
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5181 329

A Review on Query Processing and Optimization

in SQL with different Indexing Techniques

Chiranjeev D. Garhwani
1
, Shreya S. Kandekar

2
, Payal S. Chirde

3

Dept. of Computer Science & Engg., Datta Meghe Institute of Engg., Technology & Research, Wardha (MS), India1,2,3

Abstract: In data warehousing and OLAP applications, large data are processed. To perform scalar-level predicates in

SQL with large amount of data become highly inadequate which requires supporting set-level comparison semantics

that means to compare a tuples of group with a number of values. We present here a comprehensive review of the state-

of-the-art processing a tuples of group with multiple values and to optimize the queries. Currently available queries are

complex, complex to write as well as challenging for database engine to optimize, which results in costly evaluation.

Many of the available query processing algorithms does not take the advantage of the small-result-set property, which
incurs intensive disk accesses as well as needed computations, which results in long processing time especially when

data size is too large. Optimized query processing approach achieved by various studied algorithms shows very good

performance to processing set predicates.

Keywords: Data Warehousing, Bitmap index,OLAP,Query processing and optimization,Word-Aligned

Hybrid(WAH),VLC, Huffman Coding.

I. INTRODUCTION

Now a day‘s, demand of querying the data in data
warehouse and OLAP applications with the semantics of

set-level comparison is very high. Suppose a company or

institution seeking for candidates for the job with set of

compulsory skills, company or institution may search their

resume database. Skills of each candidate that is set of

values are compared against the compulsory skills. Such

sets are dynamically formed .Such process of set level

comparisons can be performed using currently available

SQL syntax and semantics without proposed system [1].

If the set level comparisons performed using currently

available SQL syntax, resulting query may be more and

more complex ,with the result it may take too much time

to process the query than necessary. Such complex query

becomes a difficult for the user to formulate, which results

in too much costly evaluation. Aggregation query is type

of Iceberg Query [3] which calculates and computes

aggregate values above the particular threshold value.

High aggregate values always carry out more necessary

information. Aggregate functions are COUNT, MIN,

MAX, SUM and AVERAGE etc. In this paper, main focus
is on processing queries that have aggregation function

with antimonotone property [4] such as MIN, MAX, SUM

and COUNT.

 In this paper, our aim is to process and retrieve the data
using compressed Bitmap indeces.Currently available

GROUP BY clause can only and only do scalar value

comparison by accompany HAVING clause. Aggregate

functions COUNT, MIN, MAX, SUM and AVERAGE

etc. produces single numeric value, which compared to

another single aggregate value. We have presented

Aggregate function based technique and compressed

bitmap index based technique. Aggregate function based

technique processes set predicates in the normal way as

processing conventional aggregate function. Second

technique is compressed bitmap index in which bitmap

indices is created on each attributes. This technique is

more efficient because it focuses on only those tuples

which satisfies query condition and bitmaps of appropriate

columns. Such index structure is applicable on many

different types of attributes.

This technique processes queries such as selections, joins,

multi-attribute grouping etc [1]. For the purpose of

compression Word-Aligned Hybrid (WAH) [5] technique

is used. This technique now a day‘s can be applied on all

types of attributes such as numeric attributes[6][7] high

cardinality categorical attributes[6],text attributes[8] etc.

This technique is efficient for data warehouse query
processing and OLAP [9].

II. RELATED WORK

Now a day‘s ,Many database management systems
provides definition of attributes consisting a set of values

such as nested table in Oracle and SET data type in

MYSQL. For the Set predicates, there is no need of data

storage and representation hence included in standard

DBMS. In real world applications, according to need of

query groups and corresponding set are usually

dynamically formed. Users can dynamically formed set

level comparisons without any limitation caused by

database schema fir set predicates. It also allows cross

attribute set level comparison. In [10][11][12],grouping

variables and associated set concepts was introduces as
SQL extension in order to allow comparison of multiple

aggregate functions over same grouping condition. This

paper mainly focuses on processing of data using

compressed bitmap index and predicting the sets.

Bin He et al.(2012) explained the properties of bitmap

index and developed a very efficient and powerful

bitmap index pruning strategy for processing queries.

Bitmap Index pruning based technique removes the

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5181 330

necessity of scanning and processing the entire data set

(table) and thus results in processing of fast query

processing. This technique is more efficient than existing

algorithms generally used in recent databases. By

checking these characteristics of bitmap indices, the

opportunities of computing queries efficiently using

compressed bitmap index. A naive way for computing

query used for the bitmap indexing is to do pairwise

bitwise-AND operations among bitmap vectors of all

necessary attributes. This technique is not very efficient

because the product of the number of bitmap vectors of all
attributes is large and large portion of these operations are

not necessary.

Elizabeth O‘Neil et al .proposed FASTBIT and RIDBIT

techniques. FastBit is research tool developed for study

and analyzing how compression methods affect bitmap

indexes, and has been used in a number of scientific

applications [12]. It organizes table data into rows and

columns, where each table is vertically partitioned and

each column stored in individual files, each partition

typically consisting of many millions of rows. Bitmap

indexes are applied continuously without partitioning into

bit segments as in RIDBit technique. The index used in

this study is that about the Word-aligned hybrid (WAH)
compression by basic bitmap index. In FastBit tool

bitmaps generates all the values of entire indexing for one

individual in memory before writing the index file. In this

section we are presenting the background on current

techniques used to compress bitmap indices that achieve

this fast querying.

1. Byte Aligned Bitmap Compression (BBC)

Run-length encoding schemes accomplish compression

when sequences of successive identical bits, and ―runs‖, is
presents. BBC [11] is an 8-bit hybrid RLE representation

is in the practice of a literal or a fill. The MSB which are

known as the flag bits marks the encoding type. That is, a

byte 0xxxxxxx which will denote the least significant 7

bits is a literal representation for the genuine bit string. In

distinction, 1xnnnnnn encodes a fill which compactly

represents runs of consecutive x‘s. Here, x are the fill bit

which encodes the value for the bits in the run, and the

remaining 6 bits is use for length (in multiples of 7), e.g.,

11001010 represented by the sequence of 70 1‘s.

BBC is compelling with query executed for the duration of

the time is directly proportionalities is the rate of

compressions. For example, suppose a database contains

77 rows and two bit vectors: v1 and v2. Assume that v1

contains the literal 0101010 followed by a run of 70
consecutive 1‘s. Let v2 contains the sequences of 700‘s

following by the literal 0100000. In BBC format, v1

would be encoded as (00101010 11001010) and similarly,

v2 = (10001010 00100000). Now envision a query which

invokes v1 ^ v2. The query processor would read the first

byte from both v1 and v2. By decoding the most

significant bit, the query processor determines that it has

read a 7-bit literal from v1 and a run of (10 * 7) = 70 0‘s

from v2. Next, the literal from v1 is AND‘ed with an fill

of seven 0000000 from v2. Progressing further, the query

processor reads and decodes the next byte from v1. It is

important to note only seven 0‘s has been processed from

the fill in v2. Thus, all that is required to simply

decremented of the fill count from 10 to 9. This

demonstrates why BBC fills must be a multiple of 7. The

next byte of v1 is decoded as a run of 70 consecutive 1‘s.

The next 9 AND operations can be carried out in one step

by making the AND comparison once and reported its

results for the same compressed form. The run-length

count for v1 is updated to 1, and v2 to 0. Thus 63 = (9 * 7)

bits have been compared without having to decode even

once. After the 9th iteration, v2‘s fills are exhausted,
prompted for the read of the next byte from v2. Finally,

the remaining seven bit from both bins are AND‘ed to

complete the query. BBC‘s efficiently comes to presence

of fills, which effectively allowed processor for amortizing

the number of necessary memory accesses.

2. Word Aligned Hybrid (WAH)

Compressed bitmap indexes are increasingly utilised for

efficiently querying very large databases. The Word
Aligned Hybrid (WAH) bitmap compression schemes are

commonly recognized for the most efficient compression

scheme in terms of CPU efficiency. WAH [16, 17], not

like BBC, that uses a 31 bit representation (32 bits

including the flag bit). This representation offers several

benefits over BBC—one being used for certain bitmaps,

WAH can achieve significant speedup in query processing

time duration when compared to BBC. These speedups are

due to the fact that memory is naturally raised by the CPU

the words at a time. By using a word-aligned encoding,

WAH avoiding the overhead of the further extraction

bytes within a word that is incurred by BCC. Thus, WAH
not only compressed literals more effectively than BBC

(using 4 less flag bits per 31 bits), but also it can also

practice bitwise operations much quicker over literals by

avoiding the overhead of byte abstraction or parsing and

decoding to determine if the byte are indeed the literal.

In terms of compressing runs, however, Word aligned

hybrid compression typically pales compared to BBC.

This is often due to fact that WAH‘s fills are encode 230-1

multiples of 31 consecutive identical bits. In practice, runs

for this size are unlikely, which implies that many of the

fill bits are unused. On by the other hand, note this

maximum number of consecutive bits that a BBC fill can

represent is (26-1)*7 = 441. For large-scale and highly

sparse databases, it is likely that a run can continue far

beyond this threshold, which means there are still the
cases where WAH will yield more efficient encodings for

runs [11].

3. B- tree

B-Tree is an self-balancing search trees. In most of the

other self-balancing search trees like AVL and redly

blackly trees, it is assuming that everything are in main

memory. To understand use of B-Trees, we must think of

large amounts of data that cannot fit in the memory.[20]

When the number of keys is high, the data is read from

disk in the forms of a block. Disk access time is very high

compared to main memory access time. The main idea of
using B-Trees is for reduced the numbers of disk accesses.

Most of the tree operations (search, insert, delete, max,

http://www.geeksforgeeks.org/avl-tree-set-1-insertion/

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5181 331

minuet) required O(h) disk accessed where h is the height

of the tree. B-tree is a fat tree. Height of B-Trees is kept

low by putting maximum number of possible keys in a B-

Tree node. Generally, a B-Tree node size is kept equal to

the disk block size. Since h are low for B-Tree, total disk

accesses for most of the operations are reduced

significantly compared to balanced Binary Search Trees

like AVL Trees, and Red Black Tree, .etc.

Properties of B tree are: - All leaves are at same level. A

B-Tree is defined for the term minimum degree‗t‘. The

value of t depends upon disk block size. Every node

except root should contain at least t-1 keys. Root may

contain minimum 1 key. All nodes (including root) may

contain at most 2t – 1 key. Numbers of children of nodes

are equal to the number of keys in it plus 1. All keys of a
node is sorted in the increasing order. The children

between two keys k1 and k2 contained all keys in range

from k1 and k2. B-Tree grows and shrinks from root

which is dislike Binary Search Tree. Binary Search Trees

grow downward.

The B-Tree Index is popular in data warehouse

applications for high cardinality column such as name

since the space usage of the index is independent of the

column cardinality. However, the B-Tree Indexing has

characteristics that made them poor choice for DW‘s

queries. First of all, a B-Tree index is of no use for low

cardinalities data like the gender column since it reduces

very few numbers of I/Os and may uses more space and

time than the raw indexed column. Second is that, each of

the B-Tree Index is independent and thus could not

operate with each other on an indexing level before going
for the primary source. At last, the B-Tree Index fetches

the results of the data ordered by key values which has

unordered row ids, so more I/O operations and page faults

are generated [19].

4. B+ tree

A B+ tree is a data structure used in the implementation of

database indexes. Each node of tree contains an ordered

list of keys and pointers to lower level nodes in the tree.
These pointers can be thought of as being between each of

the keys. To search for or insert an element into the tree,

one load up the root node, find the adjacent keys that the

searched for value is between, and follows the

corresponding pointer to the next node in the

tree. Recurring eventually leads to the desired value or the

conclusion that the value is not present.

B+ trees use clever balancing techniques to make sure that

all of the leaves are always on the same level of the tree,

that each node is always at least half full of keys, and that

the height of the tree is always at most ceiling

(log(n)/log(k/2)) where n is the number of values in the

tree and k is the maximum number of keys in each block.

This means that only a small number of pointer traversals

are necessary to search for a value if the number of keys in

a node is large. This is crucial in a database because the
B+ tree is on disk. Reading a single block takes just as

much time as reading a partial block, and a block can hold

a large number of pointers.

B+ trees can also be used outside of the disk, but generally

a balanced binary search tree or a skip list or something

should provide better performance in memory, where

pointer following are no more expensive than finding the

right pointer to follow[21].

5. Variable Length Compression (VLC)

Due to the use for the fixed bit-segment lengths to encode

bit vectors, neither WAH nor BBC generates the optimal
compression. To illustrate, recollected the rows reordered

bitmaps produces long runs in the first several bit vectors,

buts increasingly shorter run at the later vectors. Word

Aligned Hybrid‘s 31-bit segment length (32 bits including

the 1 flag bit) is idealistic for the first several bit vectors

that potential for containing extremely long runs. But after

this first few vectors, the rest may tend to has an average

run-length smaller than 62 the straight run-length several

that WAH can compress, there is a higher probability to

have that many shorter runs to be represented as WAH

literals, which squanders compression opportunities.
Conversely, BBC‘s have an maximum fill codes,

1x1111111, can only represent a run of 63 * 7 = 441 x‘s.

With this 7-bit fixed segmented length, BBC could not

professionally represent long runs for the first several

vectors. Any run that are longer than 441 would require

another byte for the use. We posit that we can attain a

balanced trade-off between these exemplifications by

using unevenly-sized bit segment sizes. To this end, we

propose a novel run-length compression scheme Variable

Length Compression (VLC) which is capable of varying

the segment lengths used for compression on a per bit

vector basis. The flexibility of VLC permits us to bandage
the preliminary bit vectors of a row reordered bitmap

using a longer segment length, when used a smaller length

on advanced bit vectors. While a more robust compression

can be expected using VLC, a challenge is maintaining

efficient query processing speed. VLC achieves greater

compression in our experiments than both WAH and BBC

at most cases, when the correct fragment interval is

selected. Our scheme will provide an alternative to the

user to encode a bitmap using precise encoding lengths to

greater enhance compression, or to use encoding lengths

that would allow for more rapidly querying on certain
columns that may be queried often. Thus, VLC is a

tuneable approach, which allows users to trade-off size

and enactment [11].

A Huffman Coding is most sophisticated and efficient
lossless data compression techniques. In Huffman Coding

the typescripts in a data files are converted into binary

codes. And in this technique the most common characters

of the file has shortest binary code, and also has the least

common have the longest binary code.

III. PROPOSED METHOD

In proposed system we have presented Aggregate function

based technique and bitmap index based technique with

Word-Aligned Hybrid (WAH) compression technique. In

table R, column A has three distinct values ―A1;A2;A3,‖

and column B has three distinct values ―B1;B2;B3.‖ The

bitmap indices are those on the right of Fig. 1.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5181 332

To process the iceberg query in Fig. 2, the naïve approach

will conduct bitwise-AND operations between nine pairs:

(A1, B1), (A1, B2), (A1, B3), (A2, B1), (A2, B2), (A2,

B3), (A3, B1), (A3, B2), and (A3, B3). After each of the

Bitwise-AND operations, number of 1 bits of the resulting

bitmap vector are counted. If the number of 1 bits is larger

than the threshold (2 in this example), it is added into the

iceberg result set.

(a) Table R (b) Bitmap indices for A,B

Fig 1.An example of Bitmap index

Various compression schemes of the bitmap indexing has

been developed. Word-Aligned Hybrid (WAH) and Byte-

aligned Bitmap Code (BBC) is the two very important
compression systems that can be applied to any column

and be used in query processing without decompression.

Development of the bitmap compression method and

encoding approaches further extends the applicability of

bitmap indexing. Nowadays, this may be applied on all

types of attributes like values of higher cardinality and

categorical attributes numerical and text attributes. And it

is very effectual for Online Analytical Process and

warehouse query processing.

The Word Aligned Hybrid Compression technique

performs compression on Bitmap indexing which

generates an extra table for further compression. This

causes the space complexity. As it consumes more space,
execution time also increases for retrieving the data for

given query. Complex queries containing scalar-level

operations are often formed to obtain even very simple set-

level semantics. Such complex queries are difficult for

users to formulate. Currently available bitmap indexing

approach not supported in major Database platforms such

as MySQL, DB2 except Oracle. To overcome the pitfalls

of existing system we are proposing new compression

technique that is Variable Length Compression Technique

that will improve the performance of the system that will

minimize the space complexity and will also improves the

execution time of query processing. Below is the example
of Variable Length Code.

 a b c d e f

Freq in ‗000s 45 13 12 16 9 5

A fixed
-length

000 001 010 011 100 101

A variable-
length

 0 101 100 111 1101 1101

Fig 2 .An example of VLC

The fixed length-code requires 300,000 bits to store the
file. The variable length code uses only

(45*1+13*3+12*3+16*3+9*4+5*4)*1000=224,000 bits.

IV. CONCLUSION

We have presented a comprehensive review on processing

large data sets. Set predicates combined in a group, allow

selection of dynamically formed groups and set values.

We have presented an approach, compressed bitmap index

based approach using variable length coding to process

large datasets. We observed that bitmap index has

fallowing benefits:1)Saving disk access by avoiding tuple
-scan on a table with more number of attributes,

2)Reducing computation time by conducting bitwise

operations. We further develop an optimization strategy to

further improve the performance of the system.

REFERENCES

[1] Chengkai Li, Member,IEEE, Bin He, Ning Yan, Muhammad Assad

Safiullah ‖Set Predicates in SQL: Enabling Set-Level Comparisons for

Dynamically Formed Groups‖ IEEE Transactions on Knowledge and

Data Engineering , Vol. 26, No. 2, FEBRYARY 2014.

[2] Bin He,Hui-l Hsiao, Member IEEE, Ziyang Liu ,Yu Huang,and Yi

Chen,Member,IEEE, ―Efficient Iceberg Query Evaluation Using

Comressed Bitmap Index‖, IEEE Transactionson K1nowledge and Data

Engineering , Vol. 24, No. 9, SEPTEMBER 2012.

[3] Jayant Rajurkar, T.Khan, ‖A System for Query Processing and

Optimization in SQL for Set Predicates using Compressed Bitmap

Index‖, IJSRD - International Journal for Scientific Research &

Development, Vol. 3, Issue 02, 2015 | ISSN 2321-0613,pp no 798-801.

[4] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and
J.D.Ullman, ―Computing Iceberg Queries Efficiently,‖Proc. Int‘l

Conf.Very Large Data Bases (VLDB),pp. 299-310, 1998.

[5] J. Bae and S. Lee, ―Partitioning Algorithms for the Computation of

Average Iceberg Queries,‖Proc. Second Int‘l Conf. Data Warehousing

and Knowledge Discovery (DaWaK),2000.

[6] K. Wu, E.J. Otoo, and A. Shoshani, ―Optimizing Bitmap Indices with

Efficient Compression, ‖ACM Trans. Database Systems,vol. 31, no. 1,

pp. 1-38, 2006.

[7] P.E. O‘Neil and D. Quass, ―Improved Query Performance with Variant
Indexes,‖Proc. ACM SIGMOD Int‘l Conf. Management of Data,pp. 38-49, 1997.

[8] Jayant Rajurkar, T.K.Khan,‖ Efficient Query Processing and

Optimization in SQL using Compressed Bitmap Indexing for Set

Predicates‖, IEEE Sponsored 9th International Conference on

Intelligent Systems and Control (ISCO) Page No.619-

623.DOI.10.1109/ISCO.2015.7282354.

[9] S. Melnik and H. Garcia-Molina, ―Adaptive Algorithms for Set
Containment Joins,‖ACM Trans. Database Systems,vol. 28, no. 1, pp. 56-99, 2003.

[10] S. Melnik, A. Gubarev, J.J. Long, G. Romer, S. Shivakumar, M.Tolton,

and T. Vassilakis, ―Dremel: Interactive Analysis of WebScale Data

Sets,‖Comm. ACM,vol. 54, pp. 114-123, June 2011.

[11] G. Antoshenkov, ―Byte-Aligned Bitmap Compression,‖Proc. Conf. Data

Compression,p. 476, 1995.
[12] Jayant Rajurkar, Lalit dole, ,‖ A Decision Support System for Predicting

Student Performance‖, International Journal of Innovative Research in

Computer and Communication Engineering(IJIRCCE). Vol. 2, Issue 12,

December 2014, Pages- 7232-37.

[13] D. Chatziantoniou and K.A. Ross, ―Querying Multiple Features of

Groups in Relational Databases,‖Proc. Int‘l Conf. Very Large Databases

(VLDB),pp. 295-306, 1996.

[14] D. Chatziantoniou and K.A. Ross, ―Groupwise Processing of Relational
Queries,‖Proc. 23rd Int‘l Conf. Very Large Databases (VLDB),pp. 476-485, 1997.

[15] D. Chatziantoniou and E. Tzortzakakis, ―Asset Queries: A Declarative

Alternative to Mapreduce,‖ACM SIGMOD Record, vol. 38, no. 2, pp.

35-41, Oct. 2009.

[16] K. Wu, E. Otoo, and A. Shoshani, ―An efficient compression scheme for

bitmap indices‖ in ACM Transactions on Database Systems, 2004.

[17] K.Wu, E. J. Otoo, and A.Shoshani, ―Compressing bitmap indexes for

faster search operations‖ in Proceedings of the 2002 International

Conference on Scientific and Statistical DatabaseManagement

Conference (SSDBM‘02), pages 99–108, 2002.
[18] Zainab Qays Abdulhadi, Zhang Zuping and Hamed Ibrahim Housien,

“Bitmap Index as Effective Indexing for Low Cardinality Column in

Data Warehouse‖ in International Journal of Computer Applications

(0975 – 8887) Volume 68– No.24, April 2013.

[19] Sirirut Vanichayobon, Le Gruenwald,“Indexing Techniques for Data

Warehouses Queries‖.

[20] https://en.wikipedia.org/wiki/B-tree.

[21] https://www.quora.com/What-is-a-B+-Tree.

