
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51290 392

A Better Approach for Mining High Utility

Itemset from Transactional Databases

Mrs. Madhuri Zawar
1
, Ashwini Barakare

2

Department of Computer Engineering, Godavari College of Engineering, Jalgaon, India
1,2

Abstract: Data Mining can be defined as an activity that extracts some new nontrivial information contained in large

databases. Traditional data mining techniques have focused largely on detecting the statistical correlations between the

items that are more frequent in the transaction databases. Also termed as frequent itemset mining, these techniques

were based on the rationale that itemsets which appear more frequently must be of more importance to the user from

the business perspective .In this thesis we throw light upon an emerging area called Utility Mining which not only

considers the frequency of the itemsets but also considers the utility associated with the itemsets. The term utility refers

to the importance or the usefulness of the appearance of the itemset in transactions quantified in terms like profit, sales

or any other user preferences. In High Utility Itemset Mining the objective is to identify itemsets that have utility values

above a given utility threshold. In existing system some high utility itemset mining algorithms such as Two-Phase, UP-

Growth have been proposed. But there is problem like it requires more execution time and it uses more memory. The

new method is memory efficient technique for mining high utility itemsets from transactional databases. This technique

requires less memory space and execution time than existing algorithms.

Keywords: Data Mining, Frequent Itemset, High Utility Itemset, Utility Mining

I. INTRODUCTION

The information technology industry has huge amount of

data. Just data is none of use until any knowledge can be

gathered from it. Therefore any process must be applied

on that data which can produced necessary knowledge

from it .To acquire this knowledge applied processes have

various sub processes such as Data Cleaning, Data

Integration, Data Transformation, Data Mining, Pattern

Evaluation and Data Presentation

A. Data Mining

Data mining is the important part of KDD. Data mining

generally involves four classes of task; classification,

clustering, regression, and association rule learning. Data

Mining means to extracting or mining knowledge from

large databases. The Primary goal of data mining is to

searching of interesting patterns in your data. Data mining

exercises utilizes blend of strategies from database

advancements, statistics, and machine learning.

Over the last two decades data mining has emerged as a

significant research area. This is primary due to the inter -

disciplinary nature of the subject and the diverse range of

application domains in which data mining based products

and techniques are being employed. This incorporates

medicine, education, Banking and finance, Healthcare and

insurance, retail and marketing research. Data mining has

been considerably used in the analysis of customer

transactions in retail research where it is termed as market

basket analysis. Searching of interesting patterns hidden in

database is an important role in data mining tasks, such as

frequent itemset mining, utility mining.

B. Frequent Itemset Mining

An itemset can be defined as a non-empty set of items. An

itemset with k diverse items is termed as a k-itemset. For

e.g. {bread, butter, milk} may denote a 3-itemset in a

supermarket transaction .The notion of frequent itemsets

was introduced by R. Agrawal. Frequent itemsets are the

itemsets that appear frequently in the transactions. The

goal of frequent itemset mining is to identify all the

itemsets in a transaction dataset. Frequent itemset mining

[1][2][3]plays an essential role in the theory and practice

of many important data mining tasks, such as mining

association rules, long patterns. The criterion of being

frequent is expressed in terms of support value of the

itemsets. The Support value of an itemset is the percentage

of transactions that contain the itemset. Frequent pattern

mining is beneficial for association rule mining.

C. Association Rule Mining

Association Rule Mining is well known technique for

finding co-occurrences, correlations, frequent patterns,

associations among set of items in the transaction database.

The discovery of interesting correlation relationships

among huge amount of business transaction records can

help in many business decision making process, such as

catalog design, customer shopping behavior analysis etc.

An association rule is an expression in the form of X⇒Y,

where X and Y are set of items called itemsets. It suggests

that if a customer buys X, then he or she also buys Y. Two

measures which reflect certainty of discovered association

rules are support and confidence.

- Support is the percent of the transactions that

contain X U Y (i.e. both X and Y) to the total

number of transactions in database.

- Confidence is the percent of the transactions that

contain X U Y to the total number of transactions

that contain X.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51289 393

As an example, the information that customers who buys

computers also tend to buy antivirus-software at the same

time is represented in Association Rule below:

Association rules are considered useful if they

satisfy both a type equation here minimum support

threshold and a minimum confidence threshold that can be

set by users or domain consultants.

D. Why Utility Mining?

The frequent itemsets identified by ARM does

not reflect the impact of any other factor except frequency

of the presence or absence of an item. Frequent itemsets

may only contribute a small portion of the overall profit,

whereas non-frequent itemsets may contribute a large

portion of the profit. In reality, a retail business may be

interested in identifying its most valuable customers

(customers who contribute a major fraction of the profits

to the company). These are the customers, who may buy

full priced items, high margin items, which may be absent

from a large number of transactions because most

customers do not buy these items. In a traditional

frequency oriented ARM, these transactions representing

highly profitable customers may be left out.

Example:

Support Threshold =10%

In given example, {milk, bread} may be a frequent itemset

with support 40%, contributing 4% of the total profit, and

the corresponding consumers is Group A, whereas

{birthday cake, birthday card} may be a non-frequent

itemset with support 8% (assume support threshold is

10%), contributing 8% of the total profit, and the

corresponding consumers is Group B. The marketing

professionals must be more interested in promoting the

sale of {birthday cake, birthday card} by designing

promotion campaigns or coupons tailored for Group B

(valuable customers), although this itemset is missed by

ARM.

 Frequency is not sufficient to answer questions,

such as whether an itemset is highly profitable, or whether

an itemset has a strong impact. The practical usefulness of

the frequent itemset mining is limited by the significance

of discovered itemset. So during mining process we should

not be prejudiced to identify either item is frequent or not

but our aim should be identify itemsets which are more

utilizable to us. This leads the inception of a new approach

in data mining is based on concept of itemset utility called

utility mining. Hence frequency can not be only measure

to detect interesting patterens.

E. Utility Mining

Utility mining [12] is likely to be useful in a wide range of

practical applications. To address the limitation of

association rule mining, utility based mining model was

defined, which allows a user to conveniently express his or

her perspectives concerning the usefulness of itemsets as

utility and then find itemsets with high utility values

higher than given threshold. In utility based mining the

term utility refers to the quantitative representation of user

preference i.e. the utility value of an itemset is the

measurement of the importance of that itemset in the users

perspective. For e.g. if a sales analyst involved in some

retail research needs to find out which itemsets in the

stores earn the maximum sales revenue for the stores he or

she will define the utility of any itemset as the monetary

profit that the store earns by selling each unit of that

itemset. Formally an itemset S is useful to a user if it

satisfies a utility constraint i.e. any constraint in the form

u(S) >= minutil, where u(S) is the utility value of the

itemset and minutil is a utility threshold defined by the

user.

We start with the definition of set of terms that

leads to the formal definition of utility mining problem.

Consider a simple transaction database and its utility table.

TABLE 1
TRANSACTION TABLE.

Each row is transaction. The columns represent

the number of items in a particular transaction. TID is the

transaction identification number.

Items

Frequent or

not Support Profit

{Milk, bread} Yes 40% 4%

{birthday cake,

birthday card} No 8% 8%

ITEM

A B C D E

TID

T1 0 0 18 0 1

T2 0 6 0 1 1

T3 2 0 1 0 1

T4 1 0 0 1 1

T5 0 0 4 0 2

T6 1 1 0 0 0

T7 0 10 0 1 1

T8 3 0 25 3 1

T9 1 1 0 0 0

T10 0 6 2 0 2

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51289 394

TABLE 2
THE UTILITY TABLE

Each Transaction is containing diferent items. Here Zero

represents that particular transaction does not contain

respective item. The number represents quantity of item.

For eg. Quantity of C in transaction T1 is 18.

The right column displays the profit of each item

per unit in dollars. Profit can be any other measure like

time, selling profit.

- I = {𝑖1, …, 𝑖𝑚} is a set of items.

- D = {T1, T2, …, Tn} be a transaction database where each

transaction and each transaction has unique identifier q .

- o(𝑖𝑝 , 𝑇𝑞),local transaction utility value ,represent the

quantity of item in transaction Tq. For Example, o(A,T8)

= 3 in Table 1.

- s(𝑖𝑝), external utility, is the value associated with item in

the Utility Table. This value reflects the importance of

item, which is independent of transactions. For Example,

the external utility of item A, s(A) = 3 in Table 2.

- u(𝑖𝑝 ,𝑇𝑞) is utility for item in transaction , and defined as

o() × s(). For Example, u(A,T8) = 3×3 = 9

- u(X), utility of an itemset X, is defined as

∑𝑇𝑞∊𝐷∧𝑋≤𝑇𝑞
u(X,𝑇𝑞) . For Example, u(A) = u(A,T3) +

u(A,T4) + u(A,T6) + u(A,T8) + u(A,T9) = 6 + 3 + 3 + 9 +

3 = 24.

- An itemset is called a high utility itemset if its utility is no

less than a user-specified minimum utility threshold which

is denoted as min-util. Otherwise, it is called a low-utility

itemset. For Example, u({A, D, E}) = u({A, D, E}, T4) +

u({A, D, E}, T8) = 14 + 32 = 46. If min-util = 120, {A, D,

E} is a low utility itemset.

- The transaction utility of transaction Tq, denoted as

TU(Tq), is the sum of the utilities of all the items in Tq :

 Tu(Tq)= ∑ 𝑢 𝑖𝑝, 𝑇𝑞 𝑖𝑝∈𝑇𝑞

For Example : TU(T1) = u(A,T1) + u(B,T1) + u(C,T1) +

u(D,T1) + u(E,T1)

 = 0 + 0 + 18 + 0 + 5 = 23

- The transaction-weighted utilization of an itemset X,

denoted as TWU (X), is the sum of the transaction

utilities of all the transactions containing X:

For Example, in Table 1, TWU(AD) = TU(T4) + TU(T8)

 = 14 + 57 = 71.

For a given itemset X, X is a high transaction-weighted

utilization itemset if TWU(X)> =min-util. For Example,

TWU(B) = TU(T2) + TU(T6) +TU(T7) + TU(T9) +

TU(T10) = 71 + 13 + 111 + 13 + 72 = 280

TWU(B) >= 120 , Therefore B is high transaction

weighted utilization itemset.

II. LETARATURE REVIEW

In this section we present a brief overview of the various

algorithms, concepts and approaches that have been

defined in various research publications.

 Frequent itemset are the itemsets that occur frequently

in the transaction database. The objective of frequent

itemset mining is to identify all frequent itemset in a

transaction database. A several frequent itemset mining

algorithms have been developed with different mining

efficiencies. Some of the well- known algorithms are

Apriori and FP-Growth.

 Apriori [1], [2], [4] is a classic algorithm for frequent

itemset mining and association rule learning over

transactional databases. There are two processes to finds

out all the frequent itemsets from the database in Apriori

algorithm. First the candidate itemsets are generated, and

then the database is scanned to check the actual support

count of the corresponding itemsets. During the first

scanning of the database the support count of each item is

calculated and the frequent -1 itemsets are generated by

pruning those itemsets whose supports are below the

predefined threshold. In each pass only those candidate

itemsets that include the same specified number of items

are generated and checked. In Second step generating

association rule from frequent item set using support

confidence model. Apriori Algorithm generates lot of

candidate item sets and scans database every time. When a

new transaction is added to the database then it should

rescan the entire database again.

 To overcome the problems of apriori algorithms the

new method was proposed. This method is used a novel

frequent pattern tree (FP-tree) structure, which is an

extended prefix-tree structure for storing compressed

information about frequent patterns, and develop an

efficient FP-tree-based mining method, FP-Growth [4], [5]

for mining the complete set of frequent patterns by pattern

fragment growth. FP-Growth achieves a better

performance than apriori based approach since it find

frequent itemset without generating any candidate itemset

and its scans database just twice. FP-growth is not able to

find high utility itemsets. In Frequent itemset mining

importance of item to user is not considered.

 Two-Phase [7], [8] algorithm discovers high utility

itemsets and uses the transaction-weighted downward

closure property to maintain downward closure property in

utility mining. The Two-Phase algorithms works in two

phases:

A. Phase I: Discover High Transaction Weighted Utility

Itemset List Is Generated As Follows:

ITEM PROFIT ($) (per unit)

A 3

B 10

C 1

D 6

E 5

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51289 395

- Transaction Utility: (TU) the transaction utility of

an item is the sum of the utilities of all items in

that transaction.

- Transaction Weighted Utility (TWU) of an item

set: The weighted transaction utility of an item

set is obtained by performing the addition of the

transaction utility of all transactions containing

that item set.

- High Transaction Weighted Utilization

Itemset(HTWUIs): Only those item sets are

included in the high transaction weighted

utilization itemset list whose transaction weighted

utility is more than the minimum utility threshold.

B. Phase II: In This Phase Only One Database Scan Is

Performed To Filter The High Utility Itemset From

High B.Transaction Weighted Utilization Itemset

Identified In Phase I.

Although Two-Phase algorithm can reduce the search

space by using transaction weighted downword closure

property, it still generates too many candidates and

requires multiple scans of database.

UP-Growth [9], [10] is one of the efficient algorithms to

generate high utility itemsets depending on construction of

a global UP-Tree. The tree maintains the information

about the itemsets and their utilities. Each node of a tree

consists of item name, utility value and support count. UP-

Growth Algorithm consists of three steps:

1) Construction of Global UP-Tree:

The global UP-Tree is constructed by using two strategies:

DGU (Discarding Global Unpromising Item) and DGN

(Decreasing Global Node Utilities).

- DGU (Discarding Global Unpromising item) –

Discarding global unpromising items and their

utilities from transaction and transaction utilities

of database.

- DGN (Decreasing Global Node Utility) – For any

node in global UP - Tree, the utility of its

descendants are discarded from the utility of node

during construction of global UP-Tree.

2) Generate the potential High utility Itemsets by using

UP-Growth algorithm. Generate local UP-Tree by using

two strategies: DLU and DLN. For this two strategies

required minimum item utility.

- DLU (Discarding Local Unpromising item) –

Compute local Unpromising item and remove

local unpromising item from path and recalculate

path utility.

- DLN (Decreasing Local Node Utility) –

Construct local UP-Tree and calculate node

utility.

3) Identify High Utility Itemset.

This algorithm is complex for evaluation due to tree

structures.

 HUI-Miner [11] (High Utility Itemset Miner), for high

utility itemset mining. HUI-Miner create the novel

structure, called utility- list for each item, to store both the

utility information about an itemset and the heuristic

information for pruning the search space of HUI-Miner.

Exact utility of an itemset is obtained by joining the

utility-list of smaller itemsets.

 When the number of candidates is so large that they

cannot be stored in memory, the algorithms will fail or

their performance will be degraded due to thrashing. By

avoiding the costly generation and utility computation of

numerous candidate itemsets, HUI-Miner can efficiently

mine high utility itemsets from the utility lists constructed

from a mined database. This algorithm is costly due to

joining of utility lists.

C. Problem with Existing System

Performing mining process on large amount of datasets is

very complex. Frequent Itemset Mining cannot meet

demands arising from real life applications such as retail

marketing because the frequent itemset mining treats all

items with same importance.

The execution time and memory space are the

main issues. The most of existing high utility itemset

mining algorithms requires more execution time and

memory space for large datasets.

III. PROPOSED METHOD

The existing algorithms facing some performance issues.

To overcome this issues the new high utility itemset

mining algorithm is proposed which is better than existing

algorithms in terms of execution time and memory space.

A. Proposed Algorithm

- Input: D: Transaction database. minutil: user-

specified threshold.

- Output: set of high utility itemset.

1) Step 1 Scan D to calculate the TWU of single

items.

2) Step 2 I* each item i such that TWU (i) >=

minutil

3) Step 3 Let < be the total order of TWU ascending

values on I* .

4) Step 4 Scan D to built the utility –list of each

item i ∈ I* and built the HMBS structure.

5) Step 5 Search (∅ ,I*,minutil,HMBS);

This new high utility itemset mining algorithm takes an

input a transaction database with utility values and the

minutil threshold. The algorithm first scans the database to

calculate the TWU of each item. Then, the algorithm

identifies the set I* of all items having a TWU no less than

minutil. (Other items are ignored since they cannot be part

of a high utility itemsets.) The TWU values of items are

than used to establish a total order γ on items, which is the

order of ascending TWU values.

 A second database scan is then performed.

During this database scan, items in transactions are

reordered according to the total order γ, the utility-list of

each item i ∈ I* is built and novel structure named HMBS

(Hash Map Based Structure) is built.Building the HMBS is

very fast (it is performed with a single database scan) and

occupies a small amount of memory. After the

construction of the HMBS, the depth-first search

exploration of itemsets starts by calling the recursive

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51289 396

procedure Search with the empty itemset∅ , the set of

single items , and the HMBS structure.

 The TWU measure has following important properties

that are used to prune the search space.

1) Property 1 (overestimation): The TWU of an

itemset X is higher than or equal to its utility, i.e.

TCW(X) ≥ u(X)

2) Property 2 (antimonotonicity): The measure is

anti-monotonic. Let X and Y be two itemsets. If

X ⊂ 𝑌 thenTWU(X) ≥ TWU(Y)

3) Property 3 (pruning): Let be an itemset. If TWU

(X) < minutil, then the itemset X is a low-utility

itemset as well as all its supersets.

4) Property 4 (sum of iutils): Let X be an itemset. If

the sum of itil values in the utility-list of X is

higher than or equal to minutil, then X is a high-

utility itemset. Otherwise, it is a low-utility

itemset.

5) Property 5 (sum of iutils and rutil): Let X be an

itemset. Let the extensions of X be the itemsets

that can be obtained by appending an item y > i

for all item i in X . If the sum of iutil and rutil

values in the utility-list of x is less than minutil,

all extensions of and their transitive extensions

are low-utility itemsets.

B. Pruning Procedure

- Input: P: an itemset, Extension of P: a set of

extension of P, the minutil threshold, the HM

structure.

- Output: the set of high utility itemsets

for each itemset P x € ExtensionsOf P do

If SUM(𝑃𝑥 . utilitylist.iutils) ≥ minutil then

Output 𝑃𝑥 ;

end

If SUM(.𝑃𝑥 , utility.iutils) + SUM(𝑃𝑥 .utilitylist.rutils) ≥

minutil then Extemsions0f𝑃𝑥  ⊘ ;

For each itemset 𝑃𝑦 ∈ ExtensionOfP such that y > x do

if ∋ (x,y,c) ∈ HMBS such that c ≥ minutil) then

𝑃𝑥𝑦  𝑃𝑥 ∪ 𝑃𝑦 ;

𝑃𝑥𝑦 .utilitylist  Construct (P,𝑃𝑥 ; 𝑃𝑦);

ExtensionsOf𝑃𝑥  ExtensionsOf𝑃𝑥 ∪ 𝑃𝑥𝑦 ;

End

End

Search (𝑃𝑥 , ExtentionsOf𝑃𝑥 , minutil);

End

End

C. Construct Procedure

- Input: P: an itemset, ,𝑃𝑥 :the extension of P with

an item x,𝑃𝑦 : the extension of P with an item y.

- Output: the utility – list of 𝑃𝑥𝑦

For each tuple 𝑒𝑥 ∈ 𝑃𝑥 .utilitylist do

If ∃𝑒𝑦 ∈ 𝑃𝑦 . Utilitylist and 𝑒𝑥 .tid = 𝑒𝑥𝑦 .tid then

if P.utilitylist ≠ ∅ then

Search element e ∈ P.utilitylist such that e.tid = 𝑒𝑥 .tid;

𝑒𝑥𝑦 (𝑒𝑥 . 𝑡𝑖𝑑, 𝑒𝑥 .iutil+𝑒𝑦 .iutil , 𝑒𝑦 .rutil);

End

Else

𝑒𝑥𝑦(𝑒𝑥 .tid,𝑒𝑥 .iutil + 𝑒𝑦 .iutil,𝑒𝑦 .rutil);

End

UtilityListOf𝑃𝑥𝑦 UtilityListOf𝑃𝑥𝑦 ∪{𝑒𝑥𝑦 }

End

End

Return UtilityList𝑃𝑥𝑦 ;

The classic frequency-based framework often leads to

many patterns being identified, most of which are not

informative enough for business decision-making. In

frequent pattern mining, a recent effort has been to

incorporate utility into the pattern selection framework, so

that high utility (frequent or infrequent)patterns are mined
which address typical business concerns such as dollar

value associated with each
pattern. So we incorporate utility into sequential pattern

mining, and a generic framework for high utility sequence

mining is defined.

IV. EXPERIMENTAL EVALUATION

The Performance comparisons of existing and proposed

algorithms are evaluated on various datasets. The

experiments were performed with 4GB memory. The

algorithms are implemented in java language. The real

data sets are used for experiments. The real world datasets

such as retails, chess are obtained from UCI Repository.

A. Execution Time

Here compare the performance of existing and proposed

algorithms on retail dataset. When measuring execution

time, we varied the min-util for database. Fig.1. shows the

performance evaluation of existing and proposed

algorithm for execution time. When minutil is 200 the

execution time of proposed algorithm is 21840 ms and

execution time of existing algorithm is 23425 ms.

Fig. 1. Execution time on Retail dataset

Fig 2. shows the performance evaluation of existing and

proposed algorithm for execution time on chess dataset.

When minutil is 300 the execution time of proposed

algorithm is 84742 ms and execution time of existing

algorithm is 86146 ms.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51289 397

Fig. 2. Execution time on chess dataset

B. Memory Consumption

Fig 3. shows the performance evaluation of existing and

proposed algorithm for memory space on retail dataset.

When minutil is 200 the memory consumed by proposed

algorithm is 28.15 MB and memory consumed by existing

algorithm is 29.45 MB.

Fig. 3. Memory consumption on retail dataset

Fig 4. Shows the performance evaluation of existing and

proposed algorithm for memory space on chess dataset.

When minutil is 300 the memory consumed by proposed

algorithm is 7.72 MB and memory consumed by existing

algorithm is 7.92 MB.

Fig. 4. Memory consumption on chess dataset

V. CONCLUSION
Frequent itemset mining is the most popular data mining

algorithm. Many number of efficient techniques available

for frequent itemset mining, which considers mining of

frequent itemsets. But a promising technique in Data

Mining is Utility Mining, which incorporates utility

considerations during itemset mining. Utility Mining

covers all aspects of economic utility in data mining. In

existing Two-Phase, UP-Growth, HUI-Miner algorithms

have been proposed, but there is problem like it requires

more execution time and it uses more memory. The new

technique is memory efficient technique for mining high

utility itemsets from transactional databases. This

technique requires less memory space and execution time

than existing algorithms.

ACKNOWLEGMENT

I would first like to thank my thesis advisor Mrs.

Madhuri Zawar of the Godavari COE, Prof. Pramod

Gosavi for his guidance. I would also like to acknowledge

Mr. Rahul Gaikwad, Mr. Nilesh Vani as the second reader

of this thesis.

REFERENCES
[1] R.Agrawal, R.Shrikant. “Fast Algorithm for mining association

rules.” Proceedings of 20th international Conference on Very Large

Databases., 487-499, 1994.

[2] K.Vanitha, R.Santhi. “Evaluating the performance of association
rule mining algorithm.” Journal of Global Reasearch in computer

science, Vol.2, 2229-371X,June 2011.

[3] R. Agrawal, T. Imielinski, A. Swami. “Mining association rule
between sets of items in large databses.” proceeding of the ACM

SIGMOD International Conference of Management of data., 207-
216, 1993.

[4] Gagandeep kaur, Shruti Aggrawal. “Performance analysis of

association rule mining algorithm” International Journal of
Advanced Research in Computer Science and Software Engineering,

Vol. 3. 2277-128X, 2005.

[5] J.Han, J.Pei, Y.Yin. “Mining Frequent Patterns without Candidate
generation.” Data Mining and Knowedge Discovery, 2004. pp. 53-

87.

[6] Sadak Murali, Kolla Morarjee. “A survey on efficient algorithm for
mining high utility itemset.” International Journal of Research in

Engineering & Advanced Technology, Vol. 1. 2320-8791, Nov

2013.
[7] Liu. Y, Liao W, A. Choudhary. "A fast high utility itemset mining

algorithm." Proceeding of the Utility-Based Data Mining Workshop.

August 2005.
[8] Y. Liu, W-Keng Liao, A. Choudhary."Two-Phase Algorithm for

Fast Discovery of High Utility Itemsets." PAKDD, Berlin, 689-695,

2005.
[9] V.S. Tseng, B-En Shie, C-W Wu, P.S. Yu. "Efficient Algorithms

for Mining High Utility Itemsets from Transactional Databases."

IEEE Transaction on Knowedge and Data Engineering,Vol. 25,
August 2013.

[10] V.S.Tseng, C-W Wu, B-E Shie, P.S Yu." U"P-Growth: An

Efficient Algorithm for High Utility Itemsets Mining. Proceeding
16th ACM SIGKDD Conf, Knowledge Discovery and Data Mining,

253-262, 2010.

[11] Liu, M.J. Q." Mining High Utility Itemsets without Candidate
Generation."Proceedings CIKM12, 55–64, 2012.

[12] Sudip Bhattacharya, Deepty Dubey. "High Utility Itemset Mining."

International Journal of Emerging Technology and Advanced
Engineering, Vol. 2. ISSN 2250-2459,August 2012.

