyzer

Grep 4,343 350

Regular

expression

utility

Gzip 2,220 75

Data

compression

program

Table: 4.2 Find lines of code and test case selection

2-OBJECTIVE

Two-objective test case selection is finding a set of

optimal solutions X which max cost,max coverage.

Max cove (x) = 1/m ∅i
m
i=1

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5453 211

Min cost (X) = xi . cost (τi)
n
i=1

3-OBJECTIVE

Three-objective test case selections are finding a set of

optimal solutions which max previous coverage, in cost,

max fault

Max cove (x) = 1/m ∅i
m
i=1

Min cost (X) = xi . cost (τi)
n
i=1

Max fault(x) =1/h φi
h
i=1

Average Execution Time for Algorithm:

Table: 4.5 Average execution time calculations

Table: 4.6 Result generate

V. CONCLUSION&FUTURE ENHANCEMENT

Proposed DIV-GA (Diversity based genetic algorithm)

improves the performance of multi-objective test case

selection for solving multi-criteria. The DIV-GA is

considered as the best optimizers for multi-objective test

case selection problem. . In particular test suite allows not

only to generate more optimal trade-offs with respect to

the other optimizers when considering two and three test

case selection criteria, but its selected sub-test suites

turned out to be more cost-effective. The sub-test suites

generated are able to reveal more faults at same level of

execution cost than the sub- test suites obtained by both

the additional greedy algorithm and vNSGA-II. . Using for

the DIV-GA to reduce time and cost for the source coding,

so be find and reduce minimum space source code to use

regression testing for test case selection. This is true in the

test case selection problem, but also in other software

engineering problems such as test case generation. It may

be planned to reduce the cost & time of efficient test case

selection in the future work.

REFERENCES

[1]. S. Bates and S. Horwitz, ―Incremental program testing using

program dependence graphs,‖ in Proceedings of the 20th ACM

SIGPLAN-SIGACT symposium on Principles of programming

languages, ser. POPL ’93. ACM, 1993, pp. 384–396.
[2]. J. Black, E. Melachrinoudis, and D. Kaeli, ―Bi-criteria models for

all-uses test suite reduction,‖ in Proceedings of the 26th

International Conference on Software Engineering, ser. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 106–

115.

[3]. T. Y. Chen and M. F. Lau, ―Dividing strategies for the optimization
of a test suite,‖ Inf. Process. Lett., vol. 60, no. 3, pp. 135–141, Nov.

1996.

[4]. A. De Lucia, M. Di Penta, R. Oliveto, and A. Panichella, ―On the
role of diversity measures for multi-objective test case selection,‖ in

Automation of Software Test (AST), 2012 7th International

Workshop on, 2012, pp. 145–151.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5453 212

[5]. ―Estimating the evolution direction of populations to improve
genetic algorithms,‖ in Proceedings of the fourteenth international

conference on Genetic and evolutionary computation conference.

ACM, 2012, pp. 617–624.
[6]. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ―A fast elitist

multi-objective genetic algorithm: NSGA-II,‖ IEEE Transactions

on Evolutionary Computation, vol. 6, pp. 182–197, 2000.
[7]. S. Elbaum, A. Malishevsky, and G. Rothermel, ―Incorporating

varying test costs and fault severities into test case prioritization,‖

in Proceedings of the 23rd International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society,

2001, pp. 329–338.

[8]. M. J. Harrold, R. Gupta, and M. L. Soffa, ―A methodology for
controlling the size of a test suite,‖ ACM Transactions Software

Engineering and Methodologies, vol. 2, pp. 270–285, 1993.

[9]. D. Jeffrey, ―Test suite reduction with selective redundancy,‖ in
IEEE International Conference on Software Maintenance (ICSM)

2005. IEEE Computer Society, 2005, pp. 549–558.

[10]. A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. El- baum,
―Cost-cognizant test case prioritization,‖ Department of Computer

Science and Engineering, Tech. Rep., 2006.

[11]. S. Mcmaster and A. M. Memon, ―Call stack coverage for test suite
reduction,‖ in IEEE International Conference on Software

Maintenance (ICSM) 2005. IEEE Computer Society, 2005, pp.

539–548.
[12]. A. J. Offutt, J. Pan, and J. M. Voas, ―Procedures for reducing the

size of coverage-based test sets,‖ in In Proc. Twelfth Int’l. Conf.

Testing Computer Softw, 1995, pp. 111–123.
[13]. G. Rothermel and M. J. Harrold, ―Analyzing regression test

selection techniques,‖ IEEE Trans. Software Eng., vol. 22, no. 8,

pp. 529–551, Aug. 1996.
[14]. G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, ―An empirical

study of the effects of minimization on the fault detection

capabilities of test suites,‖ in Proceedings of the In- ternational
Conference on Software Maintenance. IEEE CS Press, 1998, pp.

34–44.

[15]. G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong,
―Empirical studies of test-suite reduction,‖ Journal of Software

Testing, Verification, and Reliability, vol. 12, pp. 219–249, 2002.

[16]. G. Strang, Introduction to Linear Algebra, 4th ed. Wellesley-
Cambridge Press and SIAM, 2009.

[17]. W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, ―Effect of

test set minimization on fault detection effectiveness,‖ in
Proceedings of the 17th International Conference on Software

Engineering. ACM Press, 1995, pp. 41–50.

[18]. S. Yoo and M. Harman, ―Pareto efficient multi-objective test case
selection,‖ in Proceedings of the ACM/SIGSOFT Interna- tional

Symposium on Software Testing and Analysis. London, UK: ACM
Press, 2007, pp. 140–150.

[19]. ——, ―Using hybrid algorithm for Pareto efficient multi- objective

test suite minimisation,‖ Journal of Systems and Soft- ware, vol. 83,
no. 4, pp. 689–701, 2010.

[20]. Q. Zhang and Y.-W.Leung, ―An orthogonal genetic algorithm for

multimedia multicast routing,‖ Trans. Evol. Comp, vol. 3, no. 1, pp.
53–62, Apr. 1999.

[21]. H. Do, G. Rothermel, and A. Kinneer, ―Empirical studies of test

case prioritization in a junit testing environment,‖ in 15th
International Symposium on Software Reliability Engineering.

IEEE Computer Society, 2004, pp. 113–124.

[22]. A. E. Eiben and C. A. Schippers, ―On evolutionary exploration and
exploitation,‖ Fundam Inform., vol. 35, no. 1-4, pp. 35–50, 1998.

[23]. H. Maaranen, K. Miettinen, and A. Penttinen, ―On initial

populations of a genetic algorithm for continuous optimization
problems,‖ Journal of Global Optimization, vol. 37, no. 3, pp. 405–

436, Mar. 2007.

[24]. C. A. CoelloCoello, G. B. Lamont, and D. A. V. Veldhuizen,
Evolutionary Algorithms for Solving Multi-Objective Problems

(Genetic and Evolutionary Computation). Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2006.

