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Abstract: We all know that the most important procedure in managing data is its sorting. To perform sorting, one can 

choose different sorting algorithmic methods. But, all the various sorting algorithms do not result the same speed, 

execution time and efficiency at a given set of inputs. Hence, it is necessary to know which algorithm can give better 

result for a given platform and pre-defined data sets. This paper presents reader an experimental study of performance 
comparison for various parallel sorting algorithms. Proposed algorithm shows up to 50 times speed up as compare to 

serial and two fold speedup as compare to parallel algorithm. 
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I. INTRODUCTION 

 

The process of rearranging data in a particular order that 

may be in a increasing or decreasing manner is termed as 

sorting. The data set may be alphabetical or numerical in 

nature. Every existing matter in this world has its few 
advantages as well as disadvantages. Similarly different 

sorting algorithms have their advantages and 

disadvantages. Sorting is used for performing search 

operation in an easier way saving time. But, sorting 

algorithms can’t be used with same efficiency on all data-

sets. Every method depending upon the data-set performs 

differently in different aspects with respect to processing 

time, speed and efficiency; few perform poorly whereas 

few give results in a short time. To understand the above 

phenomena in a better descriptive way, we in this paper 

will carry out an experimental study for an assumed data-

set of various parallel sorting algorithms on the basis of 
performance and complexity. 
 

PARALLEL SORTING METHODS 

There are number of parallel sorting algorithms are 

available for different machines: Parallel odd-even 

transposition is an extension of bubble sort, operates in  
 

 

 

two alternate phases. First is called even-phase where 

even processors exchange values with right neighbours 

and second is odd-phase where odd processors exchange 

values with right neighbours. Parallel merge sort [1] is 
based on divide and conquers strategy. It assigns work to 

processors organized as a tree. First subdivides it in two 

parts and give it to the particular processors. Again apply 

the same method to each part. After that start merging 

between two processors element in sorted order, again 

apply the same method until they get the sorted data 

sequence [2]. Time complexity of parallel merge sort is 0 

(n) but it has unbalanced processor [3] and load 

communication. Parallel sorting methods are classified on 

the following basis: 

1. On the basis of memory usage: 
 

Sorting method Memory occupied 

Odd – even sort 1 

Parallel merge sort n 

Bitonic sort n log⁡(logn ) 

Parallel rank sort n log⁡(logn ) 

Parallel quick sort logn 

2. On the computational complexity basis: 
 

Sorting method Best case Average case Worst case 

Odd – even sort N n2 n2 

Parallel merge sort nlogn nlogn nlogn 

Bitonic sort  log(logn )  log(logn )  log(logn ) 

Parallel rank sort  log(logn )  log(logn )  log(logn ) 

Parallel quick sort nlogn nlogn n2 

 

1. On the basis of recursion: Algorithms may be recursive 

or non-recursive in nature. Few may be both viz. parallel 

merge sort. 

How much an algorithm’s efficiency and performance can 

be improved by Parallelism? To answer this question, we 

have developed and executed three parallel sorting 

algorithms [4]. Execution time is the time required to 

execute an algorithm whether in sequential environment or 

parallel environment; Speed up is the ratio of the total time 

taken in the execution of an algorithm in sequential 

environment to that in a parallel environment [10]. 

 

𝑠 𝑛, 𝑝 =  
𝑇(𝑛 ,1)

𝑇(𝑛 ,𝑝)
 . 
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II. PARALLEL PROGRAMMING 

 

 
Figure 1- Parallel Execution of instructions 

 

Parallel Computing Toolbox provides several high-level 

programming constructs that let you convert your 

applications to take advantage of computers equipped with 

multicore processors and MATLAB-PCT. Constructs such 

as parallel for-loops (parfor) and special array types for 

distributed processing and for GPU computing simplify 

parallel code development by abstracting away the 

complexity of managing computations and data between 

your MATLAB session and the computing resource you 

are using. 

 
We can run the same application on a variety of 

computing resources without reprogramming it. The 

parallel constructs function in the same way, regardless of 

the resource on which your application runs—a multicore 

desktop (using the toolbox) or on a larger resource such as 

a computer cluster (using toolbox with MATLAB 

Distributed Computing Server). 

 

SPMD (single program, multiple data) 

It executes code in parallel on workers of parallel pool 

Syntax 
spmd, statements, end 

spmd(n), statements, end 

spmd (m,n), statements, end 

 

Description 

The general form of a spmd (single program, multiple 

data) statement is: 

 

spmd 

  statements 

end 

spmd, statements, end defines a spmd statement on a 
single line. MATLAB® executes the spmd body denoted 

by statements on several MATLAB workers 

simultaneously. The spmd statement can be used only if 

you have Parallel Computing Toolbox. To execute the 

statements in parallel, you must first open a pool of 

MATLAB workers using parpool or have your parallel 

pretences allow the automatic start of a pool. 

 

Inside the body of the spmd statement, each MATLAB 

worker has a unique value of labindex, while numlabs 

denotes the total number of workers executing the block in 

parallel. Within the body of the spmd statement, 

communication functions for communicating jobs (such as 
labSend and labReceive) can transfer data between the 

workers. 

 

Values returning from the body of a spmd statement are 

converted to Composite objects on the MATLAB client. A 

Composite object contains references to the values stored 

on the remote MATLAB workers, and those values can be 

retrieved using cell-array indexing. The actual data on the 

workers remains available on the workers for subsequent 

spmd execution, so long as the Composite exists on the 

client and the parallel pool remains open. 
 

By default, MATLAB uses as many workers as it finds 

available in the pool. When there are no MATLAB 

workers available, MATLAB executes the block body 

locally and creates Composite objects as necessary. 

 

spmd(n), statements, end uses n to specify the exact 

number of MATLAB workers to evaluate statements, 

provided that n workers are available from the parallel 

pool. If there are not enough workers available, an error is 

thrown. If n is zero, MATLAB executes the block body 

locally and creates Composite objects, the same as if there 
is no pool available.Spmd(m,n), statements, end uses a 

minimum of m and a maximum of n workers to evaluate 
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statements. If there are not enough workers available, an 

error is thrown. M can be zero, which allows the block to 

run locally if no workers are available. 
 

Examples 

Perform a simple calculation in parallel, and plot the 

results: 
 

parpool(3) 

spmd 

  % build magic squares in parallel 

  q = magic(labindex + 2); 

end 

for ii=1:length(q) 

  % plot each magic square 
  figure, imagesc(q{ii}); 

end 

delete(gcp) 

 

Codistributed 

It creates codistributed array from replicated local data 

Syntax 

C = codistributed(X) 

C = codistributed(X,codist) 

C = codistributed(X, lab,codist) 

C = codistributed (C1, codist) 
 

Description 

C = codistributed(X) distributes a replicated array X using 

the default codistributor, creating a codistributed array C 

as a result. X must be a replicated array, that is, it must 

have the same value on all workers. Size(C) is the same as 

size(X).C = codistributed(X, codist) distributes a 

replicated array X using the distribution scheme defined 

by codistributor codist. X must be a replicated array, 

namely it must have the same value on all workers. 

Size(C) is the same as size(X). For information on 
constructing codistributor objects, see the reference pages 

for codistributor1d and codistributor2dbc.C = 

Codistributed (X, lab,codist) distributes a local array X 

that resides on the worker identified by lab, using the 

codistributor codist. Local array X must be defined on all 

workers, but only the value from lab is used to construct 

C. size(C) is the same as size(X).C = Codistributed 

(C1,codist) accepts an array C1 that is already 

codistributed, and redistributes it into C according to the 

distribution scheme defined by the codistributor codist. 

This is the same as calling C = redistribute (C1, codist). If 

the existing distribution scheme for C1 is the same as that 
specified in codist, then the result C is the same as the 

input C1. 

Examples 

Create a 1000-by-1000 codistributed array C1 using the 

default distribution scheme. 
 

spmd 

    N = 1000; 

    X = magic(N);          % Replicated on every worker 

    C1 = codistributed(X); % Partitioned among the 

workers 

end 

Create a 1000-by-1000 codistributed array C2, distributed 

by rows (over its first dimension). 

 

spmd 

    N = 1000; 
    X = magic (N); 

    C2 = codistributed(X, codistributor1d (1)); 

End 

 

III. RELATED WORK 

 

Our proposed parallel sorting algorithm on MATLAB is a 

hybrid algorithm, the combination of parallel radix sort 

and parallel selection sort . First it split the data sequence 

into several pieces then apply radix sort concurrently on 

all the pieces. After that it uses parallel selection sort to 
find the correct position of each element of a data 

sequence concurrently[5]. Then copy the elements of a 

data sequence to corresponding position to obtain the final 

sorted data sequence. The complete parallel sorting 

algorithm is called "split and parallel selection" algorithm 

composed of the above two stages. In which our parallel 

radix sort is similar as existing parallel radix sorting 

algorithm[9]. However its efficiency depends to a large 

extent on selection sort that finds the final position of 

elements in sorted data sequence. 

 

Split and Concurrent Selection 
Let us assume a shared memory multiprocessor with n 

processors, denoted by PI, P2........ Pn. Again, let us 

assume a data sequence D of size S which is initially 

unordered and one more data sequence d of size S which is 

initially empty. Proposed parallel sorting algorithm first 

split the data sequence D into subsequences of size Sin. 

Each subsequence is denoted by D and assigned to the 

processor P j where i is from 1 to n. 

 

After splitting the data sequence D of size S equally to n 

processors, each processor Pi gets Sin elements and sort its 
assigned subsequence Di of size Sin by using a fast 

sequential radix sort parallely on each processor 

individually. An algorithm for proposed algorithm SCS is 

as follows: 

   

Proposed Algorithm:   

1).D  Data Set, Mo  0; i 1 to S/p 

2).S  Size, FST  First element of corresponding 

individual lab, LST  Last element of corresponding 

individual lab. 

 3).For all processors P do in parallel 

% initialising spmd tool to distribute jobs over  
% all 4 labs for parallel processing  

 4) spmd 

    % distributing inputs to each lab 

 5)p=codistributed(a); 

 6)P=getLocalPart(p); 

 7)len=length(P); 
     

    % calling radixSort() method to sort elements 

    % and storing result from individual lab 

 8) Apply Radix sort on P parallelly. 
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 9)end 

10) if(Pi[k] < Po[FST] 

11)break; 

12)e lse(Pi[k] > Po[LST] ) then 

13) Mo  Mo + total no. Of individual processor 
elements  

14)Break 

15) Elseif apply Binary Search to find the numbers 

of elements Mo are smaller than Pi[k] in po. 

16) End if 

17) Xi[k] = Xi[k] + Mo 

18). Copy the  elements  of  data  sequence  D  to  

the corresponding position in data sequence. 

19). Final sorted sequence obtained. 

20). stop the algorithm 

 

IV. COMPUTATIONAL COMPLEXITY 

 

A. Complexity Analysis DISCS Algorithm 

This section presents detail analysis of the computational 

complexity of proposed algorithm. This analysis is divvied 

in two parts: First, parallel radix sort phase complexity and 

second selection sort based on binary search[6]. 

 

B. Parallel Radix Sort Phase Complexity 

Radix sort is one of the oldest and well- known sorting 

algorithms on sequential machines. It is the most efficient 

sorting algorithm for small element. It assumes that the 
elements are d digit numbers and sort one digit of element 

at a time, from least to most significant bit. In sequential 

radix sort, for a fixed element size d, the complexity of n 

records is 0 (n). In our proposed algorithm, radix sort is 

used in parallel to sort the each subsequence of size Sin, so 

that computational complexity of first phase is O(S/n). 

 

C. Selection Sort Based On Binary Search Complexity 

This phase is used to find out the sorted position of 

elements by using binary search algorithm. Binary search 

is the best searching algorithm for sorted elements. The 
complexity of binary search for n record is 0 (1) in best 

case and 0 (logn) in worse case. In the proposed algorithm 

binary search is used to find out the sorted position of an 

element in subsequence of size Sin and find the position in 

all S subsequence[7]. So, the computational complexity of 

second phase is 0 (n*logS/n). 

 

D. SCS Complexity 

According to the analysis in above subsections, the 

computational complexity of SCS parallel sorting 

algorithm is 0 (S/n) + 0 (nlogS/n). 

 

V. IMPLEMENTATION 

 

To implement this algorithm in MATLAB-PCT we made 

two kernels First kernel is used to divide the data sequence 

into subsequences and sort the each subsequence Di 

through corresponding thread Ti by using sequential radix 

sort. Second kernel uses the results of first kernel. Each 

thread Ti applies selection sort on sorted Di in which it 

uses binary search to fmd out the exact sorted position of 

each element of data sequence D. After that, copy the 
corresponding element of the obtained position in data 

sequence d. Finally we get the sorted output in data 

sequence d. 

 

Here we have evaluated the speed up of parallel selection 

sort on MATLABs with parallel sorting algorithm based 

on odd-even merge sort and sequential quick sort. 

Sequential quick sort is implemented in c and the parallel 

odd-even merge sort is implemented in MATLAB-PCT. 

We have evaluated the performance of all implemented 

algorithms on a large data sequence having number of 

elements from lK to 100M. 
Result shows that Parallel Proposed sort is better than 

others for large data sequence. It gives almost two times 

speedup than parallel odd-even merge sort. For small size 

of data sequence like has less than 10K elements 

sequential quick sort is better than others. But more than 

10 K elements of data sequence parallel selection sort 

takes less execution time. 

 

Table I  shows the execution time of sequential quick sort 

and parallel selection sort. It shows that sequential quick 

sort gives better performance for small data sequence 
which has less than 10K elements. Parallel selection sort 

gives almost 300X speed up than sequential quick sort for 

large data sequence which has more than 1 M elements. 

This is just because of number of threads work 

independently and simultaneously to sort the large data 

sequence. 

          

Table.1 the execution time of sequential quick sort and proposed sort 

 

Numbers of Elements Sequential Quick sort  

(in milliseconds) 

Proposed sort(in milliseconds) 

1K 20.0 41.34 
 

10K 170.0 239.47 
 

20K 390.0 280.80 
 

50K 1300.0 363.15 
 

100K 5700.0 638.90 
 

1M 131000.0 2548.40 
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Fig.2 Performance comparison of sequential quick sort and proposed sort 

 

Table II shows the execution time of parallel odd­ even 

merge sort and Parallel selection sort on MATLAB-PCT 

with 100 elements in each threads. After analysing the 

results of both parallel algorithm we can say that our 

proposed algorithm gives better performance than parallel 

odd-even merge sort[8].  

 

Table.2  the execution time of Parallel odd even merge sort and proposed sort 
 

Numbers of Elements Parallel Odd-even Merge sort 

(in milliseconds) 

Proposed sort(in milliseconds) 

1K 70.99 41.34 

10K 287.43 239.47 

20K 387.80 280.80 

50K 521.27 363.15 

100K 956.72 638.90 

1M 8426.48 4348.40 

10M 142867.89 84850.95 

20M 307152.90 113570.86 

50M 1023964.35 432653.21 

 

 
Fig.3 the execution time of Parallel odd even merge sort and proposed sort 

 
Table III shows the execution time of Sequential merge 

sort and Proposed sort on MATLAB-PCT with 100 

elements in each threads.  

After analysing the results of both parallel algorithm we 

can say that our proposed algorithm gives better 

performance than merge sort.  
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Table.3 the execution time of merge sort and proposed sort 

 

Numbers of Elements Sequential Merge sort  

(in milliseconds) 

Proposed sort(in milliseconds) 

1K 28.0 41.34 

10K 176.0 239.47 

20K 590.0 280.80 

50K 3300.0 363.15 

100K 9700.0 638.90 

1M 231000.0 2548.40 

 

 
(Fig.4  the execution time of merge sort and proposed sort.) 

 

VI. CONCLUSION  

 

We have shown that how after decreasing number of 

elements per thread proposed algorithm is giving better 

performance. Proposed parallel algorithm gives almost 

50x speed-ups than sequential quick sort for a large data 

sequence. It gives almost 3.5x speed-ups than parallel odd-

even merge sort for our MAT LAB-PCT based machine. 

In future we can improve the performance of parallel 
section sort by minimising the number of elements with 

any other elements is compared to find its correct position 

in list. 
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