
IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 3, March 2016 
 

Copyright to IJARCCE                                                  DOI 10.17148/IJARCCE.2016.53188                                             781 

Intelligent Backup System 
 

Shrinivas Dube
1
, Rashmi Mandave

2
, Vaibhav Chhajed

3
, Pratik Bobde

4
, Mrs. Shikha Pachouly

5
 

 Department of Computer Engineering, AISSMS COE, Pune, India
1, 2, 3, 4, 5

 

  

Abstract: Nowadays, computing devices that rely on a cloud storage environment for data backup, an imminent 

challenge facing waste of upload bandwidth, storage space due to large amount of redundant data. In this paper, we 

present Intelligent Backup System, an intelligent data backup scheme that improves data deduplication efficiency by 

exploiting application awareness, and further combines client and cloud duplicate detection to strike a good balance 

between cloud storage capacity saving and deduplication time reduction. 

 

Keywords: Data storage, cloud backup, application awareness, effective deduplication. 
 

I. INTRODUCTION 
 

The ever-growing volume and value of digital information 

have raised a critical and increasing requirement for data 

protection in the personal computing environment. Cloud 

backup service has become a cost-effective choice for data 

protection of personal computing devices, since the 

centralized cloud management has created an efficiency 

and cost inflection point, and offers simple offsite storage 

for disaster recovery, which is always a critical concern 

for data backup. And the efficiency of IT resources in the 

cloud can be further improved due to the high data 

redundancy in backup dataset. 
 

Data deduplication, an effective data compression 

approach that exploits data redundancy, partitions large 

data objects into smaller parts, called chunks, represents 

these chunks by their fingerprints (i.e., generally a 

cryptographic hash of the chunk data), replaces the 

duplicate chunks with their fingerprints after chunk 

fingerprint index lookup, and only transfers or stores the 

unique chunks for the purpose of communication or 

storage efficiency. Source deduplication that eliminates 

redundant data at the client site is obviously preferred to 

target deduplication due to the former’s ability to 

significantly reduce the amount of data transferred over 

wide area network (WAN) with low communication 

bandwidth. Unfortunately, such resources are limited in a 

typical personal computing device. Therefore, it is 

desirable to achieve a trade-off (i.e., deduplication 

efficiency) between deduplication effectiveness (i.e., 

duplicate elimination ratio) and system overhead for 

personal computing devices with limited system resources. 

The existing source deduplication strategies can be divided 

into two categories: local source deduplication that only 

detects redundancy in backup dataset from the same 

device at the client side and only sends the unique data 

chunks to the cloud storage, and global source 

deduplication, that performs duplicate check in backup 

datasets from all clients in the cloud side before data 

transfer over WAN. The former only eliminates intra- 

client redundancy with low duplicate elimination ratio by 

low-latency client-side duplicate data check, while the 

latter can suppress both intra-client and inter-client 

redundancy with high deduplication effectiveness by 

performing high-latency duplication detection on the cloud  

 
 

side. Local-global source deduplication scheme that 

eliminates intra-client redundancy at client before 

suppression inter-client redundancy in the cloud, can 

potentially improve deduplication efficiency in cloud 

backup services to save as much cloud storage space as the 

global method but at as low latency as the local 

mechanism. 
] 

In this paper, we propose IBS, a deduplication scheme that 

not only exploits application awareness, but also combines 

local and global duplication detection, to achieve high 

deduplication efficiency by reducing the deduplication 

latency to as low as the application-aware local 

deduplication while saving as much cloud storage cost as 

the application-aware global deduplication. Our 

application-aware deduplication design is motivated by the 

systematic deduplication analysis on personal storage. We 

observe that there is a significant difference among 

different types of applications in the personal computing 

environment in terms of data redundancy, sensitivity to 

different chunking methods, and independence in the 

deduplication process. Thus, the basic idea of IBS is to 

effectively exploit this application difference and 

awareness by treating different types of applications 

independently and adaptively during the local and global 

duplicate check processes to significantly improve the 

deduplication efficiency and reduce the system overhead.  
 

We design a deduplication scheme that employs an 

intelligent data chunking method and an adaptive use of 

hash functions to minimize computational overhead and 

maximize deduplication effectiveness by exploiting 

application awareness. We combine local deduplication 

and global deduplication to balance the effectiveness and 

latency of deduplication. We also propose a data 

aggregation strategy at the client side to improve data 

transfer efficiency by grouping many small data packets 

into a single larger one for cloud storage[9]. 
 

II. DATA ANALYSIS 
 

In this section, we will check how data redundancy, space 

utilization efficiency of popular data chunking methods 

and computational overhead of typical hash functions 

change in different applications of personal computing.  



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 3, March 2016 
 

Copyright to IJARCCE                                                  DOI 10.17148/IJARCCE.2016.53188                                             782 

Observation 

A disproportionally large percentage of storage space is 

occupied by a very small number of large files with very 

low chunk-level redundancy after file-level deduplication.  
 

Implication 

File-level deduplication using weak hash functions for 

these large files is sufficient to avoid hash collisions for 

small datasets in the personal computing environment. To 

reveal the relationship between file count and storage 

capacity under various file size, we collect statistics on the 

distribution of file count and storage space occupied by 

files of different sizes and shows the results in Fig. 1. We 

observe that about 55 percent of all files are smaller than 

10 KB, accounting for only 2.1 percent of the total storage 

capacity, and only 1.2 percent files are larger than 1MB 

but occupy 71 percent of the storage capacity. This 

suggests that tiny files can be ignored during the 

deduplication process as so to improve the deduplication 

efficiency, since it is the large files in the tiny minority 

that dominate in determining the deduplication efficiency. 

In Fig. 1. The left primary axis states Storage Capacity 

(GB) and secondary axis states File Count (Million). 
 

 
Fig. 1.  File Size 

 

III. DESIGN AND IMPLEMENTATION 
 

IBS, motivated in part by our observations made in 

Section 2, is designed to meet the requirement of 

deduplication efficiency with high deduplication 

effectiveness and low system overhead. The main idea of 

IBS is exploiting both low-overhead local resources and 

high-overhead cloud resources to reduce the 

computational overhead by employing an intelligent data 

chunking scheme and an adaptive use of hash functions 

based on application awareness, and it combines local-

global source deduplication with application awareness to 

improve deduplication effectiveness with low system 

overhead on the client side.  
 

A. Architectural Overview 

An architectural overview of IBS is illustrated in Fig. 2, 

where tiny files are first filtered out by file size filter for 

efficiency reasons, and backup data streams are broken 

into chunks by an intelligent chunker using an application 

aware chunking strategy. Data chunks from the same type 

of files are then deduplicated in the application-aware 

deduplicator by generating chunk fingerprints in hash 

engine and performing data redundancy check in 

 

 
 

Fig. 2.  Architectural overview of IBS design. 
 

application-aware indices in both local client and remote 

cloud. Their fingerprints are first looked up in an 

application-aware local index that is stored in the local 

disk for local redundancy check. If a match is found, the 

metadata for the file containing that chunk is updated to 

point to the location of the existing chunk. When there is 

no match, the fingerprint will be sent to the cloud for 

further parallel global duplication check on an application-  

aware global index, and then if a match is found in the 

cloud, the corresponding file metadata is updated for 

duplicate chunks, or else the chunk is new. On the client 

side, fingerprints will be transferred in batch and new data 

chunks will be packed into large units called segments in 

the segment store module with tiny files before their 

transfers to reduce cloud computing latency and improve 

network bandwidth efficiency over WAN. On the cloud 

datacentre side, segments and its corresponding chunk 

fingerprints are stored in cloud storage. We will now 

describe the deduplication process in more detail in the 

rest of this section. 
 

B. File Size Filter 

 Most of the files in the PC dataset are tiny files that less 

than 10 KB in file size, accounting for a negligibly small 

percentage of the storage capacity. As shown in our 

statistical analysis in Section 2, about 55 percent of all 

files are tiny files, accounting for only 2.1 percent of the 

total storage capacity of the dataset. To reduce the 

metadata overhead, IBS filters out these tiny files in the 

file size filter before the deduplication process, and groups 

data from many tiny files together into larger units of 

about 1 MB each in the segment store to increase the data 

transfer efficiency over WAN. 
 

C. Intelligent Data Chunking 

The deduplication efficiency of data chunking scheme 

among different applications differs. Whether SC can 

outperform CDC in deduplication efficiency, we divide 

files into two main categories: static files and dynamic 

files. The dynamic files are always editable, while the 

static files are un-editable in common. To strike a better 

trade-off between duplicate elimination ratio and 

deduplication overhead, we deduplicate static files into 

fix-sized chunks by SC with ideal chunk size, and break 

dynamic files into variable-sized chunks with optimal 

0

5

10

15

20

25

0

500

1000

1500

2000

Count Capacity Count-CDF Capacity-CDF



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 3, March 2016 
 

Copyright to IJARCCE                                                  DOI 10.17148/IJARCCE.2016.53188                                             783 

average chunk size using CDC based on the Rabin 

fingerprinting to identify chunk boundaries. 
 

D. Deduplicator 

After data chunking in intelligent chunker module, data 

chunks will be deduplicated in the application-aware 

deduplicator by generating chunk fingerprints in the hash 

engine and detecting duplicate chunks in both the local 

client and remote cloud. IBS strikes a good balance 

between alleviating computation overhead on the client 

side and avoiding hash collision to keep data integrity. In 

both local and global detection scenarios, a SHA-1 value 

of chunk serves as chunk fingerprint of SC in static files 

and a MD5 value is used as chunk fingerprint of dynamic 

files since chunk length is another dimension for duplicate 

detection in CDC-based deduplication. To achieve high 

deduplication efficiency, the application aware 

deduplicator first detects duplicate data in the application-

aware local index corresponding to the local dataset with 

low deduplication latency in the PC client, and then 

compares local deduplicated data chunks with all data 

stored in the cloud by looking up fingerprints in the 

application-aware global index on the cloud side for high 

data reduction ratio. Only the unique data chunks after 

global duplicate detection are stored in the cloud storage. 
 

E. Index Structure 

IBS requires two application-aware chunk indices: a local 

index on the client side and a global index on the cloud 

side. Comparing with traditional deduplication 

mechanisms, IBS can achieve high deduplication 

throughput by looking up chunk fingerprints concurrently 

in small indices classified by applications rather than a 

single full, unclassified index for both local and global 

scenarios. Furthermore, a periodical data synchronization 

scheme is also proposed in IBS to back up the application-

aware local index and file metadata in the cloud storage to 

protect the data integrity of the PC backup datasets.  
 

F. Segment Management  

Aggregation of data produces larger files for the cloud 

storage, which can be beneficial in avoiding high overhead 

of lower layer network protocols due to small transfer 

sizes, and in reducing the cost of the cloud storage. 

Amazon S3, for example, has both a per-request and a per-

byte cost when storing a file, which encourages the use of 

files greater than 100 KB. IBS will often group 

deduplicated data from many smaller files and chunks into 

larger units called segments before these data are 

transferred over WAN. 
 

IV. EVALUATIONS 
 

We have built a prototype of IBS in approximately 5000 

lines of C++ code. We have evaluated the advantages of 

our design over the state-of-the-art source deduplication 

based cloud backup services in terms of deduplication 

effectiveness by feeding the real-world datasets in a 

personal computing device. The following evaluation 

subsections will show the results, beginning with a 

description of the experiment platform with PC backup 

datasets we use as inputs.  

A. Experimental Platforms  

Our experiments were performed on a HP Pavilion 

Notebook client with 2.40 GHz Intel Core i3 processor, 4 

GB RAM, and one 500 GB SATA disk, and the Amazon 

Web Service for cloud storage. The Notebook is connected 

to the Internet by campus wired network connectivity with 

2 Mbps ~ 5 Mbps data transfer speed. To support our 

application-aware global index structure, we create 

different domains for each file-type by horizontal 

partitioning of chunk fingerprints to improve overall 

throughput with parallel fingerprint lookup. First, all the 

datasets are deduplicated by our IBS scheme, but we only 

store the global chunk index without unique data chunk to 

save cloud storage cost and protect data privacy. Then, we 

use new backup datasets as workloads to continue our 

evaluations with a total of 300MB logical data consisting 

of about 950 files. 

We compare IBS against a number of state-of- the-art 

schemes, including Jungle Disk , a file incremental cloud 

backup scheme[6], BackupPC, a local file-level source 

deduplication based cloud backup[4], Cumulus, a local 

chunk-level source deduplication method[5]. 
 

B. Effectiveness 

Our experimental results in Fig. 3 present the cumulative 

cloud storage capacity (MBs) required of the providers at 

each backup session for individual user with the six cloud 

backup schemes. Different from source deduplication 

schemes, Jungle Disk fails to achieve high cloud storage 

saving due to the fact that its incremental backup scheme 

cannot eliminate file copies written in different places.  

 
 

Fig. 3.  Backup Sessions 
 

In the source deduplication schemes, the coarse-grained 

method BackupPC cannot find more redundancy than 

other fine-grained mechanisms. The fine-grained Cumulus 

only performs local duplicate check, and limits the search 

for unmodified data to the chunks in the previous versions 

of the file, so it achieves lower space saving than the local 

deduplication. Due to the application-aware design and 

global duplicate detection, IBS can outperform Jungle 

Disk by 50 percent and save 35 percent space for 

Cumulus. 
 

C. System Overhead 

Considering the limited system resources in PC clients, we 

estimate the system overhead in terms of CPU processing 

speed and RAM usage for source deduplication based 

cloud backup services in personal devices. In IBS design, 

0

50

100

150

200

250

1 2 3 4 5

JungleDisk BackupPC

Cumulus IBS



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 3, March 2016 
 

Copyright to IJARCCE                                                  DOI 10.17148/IJARCCE.2016.53188                                             784 

we adaptively select chunking method and hash function 

for different application data to achieve high deduplication 

efficiency with low system overhead. Since the 

computational overhead of deduplication is dominated by 

CDC based chunking and hash fingerprinting, we test the 

average throughput of performing both chunking and 

fingerprinting in client for the five source deduplication 

based cloud backup services in backup sessions. 
 

V. CONCLUSION AND FUTURE WORK 
 

In this paper, we propose IBS, a deduplication scheme for 

cloud backup in the personal computing environment to 

improve deduplication efficiency. An intelligent 

deduplication strategy in IBS is designed to exploit file 

semantics to minimize computational overhead and 

maximize deduplication effectiveness using application 

awareness. It combines local deduplication and global 

deduplication to balance the effectiveness and latency of 

deduplication. 

As a direction of future work, we plan to further optimize 

our scheme for other resource-constrained mobile devices 

like smartphone or tablet. 
 

ACKNOWLEDGMENT 
 

Apart from our own, the success of this report depends 

largely on the encouragement and guidelines of many 

others. We are especially grateful to our guide Prof S.J. 

Pachouly and Prof D. P. Gaikwad, Head of Computer 

Engineering Department, AISSMSCOE who has provided 

guidance, expertise and encouragement. We are thankful 

to the staff of Computer Engineering Department for their 

cooperation and support .We would like to put forward our 

heartfelt acknowledgement to all our classmates, friends 

and all those who have directly or indirectly provided their 

over whelming support during this project work and the 

development of this report. 
 

REFERENCES 
 

[1]  M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. 

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. 
Zaharia, „„A View of Cloud Computing,‟‟ Commun. ACM, vol. 

53, no. 4, pp. 49-58.  

[2]  H. Biggar, „„Experiencing Data De-Duplication: Improving 
Efficiency and Reducing Capacity Requirements,‟‟ Enterprise 

Strategy Grp., Milford, MA, USA, White Paper.  

[3]  C. Liu, Y. Lu, C. Shi, G. Lu, D. Du, and D.-S. Wang, „„ADMAD: 
Application-Driven Metadata Aware De-Deduplication Archival 

Storage Systems,‟‟ in Proc. 5th IEEE Int‟l Workshop SNAPI I/Os, 
pp. 29-35. . 

[4] BackupPC, [Online]. Available: http://backuppc.sourceforge.net/ 

[5] A. Muthitacharoen, B. Chen, and D. Mazie `res, „„A 
LowBandwidth Network File System,‟‟ in Proc. 18th ACM SOSP, 

pp. 174-187. 

[6] Jungle Disk. [Online]. Available: http://www.jungledisk.com/ 
[7] S. Kannan, A. Gavrilovska, and K. Schwan, „„Cloud4HomeV 

Enhancing Data Services with Home Clouds,‟‟ in Proc. 31st 

ICDCS, pp. 539-548. 
[8] D. Meister and A. Brinkmann, ‘‘Multi-Level Comparison of Data 

Deduplication in a Backup Scenario,’’ in Proc. 2nd Annu. Int’l 

SYSTOR, pp. 1-8. 
[9] Maximizing Data Efficiency: Benefits of Global 

DeduplicationNEC, Irving, TX, USA, NEC White Paper. 


