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Abstract: Data Mining can be defined as an activity that extracts some new nontrivial information contained in large 

databases. Traditional data mining techniques have focused largely on detecting the statistical correlations between the 

items that are more frequent in the transaction databases. Also termed as frequent itemset mining, these techniques 

were based on the rationale that itemsets which appear more frequently must be of more importance to the user from 

the business perspective .In this thesis we throw light upon an emerging area called Utility Mining which not only 

considers the frequency of the itemsets but also considers the utility associated with the itemsets. The term utility refers 

to the importance or the usefulness of the appearance of the itemset in transactions quantified in terms like profit, sales 

or any other user preferences. In High Utility Itemset Mining the objective is to identify itemsets that have utility values 

above a given utility threshold. In existing system some high utility itemset mining algorithms such as Two-Phase, UP-

Growth have been proposed. But there is problem like it requires more execution time and it uses more memory. The 

new method is memory efficient technique for mining high utility itemsets from transactional databases. This technique 

requires less memory space and execution time than existing algorithms. 
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I. INTRODUCTION 

The information technology industry has huge amount of 

data. Just data is none of use until any knowledge can be 

gathered from it. Therefore any process must be applied 

on that data which can produced necessary knowledge 

from it .To acquire this knowledge applied processes have 

various sub processes such as Data Cleaning, Data 

Integration, Data Transformation, Data Mining, Pattern 

Evaluation and Data Presentation 

A. Data Mining 

Data mining is the important part of KDD. Data mining 

generally involves four classes of task; classification, 

clustering, regression, and association rule learning. Data 

Mining means to extracting or mining knowledge from 

large databases. The Primary goal of data mining is to 

searching of interesting patterns in your data. Data mining 

exercises utilizes blend of strategies from database 

advancements, statistics, and machine learning. 

Over the last two decades data mining has emerged as a 

significant research area. This is primary due to the inter -

disciplinary nature of the subject and the diverse range of 

application domains in which data mining based products 

and techniques are being employed. This incorporates 

medicine, education, Banking and finance, Healthcare and 

insurance, retail and marketing research. Data mining has 

been considerably used in the analysis of customer 

transactions in retail research where it is termed as market 

basket analysis. Searching of interesting patterns hidden in 

database is an important role in data mining tasks, such as 

frequent itemset mining, utility mining. 

B. Frequent Itemset Mining 

An itemset can be defined as a non-empty set of items. An 

itemset with k diverse items is termed as a k-itemset. For 

e.g. {bread, butter, milk} may denote a 3-itemset in a  

 

 

supermarket transaction .The notion of frequent itemsets 

was introduced by R. Agrawal. Frequent itemsets are the 

itemsets that appear frequently in the transactions. The 

goal of frequent itemset mining is to identify all the 

itemsets in a transaction dataset. Frequent itemset mining 

[1][2][3]plays an essential role in the theory and practice 

of many important data mining tasks, such as mining 

association rules, long patterns. The criterion of being 

frequent is expressed in terms of support value of the 

itemsets. The Support value of an itemset is the percentage 

of transactions that contain the itemset. Frequent pattern 

mining is beneficial for association rule mining. 

C. Association Rule Mining 

Association Rule Mining is well known technique for 

finding co-occurrences, correlations, frequent patterns, 

associations among set of items in the transaction database. 

The discovery of interesting correlation relationships 

among huge amount of business transaction records can 

help in many business decision making process, such as 

catalog design, customer shopping behavior analysis etc. 

An association rule is an expression in the form of X⇒Y, 

where X and Y are set of items called itemsets. It suggests 

that if a customer buys X, then he or she also buys Y. Two 

measures which reflect certainty of discovered association 

rules are support and confidence. 

- Support is the percent of the transactions that 

contain X U Y (i.e. both X and Y) to the total 

number of transactions in database.  

- Confidence is the percent of the transactions that 

contain X U Y to the total number of transactions 

that contain X.  
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As an example, the information that customers who buys 

computers also tend to buy antivirus-software at the same 

time is represented in Association Rule below: 

Association rules are considered useful if they 

satisfy both a type equation here minimum support 

threshold and a minimum confidence threshold that can be 

set by users or domain consultants. 

D. Why Utility Mining? 

The frequent itemsets identified by ARM does 

not reflect the impact of any other factor except frequency 

of the presence or absence of an item. Frequent itemsets 

may only contribute a small portion of the overall profit, 

whereas non-frequent itemsets may contribute a large 

portion of the profit. In reality, a retail business may be 

interested in identifying its most valuable customers 

(customers who contribute a major fraction of the profits 

to the company). These are the customers, who may buy 

full priced items, high margin items, which may be absent 

from a large number of transactions because most 

customers do not buy these items. In a traditional 

frequency oriented ARM, these transactions representing 

highly profitable customers may be left out. 

Example: 

Support Threshold =10% 

In given example, {milk, bread} may be a frequent itemset 

with support 40%, contributing 4% of the total profit, and  

 

 

 

 

 

 

 

 

 

the corresponding consumers is Group A, whereas 

{birthday cake, birthday card} may be a non-frequent 

itemset with support 8% (assume support threshold is 

10%), contributing 8% of the total profit, and the 

corresponding consumers is Group B. The marketing 

professionals must be more interested in promoting the 

sale of {birthday cake, birthday card} by designing 

promotion campaigns or coupons tailored for Group B 

(valuable customers), although this itemset is missed by 

ARM. 

          Frequency is not sufficient to answer questions, 

such as whether an itemset is highly profitable, or whether 

an itemset has a strong impact. The practical usefulness of 

the frequent itemset mining is limited by the significance 

of discovered itemset. So during mining process we should 

not be prejudiced to identify either item is frequent or not 

but our aim should be identify itemsets which are more 

utilizable to us. This leads the inception of a new approach 

in data mining is based on concept of itemset utility called 

utility mining. Hence frequency can not be only measure 

to detect interesting patterens. 

E. Utility Mining 

Utility mining [12] is likely to be useful in a wide range of 

practical applications. To address the limitation of 

association rule mining, utility based mining model was 

defined, which allows a user to conveniently express his or 

her perspectives concerning the usefulness of itemsets as 

utility and then find itemsets with high utility values 

higher than given threshold. In utility based mining the 

term utility refers to the quantitative representation of user 

preference i.e. the utility value of an itemset is the 

measurement of the importance of that itemset in the users 

perspective. For e.g. if a sales analyst involved in some 

retail research needs to find out which itemsets in the 

stores earn the maximum sales revenue for the stores he or 

she will define the utility of any itemset as the monetary 

profit that the store earns by selling each unit of that 

itemset. Formally an itemset S is useful to a user if it 

satisfies a utility constraint i.e. any constraint in the form 

u(S) >= minutil, where u(S) is the utility value of the 

itemset and minutil is a utility threshold defined by the 

user. 

We start with the definition of set of terms that 

leads to the formal definition of utility mining problem. 

Consider a simple transaction database and its utility table. 
 

TABLE 1 
TRANSACTION TABLE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each row is transaction. The columns represent 

the number of items in a particular transaction. TID is the 

transaction identification number. 

 

 

 

Items 

Frequent or 

not Support Profit 

    

{Milk, bread} Yes 40% 4% 

    

{birthday cake, 

birthday card} No 8% 8% 

    

 

ITEM 

A B C D E 

TID      

T1 0 0 18 0 1 

      

T2 0 6 0 1 1 

      

T3 2 0 1 0 1 

      

T4 1 0 0 1 1 

      

T5 0 0 4 0 2 

      

T6 1 1 0 0 0 

      

T7 0 10 0 1 1 

      

T8 3 0 25 3 1 

      

T9 1 1 0 0 0 

      

T10 0 6 2 0 2 
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TABLE 2 
THE UTILITY TABLE 

Each Transaction is containing diferent items. Here Zero 

represents that particular transaction does not contain 

respective item. The number represents quantity of item. 

For eg. Quantity of C in transaction T1 is 18. 
 

The right column displays the profit of each item 

per unit in dollars. Profit can be any other measure like 

time, selling profit. 
 

- I = {𝑖1,  …, 𝑖𝑚} is a set of items. 

- D = {T1, T2, …, Tn} be a transaction database where each 

transaction and each transaction has unique identifier q . 

- o( 𝑖𝑝 , 𝑇𝑞 ),local transaction utility value ,represent the 

quantity of item in transaction Tq. For Example, o(A,T8) 

= 3 in Table 1. 

- s( 𝑖𝑝 ), external utility, is the value associated with item in 

the Utility Table. This value reflects the importance of 

item, which is independent of transactions. For Example, 

the external utility of item A, s(A) = 3 in Table 2. 

- u(𝑖𝑝  ,𝑇𝑞  ) is utility for item in transaction , and defined as 

o( ) × s( ). For Example, u(A,T8) = 3×3 = 9 

- u(X), utility of an itemset X, is defined as 

∑𝑇𝑞∊𝐷∧𝑋≤𝑇𝑞
u(X,𝑇𝑞  ) . For Example, u(A ) = u(A,T3) + 

u(A,T4) + u(A,T6) + u(A,T8) + u(A,T9) = 6 + 3 + 3 + 9 + 

3 = 24. 

- An itemset is called a high utility itemset if its utility is no 

less than a user-specified minimum utility threshold which 

is denoted as min-util. Otherwise, it is called a low-utility 

itemset. For Example, u({A, D, E}) = u({A, D, E}, T4) + 

u({A, D, E}, T8) = 14 + 32 = 46. If min-util = 120, {A, D, 

E} is a low utility itemset. 

- The transaction utility of transaction Tq, denoted as 

TU(Tq), is the sum of the utilities of all the items in Tq : 

 

              Tu(Tq)=     ∑ 𝑢 𝑖𝑝, 𝑇𝑞 𝑖𝑝∈𝑇𝑞  

 

For Example : TU(T1) = u(A,T1) + u(B,T1) + u(C,T1) +                       

u(D,T1) + u(E,T1) 

                                         = 0 + 0 + 18 + 0 + 5 = 23 

- The transaction-weighted utilization of an itemset X, 

denoted as TWU (X), is the sum of the transaction 

utilities of all the transactions containing X: 

For Example, in Table 1, TWU(AD) = TU(T4) + TU(T8)  

                                                           = 14 + 57 = 71. 

For a given itemset X, X is a high transaction-weighted 

utilization itemset if TWU(X)> =min-util. For Example, 

TWU(B) = TU(T2) + TU(T6) +TU(T7) + TU(T9) + 

TU(T10)               = 71 + 13 + 111 + 13 + 72 = 280 

TWU(B) >= 120 , Therefore B is high transaction 

weighted utilization itemset. 
 

II. LETARATURE REVIEW 

In this section we present a brief overview of the various 

algorithms, concepts and approaches that have been 

defined in various research publications. 

     Frequent itemset are the itemsets that occur frequently 

in the transaction database. The objective of frequent 

itemset mining is to identify all frequent itemset in a 

transaction database. A several frequent itemset mining 

algorithms have been developed with different mining 

efficiencies. Some of the well- known algorithms are 

Apriori and FP-Growth.  

    Apriori [1], [2], [4] is a classic algorithm for frequent 

itemset mining and association rule learning over 

transactional databases. There are two processes to finds 

out all the frequent itemsets from the database in Apriori 

algorithm. First the candidate itemsets are generated, and 

then the database is scanned to check the actual support 

count of the corresponding itemsets. During the first 

scanning of the database the support count of each item is 

calculated and the frequent -1 itemsets are generated by 

pruning those itemsets whose supports are below the 

predefined threshold. In each pass only those candidate 

itemsets that include the same specified number of items 

are generated and checked. In Second step generating 

association rule from frequent item set using support 

confidence model. Apriori Algorithm generates lot of 

candidate item sets and scans database every time. When a 

new transaction is added to the database then it should 

rescan the entire database again.  

    To overcome the problems of apriori algorithms the 

new method was proposed. This method is used a novel 

frequent pattern tree (FP-tree) structure, which is an 

extended prefix-tree structure for storing compressed 

information about frequent patterns, and develop an 

efficient FP-tree-based mining method, FP-Growth [4], [5] 

for mining the complete set of frequent patterns by pattern 

fragment growth. FP-Growth achieves a better 

performance than apriori based approach since it find 

frequent itemset without generating any candidate itemset 

and its scans database just twice. FP-growth is not able to 

find high utility itemsets. In Frequent itemset mining 

importance of item to user is not considered.  

     Two-Phase [7], [8] algorithm discovers high utility 

itemsets and uses the transaction-weighted downward 

closure property to maintain downward closure property in 

utility mining. The Two-Phase algorithms works in two 

phases:  
 

A. Phase I: Discover High Transaction Weighted Utility 

Itemset List Is Generated As Follows:  

ITEM PROFIT ($) (per unit) 

  

A 3 

  

B 10 

  

C 1 

  

D 6 

  

E 5 
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- Transaction Utility: (TU) the transaction utility of 

an item is the sum of the utilities of all items in 

that transaction.  

- Transaction Weighted Utility (TWU) of an item 

set: The weighted transaction utility of an item 

set is obtained by performing the addition of the 

transaction utility of all transactions containing 

that item set.  

- High Transaction Weighted Utilization 

Itemset(HTWUIs): Only those item sets are 

included in the high transaction weighted 

utilization itemset list whose transaction weighted 

utility is more than the minimum utility threshold.  

B. Phase II: In This Phase Only One Database Scan Is 

Performed To Filter The High Utility Itemset From 

High B.Transaction Weighted Utilization Itemset 

Identified In Phase I.  

Although Two-Phase algorithm can reduce the search 

space by using transaction weighted downword closure 

property, it still generates too many candidates and 

requires multiple scans of database.  

UP-Growth [9], [10] is one of the efficient algorithms to 

generate high utility itemsets depending on construction of 

a global UP-Tree. The tree maintains the information 

about the itemsets and their utilities. Each node of a tree 

consists of item name, utility value and support count. UP-

Growth Algorithm consists of three steps:  

1) Construction of Global UP-Tree:  

The global UP-Tree is constructed by using two strategies: 

DGU (Discarding Global Unpromising Item) and DGN 

(Decreasing Global Node Utilities).  

- DGU (Discarding Global Unpromising item) – 

Discarding global unpromising items and their 

utilities from transaction and transaction utilities 

of database.  

- DGN (Decreasing Global Node Utility) – For any 

node in global UP - Tree, the utility of its 

descendants are discarded from the utility of node 

during construction of global UP-Tree. 

2) Generate the potential High utility Itemsets by using 

UP-Growth algorithm. Generate local UP-Tree by using 

two strategies: DLU and DLN. For this two strategies 

required minimum item utility.  

- DLU (Discarding Local Unpromising item) – 

Compute local Unpromising item and remove 

local unpromising item from path and recalculate 

path utility.  

- DLN (Decreasing Local Node Utility) – 

Construct local UP-Tree and calculate node 

utility.  

3) Identify High Utility Itemset.  

This algorithm is complex for evaluation due to tree 

structures.  

 HUI-Miner [11] (High Utility Itemset Miner), for high 

utility itemset mining. HUI-Miner create the novel 

structure, called utility- list for each item, to store both the 

utility information about an itemset and the heuristic 

information for pruning the search space of HUI-Miner. 

Exact utility of an itemset is obtained by joining the 

utility-list of smaller itemsets.  

   When the number of candidates is so large that they 

cannot be stored in memory, the algorithms will fail or 

their performance will be degraded due to thrashing. By 

avoiding the costly generation and utility computation of 

numerous candidate itemsets, HUI-Miner can efficiently 

mine high utility itemsets from the utility lists constructed 

from a mined database. This algorithm is costly due to 

joining of utility lists. 

 

C.  Problem with Existing System 

Performing mining process on large amount of datasets is 

very complex. Frequent Itemset Mining cannot meet 

demands arising from real life applications such as retail 

marketing because the frequent itemset mining treats all 

items with same importance. 

The execution time and memory space are the 

main issues. The most of existing high utility itemset 

mining algorithms requires more execution time and 

memory space for large datasets. 

 

III. PROPOSED METHOD 

The existing algorithms facing some performance issues. 

To overcome this issues the new high utility itemset 

mining algorithm is proposed which is better than existing 

algorithms in terms of execution time and memory space. 

A. Proposed Algorithm 

- Input: D: Transaction database. minutil: user-

specified              threshold. 

- Output: set of high utility itemset. 

1) Step 1 Scan D to calculate the TWU of single 

items. 

2) Step 2 I* each item i such that TWU (i) >= 

minutil 

3) Step 3 Let < be the total order of TWU ascending       

values on I* . 

4) Step 4 Scan D to built the utility –list of each 

item i ∈ I* and built the HMBS structure. 

5) Step 5 Search (∅ ,I*,minutil,HMBS); 

This new high utility itemset mining algorithm takes an 

input a transaction database with utility values and the 

minutil threshold. The algorithm first scans the database to 

calculate the TWU of each item. Then, the algorithm 

identifies the set I* of all items having a TWU no less than 

minutil. (Other items are ignored since they cannot be part 

of a high utility itemsets.) The TWU values of items are 

than used to establish a total order γ on items, which is the 

order of ascending TWU values. 

  A second database scan is then performed. 

During this database scan, items in transactions are 

reordered according to the total order γ, the utility-list of 

each item i ∈ I* is built and novel structure named HMBS 

(Hash Map Based Structure) is built.Building the HMBS is 

very fast (it is performed with a single database scan) and 

occupies a small amount of memory. After the 

construction of the HMBS, the depth-first search 

exploration of itemsets starts by calling the recursive 
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procedure Search with the empty itemset∅  , the set of 

single items , and the HMBS structure. 

     The TWU measure has following important properties 

that are used to prune the search space. 

1) Property 1 (overestimation): The TWU of an 

itemset X is higher than or equal to its utility, i.e. 

TCW(X) ≥ u(X)  

2) Property 2 (antimonotonicity): The measure is 

anti-monotonic. Let X and Y be two itemsets. If  

X ⊂ 𝑌 thenTWU(X) ≥ TWU(Y) 

3) Property 3 (pruning): Let be an itemset. If TWU 

(X) < minutil, then the itemset X is a low-utility 

itemset as well as all its supersets. 

4) Property 4 (sum of iutils ): Let X be an itemset. If 

the sum of itil values in the utility-list of X is 

higher than or equal to minutil, then X is a high-

utility itemset. Otherwise, it is a low-utility 

itemset. 

5) Property 5 (sum of iutils and rutil): Let X be an 

itemset. Let the extensions of X be the itemsets 

that can be obtained by appending an item  y > i 

for all item i in X . If the sum of iutil and rutil 

values in the utility-list of x is less than minutil, 

all extensions of and their transitive extensions 

are low-utility itemsets. 

B. Pruning Procedure 

- Input: P: an itemset, Extension of P: a set of 

extension of P, the minutil threshold, the HM 

structure. 

- Output: the set of high utility itemsets 

for each itemset P x € ExtensionsOf P do 

If SUM(𝑃𝑥 . utilitylist.iutils) ≥ minutil then 

Output 𝑃𝑥 ; 

end 

If SUM(.𝑃𝑥 , utility.iutils) + SUM(𝑃𝑥 .utilitylist.rutils) ≥ 

minutil then Extemsions0f𝑃𝑥   ⊘ ; 

For each itemset 𝑃𝑦  ∈ ExtensionOfP such that y > x do 

if  ∋ (x,y,c) ∈ HMBS such that c ≥ minutil) then 

𝑃𝑥𝑦   𝑃𝑥  ∪ 𝑃𝑦 ; 

𝑃𝑥𝑦 .utilitylist  Construct (P,𝑃𝑥 ; 𝑃𝑦 ); 

ExtensionsOf𝑃𝑥   ExtensionsOf𝑃𝑥  ∪ 𝑃𝑥𝑦 ; 

End 

End 

Search (𝑃𝑥 , ExtentionsOf𝑃𝑥 , minutil); 

End 

End 

C.  Construct Procedure 

- Input: P: an itemset, ,𝑃𝑥  :the extension of P with 

an item x,𝑃𝑦 : the extension of P with an item y. 

- Output: the utility – list of 𝑃𝑥𝑦   

For each tuple 𝑒𝑥  ∈ 𝑃𝑥 .utilitylist do 

If ∃𝑒𝑦  ∈ 𝑃𝑦 . Utilitylist and 𝑒𝑥 .tid = 𝑒𝑥𝑦 .tid then  

if P.utilitylist ≠ ∅ then 

Search element e ∈ P.utilitylist such that e.tid = 𝑒𝑥 .tid; 

𝑒𝑥𝑦  (𝑒𝑥 . 𝑡𝑖𝑑, 𝑒𝑥  .iutil+𝑒𝑦 .iutil , 𝑒𝑦 .rutil); 

End 

Else 

𝑒𝑥𝑦(𝑒𝑥 .tid,𝑒𝑥 .iutil + 𝑒𝑦 .iutil,𝑒𝑦 .rutil); 

End 

UtilityListOf𝑃𝑥𝑦  UtilityListOf𝑃𝑥𝑦 ∪{𝑒𝑥𝑦 } 

End 

End 

Return UtilityList𝑃𝑥𝑦 ; 
 

The classic frequency-based framework often leads to 

many patterns being identified, most of which are not 

informative enough for business decision-making. In 

frequent pattern mining, a recent effort has been to 

incorporate utility into the pattern selection framework, so 

that high utility (frequent or infrequent)patterns are mined 
which address typical business concerns such as dollar 

value associated with each 
pattern. So we incorporate utility into sequential pattern 

mining, and a generic framework for high utility sequence 

mining is defined. 
 

IV. EXPERIMENTAL EVALUATION 

The Performance comparisons of existing and proposed 

algorithms are evaluated on various datasets. The 

experiments were performed with 4GB memory. The 

algorithms are implemented in java language. The real 

data sets are used for experiments. The real world datasets 

such as retails, chess are obtained from UCI Repository. 

A. Execution Time  

Here compare the performance of existing and proposed 

algorithms on retail dataset. When measuring execution 

time, we varied the min-util for database. Fig.1. shows the 

performance evaluation of existing and proposed 

algorithm for execution time. When minutil is 200 the 

execution time of proposed algorithm is 21840 ms and 

execution time of existing algorithm is 23425 ms. 

 

 
 

Fig. 1. Execution time on Retail dataset 

 

Fig 2. shows the performance evaluation of existing and 

proposed algorithm for execution time on chess dataset. 

When minutil is 300 the execution time of proposed 

algorithm is 84742 ms and execution time of existing 

algorithm is 86146 ms. 
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Fig. 2. Execution time on chess dataset 

 

B. Memory Consumption  
 

Fig 3. shows the performance evaluation of existing and 

proposed algorithm for memory space on retail dataset. 

When minutil is 200 the memory consumed by proposed 

algorithm is 28.15 MB and memory consumed by existing 

algorithm is 29.45 MB. 

 

 
Fig. 3. Memory consumption on retail dataset 

 
Fig 4. Shows the performance evaluation of existing and 

proposed algorithm for memory space on chess dataset. 

When minutil is 300 the memory consumed by proposed 

algorithm is 7.72 MB and memory consumed by existing 

algorithm is 7.92 MB. 

 

Fig. 4. Memory consumption on chess dataset 
 

 

V. CONCLUSION 
Frequent itemset mining is the most popular data mining 

algorithm. Many number of efficient techniques available 

for frequent itemset mining, which considers mining of 

frequent itemsets. But a promising technique in Data 

Mining is Utility Mining, which incorporates utility 

considerations during itemset mining. Utility Mining 

covers all aspects of economic utility in data mining. In 

existing Two-Phase, UP-Growth, HUI-Miner algorithms 

have been proposed, but there is problem like it requires 

more execution time and it uses more memory. The new 

technique is memory efficient technique for mining high 

utility itemsets from transactional databases. This 

technique requires less memory space and execution time 

than existing algorithms. 
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