
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5689 425

A New Parallel Split and Concurrent Selection

Sorting Algorithm based on Binary Search

Jagdeep Singh
1
, Alka Singh

2

M. Tech, Computer Science & Engineering, KNIT, Sultanpur, India1

Asst Professor, Dept of Computer Science & Engineering, KNIT, Sultanpur, India2

Abstract: We all know that the most important procedure in managing data is its sorting. To perform sorting, one can

choose different sorting algorithmic methods. But, all the various sorting algorithms do not result the same speed,

execution time and efficiency at a given set of inputs. Hence, it is necessary to know which algorithm can give better

result for a given platform and pre-defined data sets. This paper presents reader an experimental study of performance
comparison for various parallel sorting algorithms. Proposed algorithm shows up to 50 times speed up as compare to

serial and two fold speedup as compare to parallel algorithm.

Keywords: Bitonic sort, odd-even merge sort, parallel merge sort, parallel rank sort, complexity.

I. INTRODUCTION

The process of rearranging data in a particular order that

may be in a increasing or decreasing manner is termed as

sorting. The data set may be alphabetical or numerical in

nature. Every existing matter in this world has its few
advantages as well as disadvantages. Similarly different

sorting algorithms have their advantages and

disadvantages. Sorting is used for performing search

operation in an easier way saving time. But, sorting

algorithms can’t be used with same efficiency on all data-

sets. Every method depending upon the data-set performs

differently in different aspects with respect to processing

time, speed and efficiency; few perform poorly whereas

few give results in a short time. To understand the above

phenomena in a better descriptive way, we in this paper

will carry out an experimental study for an assumed data-

set of various parallel sorting algorithms on the basis of
performance and complexity.

PARALLEL SORTING METHODS

There are number of parallel sorting algorithms are

available for different machines: Parallel odd-even

transposition is an extension of bubble sort, operates in

two alternate phases. First is called even-phase where

even processors exchange values with right neighbours

and second is odd-phase where odd processors exchange

values with right neighbours. Parallel merge sort [1] is
based on divide and conquers strategy. It assigns work to

processors organized as a tree. First subdivides it in two

parts and give it to the particular processors. Again apply

the same method to each part. After that start merging

between two processors element in sorted order, again

apply the same method until they get the sorted data

sequence [2]. Time complexity of parallel merge sort is 0

(n) but it has unbalanced processor [3] and load

communication. Parallel sorting methods are classified on

the following basis:

1. On the basis of memory usage:

Sorting method Memory occupied

Odd – even sort 1

Parallel merge sort n

Bitonic sort n log⁡(logn)

Parallel rank sort n log⁡(logn)

Parallel quick sort logn

2. On the computational complexity basis:

Sorting method Best case Average case Worst case

Odd – even sort N n2 n2

Parallel merge sort nlogn nlogn nlogn

Bitonic sort log(logn) log(logn) log(logn)

Parallel rank sort log(logn) log(logn) log(logn)

Parallel quick sort nlogn nlogn n2

1. On the basis of recursion: Algorithms may be recursive

or non-recursive in nature. Few may be both viz. parallel

merge sort.

How much an algorithm’s efficiency and performance can

be improved by Parallelism? To answer this question, we

have developed and executed three parallel sorting

algorithms [4]. Execution time is the time required to

execute an algorithm whether in sequential environment or

parallel environment; Speed up is the ratio of the total time

taken in the execution of an algorithm in sequential

environment to that in a parallel environment [10].

𝑠 𝑛, 𝑝 =
𝑇(𝑛 ,1)

𝑇(𝑛 ,𝑝)
 .

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5689 426

II. PARALLEL PROGRAMMING

Figure 1- Parallel Execution of instructions

Parallel Computing Toolbox provides several high-level

programming constructs that let you convert your

applications to take advantage of computers equipped with

multicore processors and MATLAB-PCT. Constructs such

as parallel for-loops (parfor) and special array types for

distributed processing and for GPU computing simplify

parallel code development by abstracting away the

complexity of managing computations and data between

your MATLAB session and the computing resource you

are using.

We can run the same application on a variety of

computing resources without reprogramming it. The

parallel constructs function in the same way, regardless of

the resource on which your application runs—a multicore

desktop (using the toolbox) or on a larger resource such as

a computer cluster (using toolbox with MATLAB

Distributed Computing Server).

SPMD (single program, multiple data)

It executes code in parallel on workers of parallel pool

Syntax
spmd, statements, end

spmd(n), statements, end

spmd (m,n), statements, end

Description

The general form of a spmd (single program, multiple

data) statement is:

spmd

 statements

end

spmd, statements, end defines a spmd statement on a
single line. MATLAB® executes the spmd body denoted

by statements on several MATLAB workers

simultaneously. The spmd statement can be used only if

you have Parallel Computing Toolbox. To execute the

statements in parallel, you must first open a pool of

MATLAB workers using parpool or have your parallel

pretences allow the automatic start of a pool.

Inside the body of the spmd statement, each MATLAB

worker has a unique value of labindex, while numlabs

denotes the total number of workers executing the block in

parallel. Within the body of the spmd statement,

communication functions for communicating jobs (such as
labSend and labReceive) can transfer data between the

workers.

Values returning from the body of a spmd statement are

converted to Composite objects on the MATLAB client. A

Composite object contains references to the values stored

on the remote MATLAB workers, and those values can be

retrieved using cell-array indexing. The actual data on the

workers remains available on the workers for subsequent

spmd execution, so long as the Composite exists on the

client and the parallel pool remains open.

By default, MATLAB uses as many workers as it finds

available in the pool. When there are no MATLAB

workers available, MATLAB executes the block body

locally and creates Composite objects as necessary.

spmd(n), statements, end uses n to specify the exact

number of MATLAB workers to evaluate statements,

provided that n workers are available from the parallel

pool. If there are not enough workers available, an error is

thrown. If n is zero, MATLAB executes the block body

locally and creates Composite objects, the same as if there
is no pool available.Spmd(m,n), statements, end uses a

minimum of m and a maximum of n workers to evaluate

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5689 427

statements. If there are not enough workers available, an

error is thrown. M can be zero, which allows the block to

run locally if no workers are available.

Examples

Perform a simple calculation in parallel, and plot the

results:

parpool(3)

spmd

 % build magic squares in parallel

 q = magic(labindex + 2);

end

for ii=1:length(q)

 % plot each magic square
 figure, imagesc(q{ii});

end

delete(gcp)

Codistributed

It creates codistributed array from replicated local data

Syntax

C = codistributed(X)

C = codistributed(X,codist)

C = codistributed(X, lab,codist)

C = codistributed (C1, codist)

Description

C = codistributed(X) distributes a replicated array X using

the default codistributor, creating a codistributed array C

as a result. X must be a replicated array, that is, it must

have the same value on all workers. Size(C) is the same as

size(X).C = codistributed(X, codist) distributes a

replicated array X using the distribution scheme defined

by codistributor codist. X must be a replicated array,

namely it must have the same value on all workers.

Size(C) is the same as size(X). For information on
constructing codistributor objects, see the reference pages

for codistributor1d and codistributor2dbc.C =

Codistributed (X, lab,codist) distributes a local array X

that resides on the worker identified by lab, using the

codistributor codist. Local array X must be defined on all

workers, but only the value from lab is used to construct

C. size(C) is the same as size(X).C = Codistributed

(C1,codist) accepts an array C1 that is already

codistributed, and redistributes it into C according to the

distribution scheme defined by the codistributor codist.

This is the same as calling C = redistribute (C1, codist). If

the existing distribution scheme for C1 is the same as that
specified in codist, then the result C is the same as the

input C1.

Examples

Create a 1000-by-1000 codistributed array C1 using the

default distribution scheme.

spmd

 N = 1000;

 X = magic(N); % Replicated on every worker

 C1 = codistributed(X); % Partitioned among the

workers

end

Create a 1000-by-1000 codistributed array C2, distributed

by rows (over its first dimension).

spmd

 N = 1000;
 X = magic (N);

 C2 = codistributed(X, codistributor1d (1));

End

III. RELATED WORK

Our proposed parallel sorting algorithm on MATLAB is a

hybrid algorithm, the combination of parallel radix sort

and parallel selection sort . First it split the data sequence

into several pieces then apply radix sort concurrently on

all the pieces. After that it uses parallel selection sort to
find the correct position of each element of a data

sequence concurrently[5]. Then copy the elements of a

data sequence to corresponding position to obtain the final

sorted data sequence. The complete parallel sorting

algorithm is called "split and parallel selection" algorithm

composed of the above two stages. In which our parallel

radix sort is similar as existing parallel radix sorting

algorithm[9]. However its efficiency depends to a large

extent on selection sort that finds the final position of

elements in sorted data sequence.

Split and Concurrent Selection
Let us assume a shared memory multiprocessor with n

processors, denoted by PI, P2........ Pn. Again, let us

assume a data sequence D of size S which is initially

unordered and one more data sequence d of size S which is

initially empty. Proposed parallel sorting algorithm first

split the data sequence D into subsequences of size Sin.

Each subsequence is denoted by D and assigned to the

processor P j where i is from 1 to n.

After splitting the data sequence D of size S equally to n

processors, each processor Pi gets Sin elements and sort its
assigned subsequence Di of size Sin by using a fast

sequential radix sort parallely on each processor

individually. An algorithm for proposed algorithm SCS is

as follows:

Proposed Algorithm:

1).D  Data Set, Mo  0; i 1 to S/p

2).S  Size, FST  First element of corresponding

individual lab, LST  Last element of corresponding

individual lab.

 3).For all processors P do in parallel

% initialising spmd tool to distribute jobs over
% all 4 labs for parallel processing

 4) spmd

 % distributing inputs to each lab

 5)p=codistributed(a);

 6)P=getLocalPart(p);

 7)len=length(P);

 % calling radixSort() method to sort elements

 % and storing result from individual lab

 8) Apply Radix sort on P parallelly.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5689 428

 9)end

10) if(Pi[k] < Po[FST]

11)break;

12)e lse(Pi[k] > Po[LST]) then

13) Mo  Mo + total no. Of individual processor
elements

14)Break

15) Elseif apply Binary Search to find the numbers

of elements Mo are smaller than Pi[k] in po.

16) End if

17) Xi[k] = Xi[k] + Mo

18). Copy the elements of data sequence D to

the corresponding position in data sequence.

19). Final sorted sequence obtained.

20). stop the algorithm

IV. COMPUTATIONAL COMPLEXITY

A. Complexity Analysis DISCS Algorithm

This section presents detail analysis of the computational

complexity of proposed algorithm. This analysis is divvied

in two parts: First, parallel radix sort phase complexity and

second selection sort based on binary search[6].

B. Parallel Radix Sort Phase Complexity

Radix sort is one of the oldest and well- known sorting

algorithms on sequential machines. It is the most efficient

sorting algorithm for small element. It assumes that the
elements are d digit numbers and sort one digit of element

at a time, from least to most significant bit. In sequential

radix sort, for a fixed element size d, the complexity of n

records is 0 (n). In our proposed algorithm, radix sort is

used in parallel to sort the each subsequence of size Sin, so

that computational complexity of first phase is O(S/n).

C. Selection Sort Based On Binary Search Complexity

This phase is used to find out the sorted position of

elements by using binary search algorithm. Binary search

is the best searching algorithm for sorted elements. The
complexity of binary search for n record is 0 (1) in best

case and 0 (logn) in worse case. In the proposed algorithm

binary search is used to find out the sorted position of an

element in subsequence of size Sin and find the position in

all S subsequence[7]. So, the computational complexity of

second phase is 0 (n*logS/n).

D. SCS Complexity

According to the analysis in above subsections, the

computational complexity of SCS parallel sorting

algorithm is 0 (S/n) + 0 (nlogS/n).

V. IMPLEMENTATION

To implement this algorithm in MATLAB-PCT we made

two kernels First kernel is used to divide the data sequence

into subsequences and sort the each subsequence Di

through corresponding thread Ti by using sequential radix

sort. Second kernel uses the results of first kernel. Each

thread Ti applies selection sort on sorted Di in which it

uses binary search to fmd out the exact sorted position of

each element of data sequence D. After that, copy the
corresponding element of the obtained position in data

sequence d. Finally we get the sorted output in data

sequence d.

Here we have evaluated the speed up of parallel selection

sort on MATLABs with parallel sorting algorithm based

on odd-even merge sort and sequential quick sort.

Sequential quick sort is implemented in c and the parallel

odd-even merge sort is implemented in MATLAB-PCT.

We have evaluated the performance of all implemented

algorithms on a large data sequence having number of

elements from lK to 100M.
Result shows that Parallel Proposed sort is better than

others for large data sequence. It gives almost two times

speedup than parallel odd-even merge sort. For small size

of data sequence like has less than 10K elements

sequential quick sort is better than others. But more than

10 K elements of data sequence parallel selection sort

takes less execution time.

Table I shows the execution time of sequential quick sort

and parallel selection sort. It shows that sequential quick

sort gives better performance for small data sequence
which has less than 10K elements. Parallel selection sort

gives almost 300X speed up than sequential quick sort for

large data sequence which has more than 1 M elements.

This is just because of number of threads work

independently and simultaneously to sort the large data

sequence.

Table.1 the execution time of sequential quick sort and proposed sort

Numbers of Elements Sequential Quick sort

(in milliseconds)

Proposed sort(in milliseconds)

1K 20.0 41.34

10K 170.0 239.47

20K 390.0 280.80

50K 1300.0 363.15

100K 5700.0 638.90

1M 131000.0 2548.40

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5689 429

Fig.2 Performance comparison of sequential quick sort and proposed sort

Table II shows the execution time of parallel odd­ even

merge sort and Parallel selection sort on MATLAB-PCT

with 100 elements in each threads. After analysing the

results of both parallel algorithm we can say that our

proposed algorithm gives better performance than parallel

odd-even merge sort[8].

Table.2 the execution time of Parallel odd even merge sort and proposed sort

Numbers of Elements Parallel Odd-even Merge sort

(in milliseconds)

Proposed sort(in milliseconds)

1K 70.99 41.34

10K 287.43 239.47

20K 387.80 280.80

50K 521.27 363.15

100K 956.72 638.90

1M 8426.48 4348.40

10M 142867.89 84850.95

20M 307152.90 113570.86

50M 1023964.35 432653.21

Fig.3 the execution time of Parallel odd even merge sort and proposed sort

Table III shows the execution time of Sequential merge

sort and Proposed sort on MATLAB-PCT with 100

elements in each threads.

After analysing the results of both parallel algorithm we

can say that our proposed algorithm gives better

performance than merge sort.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5689 430

Table.3 the execution time of merge sort and proposed sort

Numbers of Elements Sequential Merge sort

(in milliseconds)

Proposed sort(in milliseconds)

1K 28.0 41.34

10K 176.0 239.47

20K 590.0 280.80

50K 3300.0 363.15

100K 9700.0 638.90

1M 231000.0 2548.40

(Fig.4 the execution time of merge sort and proposed sort.)

VI. CONCLUSION

We have shown that how after decreasing number of

elements per thread proposed algorithm is giving better

performance. Proposed parallel algorithm gives almost

50x speed-ups than sequential quick sort for a large data

sequence. It gives almost 3.5x speed-ups than parallel odd-

even merge sort for our MAT LAB-PCT based machine.

In future we can improve the performance of parallel
section sort by minimising the number of elements with

any other elements is compared to find its correct position

in list.

REFREENCES

[1] Kalim Qureshi and Haroon Rashid,―A Practical Performance

Comparison of Parallel Matrix Multiplication Algorithms on

Network of Workstations.‖, IEEE Transaction Japan, Vol. 125, No.

3, 2005.

[2] Kalim Qureshi and Haroon Rashid,― A Practical Performance

Comparison of Two Parallel Fast Fourier Transform

Algorithms on Cluster of PCS‖, IEEE Transaction Japan, Vol. 124,

No. 11, 2004.

[3] Kalim Qureshi and Masahiko Hatanaka, ―A Practical Approach of

Task Partitioning and Scheduling on Heterogeneous Parallel

Distributed Image Computing System,‖ Transaction of IEEE Japan,

Vol. 120-C, No. 1, Jan., 2000, pp. 151-157.

[4] K. Sado, Y. Igarashi, Some Parallel Sorts on a Mesh-

Connected Processor Array and Their Time Efficiency,

Journal of Parallel and Distributed Computing, 3, pp. 398- 410,

1999.

[5] D. Bitton, D. DeWitt, D.K. Hsiao, J. Menon, A Taxonomy of

Parallel Sorting, ACM Computing Surveys, 16,3,pp. 287-318,

September 1984. [1] S. Huba and K. Dzmitry, "Parallel merge sort,"

Published by Chapman University, California, USA, March 1,

2011.

[6] E. Sintorn and U. Assarsson, "Fast parallel GPU-sorting using a

hybrid algorithm," Published by Chalmers University Of

Technology, Gothenburg, Sweden, 2007.

[7] M. Ratnayake and K. Amer, "An FPGA architecture of counting-

sorting on a large data Volume: Application to video signals," IEEE

41st Annual Conference on Information Science and Systems,

Baltimore, MD, Mar. 2007, pp.431-436.

[8] L. Ha, J. Kruger and T. Silvay, "Fast 4-way parallel radix sorting on

GPUs," University of Utah, submitted to Computer Graphics

Forum, (2/ 2009).

[9] D. Z. Chen., ―Efficient parallel binary search on sorted arrays with

applications," IEEE Trans. on Parallel and Distributed Systems,

Vol. 6. Pp.440-445, Apr. 1995.

[10] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberg ―parallel

External Sorting for CUDA- enabled GPUs with load balancing

and low transfer overhead," IEEE International Symposium on

Parallel & Distributed processing, Workshops and Phd Forum

(lPDPSW), Atlanta, GA, 19-23 April 2010, pp.I-8.

