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Abstract: The testing is a very important innovate the event of the software system cycle. The test cases are generated 

multiple test suite. The regression testing is done to reduce the effort of testing by selecting a subset of test cases from 

the test suite with respect to some testing criteria. Combination of Greedy and multi-objective genetic algorithms 

(MOGAs) does not produce better results. The greedy algorithm which is used to find optimal solution reduces the time 

but increases cost. Genetic also find next generation of test case selection from the test suite. Hence by injecting the 

new diversity based genetic algorithm (DIV-GA) during the search process a better solution is provided for the 

detection of test cases. A way to reduce the cost of regression testing consists of selection or prioritizing subset of test 

cases. Therefore by selecting and prioritizing the subset of test cases and given as input to DIV-GA reduce the time & 

cost estimation of efficient test cases. 
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I. INTRODUCTION 

 

The test case may be a set of conditions utilized by the 

software system tester to examine the correct operating 

conditions of the developed software system. The major 

classifications of the test cases are formal and informal test 

cases. The test suite contains the elaborated description 

about the test case of the particular program. Some test 

suites will take hours, even days; therefore developers 

cannot exercise the system instantly or in cheap time [15]. 

The problem is clearly applied by the expansion of the test 

suites because the system evolves. many methods are 

planned to reduce the hassle of regression testing by 

choosing a (possibly minimal) set of test cases from the 

test suite with relation to some testing criteria [1], [2], [4]. 

In general resolution these issues needs the tester  

selecting some testing criteria to be satisfied, and using an 

optimization technique (e.g., greedy or search-based 

algorithm) to select/order the test cases on the premise of 

the chosen criteria. Such an approach is wide used once 

finding multi-objective optimization problems; this might 

produce less optimal results compared to Pareto-efficient 

ways. Thus, Yoo and Harman [18], [19] treated the take a 

look at suite optimization issues mistreatment Pareto-

efficient multi-objective genetic algorithms (MOGAs) to 

handle multiple and different objectives. This 

incontestable that these mechanisms don’t perpetually 

facilitate in outperforming straightforward greedy 

algorithms, as a result of MOGAs converged untimely to 

some sub-optimal solutions. Previous study [4] it is steered 

adding a diversity-preserving objective perform (measured 

in keeping with a coverage criterion, like code coverage) 

to typical multi-objective for- mutations aimed toward  

 

 

minimizing the price and maximizing the coverage. They 

introduce 2 novel genetic operators to promote diversity 

between the candidate solutions (sub-sets of the take a 

look at suite) within the genotype house instead of within 

the composition house. Specifically, It is tend to introduce 

a generative algorithmic rule to create a diversified initial 

population, supported orthogonal style [11], associate 

degrees, an orthogonal exploration mechanism of the 

search area through Singular worth Decomposition (SVD) 

[16], aimed toward conserving the variety throughout the 

evolution of the population [5].It is tend to conduct an 

empirical study on eleven world open-source programs. 

They tend to additionally find that DIV-GA outperforms 

each traditional MOGAs and greedy algorithms.  

 

A new MOGA known as DIV-GA (Diversity based 

Genetic Algorithm) that integrates orthogonal evolution 

and orthogonal design into MOGAs to resolve multi-

criteria test case selection issues. DIV-GA addresses the 

problem of diversity within the genotype area thus 

severally of the quantity and also the reasonably take a 

look at criteria.  

 

The analysis of DIV-GA on a collection of open-source 

programs from the Siemens suite the edu house Agency 

suite and antelope open-source distribution. The chosen 

programs were conjointly used in several previous work 

[3], [4], [9], [14], [15], [17], [18], [19], [20].The 

comparison of DIV-GA with previous techniques, namely 

greedy algorithms and also the island version of NSGA-II 

[17] (named vNSGA-II), antecedently employed by Yoo 
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and Harman for test suite optimization [4], [18], [19], [20]. 

The comparison issues each optimality and effectiveness. 

  

II. RELATED WORK 

 

2.1 TEST SUITE 

The goal of the test suite minimization (TSM) problem 

consists of reducing the size of the test suite by deleting 

test cases that are redundant with respect to some coverage 

criteria [5], such as code coverage, branch coverage, data 

flow, dynamic program invariants or call stacks [21]. 

Clearly, one issue of the test suite minimization is that 

removing some test cases from the test suite may 

potentially affect its ability to detect faults, since a smaller 

test suite might have a lower effectiveness [4], [5]. Finding 

the minimal subset of a test suite is NP-complete, as it can 

be reduced to the minimal hitting set problem in 

polynomial time.  McMaster and Memon[] proposed a test 

suite minimization technique based on call-stack coverage. 

Black et al. [2] considered a bi-criteria approach that takes 

into account two testing criteria such as code Coverage 

and past fault detection history. They combined the two 

objectives by applying a weighted- sum approach, and 

used Integer Linear Programming (ILP) optimization to 

find subsets then reducing the multi-objective problem to a 

single-objective one. Greedy algorithms have also been 

used to solve a bi-criteria TCP problem by combating two 

objectives (coverage and cost) in only one function 

(coverage per unit cost) to be maximized by applying the 

weighted-sum approach [7], [10]. Test case selection 

(TCS) focuses on selecting a sub- set from an initial test 

suite to test software changes, i.e., to test whether un-

muddied parts of a program still continue to work 

correctly after changes involve other parts [13]. Once the 

test cases covering the unmodified parts of programs are 

identified using a given technique, an optimization 

algorithm—e.g., additional greedy—can be used to select 

a minimal set of such test cases according to some testing 

criteria— e.g., statement coverage—with the purpose of 

reducing the cost of regression testing.  

 

2.2 SEARCH BASED TEST SUITE 

Test case selection, test suite minimization, and test case 

prioritization will be viewed as multi-objective problems, 

were the goal is to select a Pareto-efficient subset of the 

test suite, based on multiple test criteria [21]. Multi-

objective algorithms like MOGAs will then be applied to 

resolve them. Selecting a subset Γ0 ⊆ Γ such Γ0 is that the 

Pareto-optimal set with reference to the objective 

functions. The optimality of the solutions is measured 

through the ideas of Pareto| sociologist| economist| 

economic expert } optimality and Pareto dominance. It’s 

necessary to note that this search-based formulation is 

named the test case selection drawback tackled during this 

paper that doesn't need test case ordering. Identifying a 

Pareto frontier is especially useful as a result of the 

programmer will use the frontier to create a intelligent 

decision that balances the trade-offs between the various 

objectives. As an example, the programmer will select the 

solution with lower execution cost or higher code 

coverage on the idea of the resources accessible for 

execution the selected test cases. They also evaluated 

totally different optimization algorithmic programs to find 

Pareto- best sub-sets of the test suite further greedy 

algorithms and a variant of the multi-objective genetic 

algorithm NSGA-II [2]. The additional greedy algorithmic 

programs were applied by using the normal weighted add 

approach to connate all the objectives in precisely one 

perform to be optimized, a cost cognizant version of the 

extra greedy algorithm was used for the two-objective 

formulation, whereas the weighted add of code coverage 

per unit of your time and fault coverage per unit of your 

time was considered for the three-objective formulation. 

The empirical comparison between MOGAs and greedy 

algorithms didn't reveal a transparent winner between 

them, and in some cases the MOGAs were not able to 

exceed the greedy algorithms. Moreover the combination 

between these 2 forms of algorithms wasn't al- ways in 

which helpful to achieve higher results [21].  

 

2.3DIVERSITY BASED GENECTIC ALGORITHM 

(DIV-GA): 

This section describes however we tend to use DIV-GA 

(Diversity based Genetic Algorithm) to solve the multi-

objective test case selection drawback. Specifically, we 

tend to detail however we tend to inject diversity into the 

most loop of NSGA-II, that is that the sociologist efficient 

multi-objective genetic algorithm designed by deb et al. 

[2]. Whereas previous approaches to multi-objective test 

case selection [21], [22] used the island variant of NSGA-

II (vNSGA- II), we tend to based DIV-GA on the quality 

version NSGA- II. a new population is generated using a 

selection operator, to pick folks and offspring in line with 

the values of the objective functions.  

 

The process of choice is performed victimization the 

thought ofPareto optimality that leads the selection of non- 

dominated solutions within the current population. The 

situation distance is used so as to create a decision 

concerning that individual to select: the people that area 

unit remote from the remainder of the population has 

higher chance to be chosen. Moreover, NSGA-II uses the 

quick non-dominated sorting algorithm to preserve within 

the next generation the people forming this Pareto frontier 

(elitism). Once some generations, the algorithm converges 

to ―stable‖ solutions, i.e., the Pareto-optimal set of the 

problem. 

 

III. EVALUATED DIV-GA ALGORITHM 

 

 Population size: Since the search area of the test case 

selection problem is larger for programs with a bigger 

test suite, we use totally different population sizes per 

the scale of the test suites to be optimized. 

 Initial population: The initial population is at random 

generated inside the solution area. For DIV-GA, the 

initial population consists of the orthogonal arrays [0, 

1]. 

 Range of generations: The most variety of generations 

varies per the scale of the test suites to be optimized. 
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 Crossover function: It is use a multi-point crossover, 

known as scattered crossover with chance computer = 

zero.50.  

 Mutation operation: It is use a bit-flip mutation 

function with chance pm = 1/n, wherever n is the size 

of the test suite (or equivalently n is that the size of 

the chromosomes). 

 Stopping criterion: The average change of the 

sociologist frontiers is lower than five-hitter for fifty 

sub sequent generations, or the maximum number of 

generations is reached. 

 

3.1. INITIAL POPULATION 

Generating an initial population plays an important role on 

the performance of GAs [23] since it performs an initial 

sampling of the search space.  

 

A well-distributed and well-diversified initial population 

makes the exploration more effective and favors GA 

convergence toward global optima [23]. 

 

This issue becomes particularly critical for problems 

where the length of the chromosome (number of test cases 

in our case) is larger than the size of the population [24]. 

This is especially true for the test case selection problem.  

 

A generic solution of the test suite minimization problem 

is an array of binary digits X = {x1,...,xn} where xi is 

equal to 1 if the 1-th test case is selected, 0 otherwise. 

Since test case selection is a multi-objective problem 

whose solutions are binary arrays? 

 

3.2. POPULATION EVOLUTION 
GAs is that a population tends to evolve search area with 

better fitness as a result of at every generation a selection 

operator is used to select the (best) individuals that need to 

survive within the next generation.  

 

Multi- objective problems the selection operator selects for 

replica the individuals that are non-dominated by the other 

solution within the current population,(which represents an 

approximation of the best Pareto set).  

 

As new generations are made the best individuals can tend 

to converge towards some locally- or globally-optimal 

Pareto regions.  

 

They propose to adapt the approach planned by de Lucia 

et al. [15] has been adapted at 3 main points, like 

encryption of solution (binary-coded chromosomes rather 

than real-coded ones), selection of best individuals that is 

performed using the thought of Pareto optimality (while 

within the work by de Lucia et al. [15] and by Kifetew et 

al. [9] the best people were selected consistent with the 

dentition of attest individuals in single-objective 

paradigm), and once the new individual was generated 

through SVD, these customizations for the test case 

selection problem are provided within the following once 

describing the most steps of the planned algorithm of DIV-

GA. 

3.3 PROPOSED  

 
 

IV. RESULT AND DISCUSION 

 

 

SYSTEM 

 

POPULATI

ON SIZE 

 

NO OF 

GENERATIO

NS 

Calculator 300 400 

Calendar 400 600 

Clock 200 500 

Flex 400 1000 

Grep 200 1000 

Gzip 300 500 

Table: 4.1Example of open source program 

 

Program Loc 
Test 

Case 
Description 

Calculator 255 250 
Lexical 

analyzer 

Calendar 234 200 
Code 

optimization 

Clock 220 175 
Code 

generation 

Flex 6,560 300 
Fast lexical 

analyzer 

Grep 4,343 350 

Regular 

expression 

utility 

Gzip 2,220 75 

Data 

compression 

program 

Table: 4.2 Find lines of code and test case selection 

 

2-OBJECTIVE 

Two-objective test case selection is finding a set of 

optimal solutions X which max cost,max coverage. 

Max cove (x) = 1/m  ∅i
m
i=1  
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Min cost (X) = xi  . cost (τi)
n
i=1  

 

 
 

3-OBJECTIVE 

Three-objective test case selections are finding a set of 

optimal solutions which max previous coverage, in cost, 

max fault 

Max cove (x) = 1/m  ∅i
m
i=1  

Min cost (X) = xi  . cost (τi)
n
i=1  

Max fault(x) =1/h  φi
h
i=1  

 
 

Average Execution Time for Algorithm: 

 
Table: 4.5 Average execution time calculations 

 
Table: 4.6 Result generate 

 

 
 

 

V. CONCLUSION&FUTURE ENHANCEMENT 
 

Proposed DIV-GA (Diversity based genetic algorithm) 

improves the performance of multi-objective test case 

selection for solving multi-criteria.  The DIV-GA is 

considered as the best optimizers for multi-objective test 

case selection problem. . In particular test suite allows not 

only to generate more optimal trade-offs with respect to 

the other optimizers when considering two and three test 

case selection criteria, but its selected sub-test suites 

turned out to be more cost-effective. The sub-test suites 

generated are able to reveal more faults at same level of 

execution cost than the sub- test suites obtained by both 

the additional greedy algorithm and vNSGA-II. . Using for 

the DIV-GA to reduce time and cost for the source coding, 

so be find and reduce minimum space source code to use 

regression testing for test case selection. This is true in the 

test case selection problem, but also in other software 

engineering problems such as test case generation. It may 

be planned to reduce the cost & time of efficient test case 

selection in the future work. 
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