
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53262 1091

Novel Method to Improve ACO Performance on

the GPU Using CUDA for Nurse Roster

Scheduling Problem

Mr. A. P. Pande
1
, Mr. B. S. Patil

2
 Mr. A.U. Patil

3

Department of Information Technology, P.V.P.I.T, Budhgaon Sangli, MH, India
1, 2, 3

Abstract: This paper shows the accomplishment of parallel Ant Colony Optimization algorithm on the Graphics

Processing Unit (GPU) to solve nurse roster scheduling problem (NRSP).We put on the Schedule formation and

pheromone update phases of Ant colony Optimization using a data parallel method. We applied roulette wheel

selection method for schedule formation and pheromone update. The parallel accomplishment of roulette wheel

selection method considerably cuts the execution time of Schedule formation. Our new parallel accomplishment

executes up to 8-12x faster than sequential execution at the same time as preserving the quality of the Schedules

formation.

Keyword: CUDA, GPU, NRSP, NVDIA, ACO

I. INTRODUCTION

Ant Colony Optimization (ACO) [1] is a well-known

population-based algorithm for modelling and solve

discrete optimization problems. Ant algorithms model the

comportment of real ants to elucidate diversity of

optimization and disseminated control problem. We

applied Ant Colony Optimization algorithm to solve Nurse

Roster Scheduling Problem (NRSP) where the main

objective is to attain the optimum schedule solution about

a set of schedules. The easiest accomplishment of Ant

Colony Optimization consists of two core phases one is

Schedule construction and second is pheromone update.

To improve quality of schedules, the additional local

search stage also be applied after schedules have been

constructed before accomplishment of the pheromone

update phase. The method of Schedule formation and

pheromone update is operated iteratively until a cessation

requirement is meet up. The indirect communication of is

can be obtained using a pheromone matrix. Each ant has

formed a new schedule and update pheromone matrix. It

will impact consecutive repetitions of the algorithm and

the additional computation time required for schedule

formation as the number of Nurses and number of day‟s

increases, hence requires significant CPU time. So to

improve computational time we implemented parallel

ACO with roulette wheel selection method, the Schedule

formation and pheromone update phases are performed

individually for each ant which builds Ant Colony

Optimization (ACO) remarkably appropriate to GPU

parallelization.

The first key procedure for implementing ACO in parallel

manner where each ant assigns to an individual processing

element and organises a colony of ants. In second key

procedure where intact colony of ants to a dispensation

element usually improved with a method of inter

connecting between the colonies. The Manifold colonies

are accomplished in parallel, potentially diminishing the

number of repetitions a for determination. For parallel

programming, NVIDIA CUDA is a programming

architecture for emerging general purpose applications for

execution [2]. Compute Unified Device Architecture

exposes the GPU‟s enormously parallel building so that

parallel code can be written to accomplish significantly

faster than its optimized sequential equivalent.

The parallel ACO implementations on the GPU using

Compute Unified Device Architecture focus on both the

implementation of the algorithm and the superiority of the

solutions. Data parallel approach is applied to execute both

phases of Ant Colony Optimization in parallel on the

Graphics Processing Unit. For the Schedule formation

phase, our method uses a new parallel implementation of

the roulette wheel selection algorithm which is called DS-

Roulette. DS-Roulette conducts the modern hardware

architecture, extends parallelism, and reduces the

execution time. For the pheromone update phase, we

incorporate the methodology of MAX and MIN Ant

colony System, and linked with our accomplishment.

II. RELATED WORK

ACO algorithms can be categorized as coarse grained or

fine grained considering parallel implementation. The ants

are individually represented to processing elements with

communication between processing elements being ant to

ant is the fine grained method, and entire colonies are

represented to processing elements with communication

between colonies to colony is course grained method. This

section studies the existing parallel Ant colony

Optimization techniques that focus the GPU. Catala et al.

[1] explains the first GPU accomplishments of ACO

directed at exhibiting the Delinquent. Their

accomplishments depend upon a direct Graphics

processing unit using graphics models to resolve general-

purpose problems.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53262 1092

Jiening et al. [2] realised the MMAS algorithm to resolve

the TSP. This work published prior to the edict of CUDA

and their accomplishment was composite than its CPU

equivalence. A parallel Schedule construction phase

resulted in a slightly better performance

Fu et al. [3] applied a parallel MMAS for GPU to solve the

Travelling Salesman Problem. Their technique focused on

more MATLAB implementation and less on the GPU.

They described a speedup, however, their relative CPU

implementation was MATLAB-based which is

fundamentally dawdling due to an interpreted language.

Zhu and Curry [4] designed a Search algorithm using ant

colony optimization to resolve non-linear function

problems using CUDA. They re-counted performance

nearby2.5x over the sequential execution.

Bai et al. [5] explained a multiple colony version of

MMAS using coarse-grained CUDA to resolve the

Travelling Salesman Problem. Each ant colony is

represented to thread block and inside block each thread is

represented to an ant. This method produces Schedules

with a feature analogous to the CPU accomplishment but

the speedup re-counted up to 2x.

Weiss [6] developed a parallel form of Ant Miner GPU, an

addition of the MMAS algorithm. The each ant inside the

colony is signified to a separate CUDA thread. He claims

that, method join with the Ant Miner GPU algorithm

allows for considering larger population size. All phases of

the work are moved to the GPU to avoid costly moves to

and from the Graphics Processing Unit.

A. Data-parallelism

The ACO algorithm for solving the TSP on the GPU using

CUDA is implemented by Cecilia et al. [3]. The existing

task-based method of representing one ant per thread is

fundamentally not matched to the GPU. With a task-based

method, each thread must store each ant‟s memory. This

method applicable for small Schedules but problematic

with larger Schedules because of limited shared memory

available. Other technique to use fewer threads per block,

which reduces GPU usage or global memory used to store

each ant‟s memory. Itintensely decreases the performance

of kernels. The task-based parallelism is warp-branching.

The ants construct a Schedule, and the execution paths of

ants are generally differ due to conditional statements

intrinsic for using roulette wheel selection on the output of

the random proportional rule. All threads within the

branch are serialized and execute sequentially until the

branching section is complete for warp branches, thus

significantly delaying the branching code performance.

The warp divergence and memory issues are avoided

byData parallelism. Data parallelism representing each ant

to a thread block and all threads inside the thread block

work in cooperation to perform a collective task such as

Schedule construction. Here thread is responsible for a

singular day and the likelihood of visiting a day can be

calculated using a proportionate selection method known

as I-Roulette [3] without branching the warp. For

implementation of pheromone update phase on the

GPU.The 5x speedup factor is reported when both the

Schedule construction and pheromone update phases are

executed on the GPU. The majority of the execution time

spent on the Schedule construction phase.

III. IMPLEMENTATIONS

Our parallel implementation of the ACO algorithm for

execution on the GPU is presented in this section. Here

data parallel approach is implemented for representing

each ant in the colony to a thread block. To maximize

performance we executed each phase of the algorithm on

the GPU.

The first phase of the algorithm constructs the nurse data

and assigns memory and the relevant data structures. For

any given nurses size n and days size d, the constraints are

loaded into a matrix, for every pair of distinct nurse for

each day. To store each ant‟s current Schedule and

Schedule length ant memory is allocated. A pheromone

matrix is initialized on the GPU to store pheromone levels

and a secondary structure called choice info is used to

store the product of the denominator. After completing

initialization phase, using greedy search, the pheromone

matrix is artificially scattered with a Schedule generated.

A. Schedule construction

This phase is applied repeatedly until a new Schedule is

created. Algorithm shown in Figure 1 gives details about

Schedule construction.

Procedure Construct Solution

Schedule[1] = assign the ant on a random day

for j = 2 to n - 1 do

for l = 1 to n do

Prob[l] =CalProb(Schedule [1 : j - 1],l)

end-for

Schedule[j]=RouletteWhlSelection(prob)

end-for

Schedule[n] = remaining day

Schedule cost =CalScheduleCost(Schedule)

End

Figure 1: Pseudo code for construction of solution

After the initialization, the first inner for loop repeats n - 2

times to build an complete Schedule note that there are

only n-2 choices to make as once n-2 days have been

chosen. Within the inner for-loop, the probability of

moving from the last visited day to all other possible days

is calculated. Calculating the probability consists of two

stages: retrieving the value of choice info[j][l] and

checking if day l has already been visited in the current

iteration in which case the probability is set to 0. The next

day to visit is selected using roulette wheel selection.

TABLE I. ROULETTE WHEEL SELECTION

INPUT REDUCED NORMALIZED

RANGE

RANGE

0:1 0:1 0:1 > 0:0

&<0:1

0:3 0:4 0:25 > 0:1

&< 0:25

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53262 1093

0:2 0:6 0:375 > 0:25

&<

0:375

0:8 1:4 0:875 > 0:375

&<

0:875

0:2 1:6 1:00 > 0:875

&< 1:0

Roulette wheel selection is illustrated in Table. I where 1

item has to be chosen from 5in proportion to the value in

the first column labelled „input‟. To obtain cumulative

totals reduce the set of input values so reduced values are

normalized so that the sum of all input values normalizes

to 1 and the portion of the roulette wheel corresponding to

some item is calculated. Generation of random number is

final step that is between 0.0 to 1.0 is the last step

however, the linear nature of the algorithm is the

divergence in control flow, parallel random number

generation for thread synchronization. The entire Schedule

is stored in shared memory. But for large instance, shared

memory is often exhausted. To address these problem we

present Double-Spin Roulette(DS-Roulette) which is a

highly parallel roulette selection algorithm that deeds

warp-level parallelism, reduces shared memory

dependencies, and decreases the overall instruction count

which is performed by the GPU. In the sequential

implementation of roulette wheel selection, each ant

constructs a Schedule one day at a time and each ant is

processed consecutively. For parallel implementation of

Schedule construction phase using a data-parallel

approach, each thread is assigned to each block so that m

blocks occupied by mants.

B. Pheromone update

Pheromone update is the last stage of the ACO algorithm

which consists of two phases, one is pheromone

evaporation and second is pheromone deposit. The

pheromone evaporation phase is small to parallelize as all

edges are evaporated. A single thread block is

propelledwhichassigns each thread to an edge and reduces

the value using constant factor. An overlaying strategy is

used to cover all edges. The second phase is pheromone

deposit, which deposits a quantity of pheromone for each

edge belonging to a constructed Schedule for each ant. To

ensure correctness of the pheromone matrix the atomic

operations must be used because of each ant perform this

step is parallel.

Atomic operations are expensive as computational so

alternative approach using scatter to gather

transformations is used. In this approach it removes the

dependency on atomic operations. To reduce the usage of

atomic operations and increase convergence speed, we

implement the pheromone update where each ant makes a

single atomic in job on a memory value storing the

Schedule length. This single operation per block allows

the lowest Schedule value to be saved without extra

kernels. For the Schedule construction phase we begin m

thread blocks representing m ants where Schedule cost is

equivalent to the deepest overall cost.

IV. EXPRIMENTAL RESULTS

In this section, we summarize the results obtained using

above technique on various instances of the NRSP and

results are compared to other parallel and sequential

implementations. We use standard ACO parameters and

reduce rate of evaporation from 0.5 to 0.1 on the

pheromone matrix for both GPU and CPU

implementations. The reduced evaporation rate confirms

that the pheromone matrix still has a dequatepherom one

to impact the Schedule construction. For analysis our

implementation we used an NVIDIA GT 610 GPU and an

Intel i3 CPU. Our implementation was written C language

and compiled using the latest CUDA toolkit and executed

on operating system windows 7 using Microsoft Visual

Studio.

A. Solution Quality

To calculate the superiority of the Schedules formed, we

compared the results of our GPU execution against an

existing CPU execution for the set number of repetitions.

Our new method was able to match and decrease the size

of the Schedules constructed when using identical

parameters and number of repetitions. Table 2 and Fig.2

illustrations an evaluation of the average superiority of

Schedules acquired through the existing CPU and new

GPU execution.

Table 2: Average solution quality

 CPU CPU

Nurse Roster

Instance

Average

Solution Quality

Average

Solution Quality

Instance 20 0.85 0.92

Instance 21 0.75 0.8

Instance 22 0.8 0.9

Instance 23 0.7 0.8

Instance 24 0.75 0.8

Figure 3: Compare average solution quality on cpu and

gpu

0.85

0.75
0.8

0.7
0.75

0.92

0.8

0.9

0.8 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Instance
20

Instance
21

Instance
22

Instance
23

Instance
24

SOLUTION QUALITY COMPARISION

CPU GPU

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53262 1094

Figure 3: Execution time on CPU

Figure 4: Execution time on GPU

The results shown in figure 3 & 4 proves that with GPU

implementation with this novel method is 8-12x faster

than the sequential execution. The Schedule construction

Phase uses the more of the total execution time. The

Schedule construction phase uses a new efficient

execution of roulette wheel selection and it is able to fetch

similar speedups to other algorithms limited by the

execution time of proportionate range. The pheromone

update execution is between 1-9x time faster than the

existing CPU execution.

V. CONCLUSIONS

In this paper, we implemented a data-parallel GPU

execution of the ACO algorithm to solve nurse roster

scheduling problem. We implements both the construction

of Schedule and pheromone update phases on the GPU.

The obtained result shows an execution speed up 8-12x

faster than the existing CPU execution. For large data sets,

our algorithm handles share memory efficiently as

compared to existing system. Overall an efficient parallel

implementation of roulette wheel selection gives better

performance than existing parallel and sequential

implementation and we ensure that this parallel

implementation of algorithm is more appropriate with

other heuristic problem solving areas.

REFERENCES

[1] A. Catala, J. Jaen, and J. Modili, “Strategies for accelerating ant

colony optimization algorithms on graphical processing units,” in

IEEE Congres on Evolutionary Computation (CEC), Sept. 2007,
pp. 492– 500.

[2] W. Jiening, D. Jiankang, and Z. Chunfeng, “Implementation of ant

colonies algorithm based on GPU,” in Sixth Int. Conf. on Compter
Graphics, Imaging and Visualization (CGIV), Aug. 2009, pp. 50–

53.

[3] J. Fu, L. Lei, and G. Zhou, “A parallel ant colony optimization
algorithmwith GPU-acceleration based on all-in-roulette selection,”

in ThirdInt. Workshop on Advanced Computational Intelligence

(IWACI), Aug.2010, pp. 260–264.
[4] J. M. Cecilia, J. M. Garc´ıa, A. Nisbet, M. Amos, and M. Ujaldon,

“Enhancing data parallelism for ant colony optimization on GPUs,”

J.Parallel Distrib. Comput., vol. 73, no. 1, pp. 42–51, 2013.
[5] W. Zhu and J. Curry, “Parallel ant colony for nonlinear function

optimization with graphics hardware acceleration,” in Proc. Int.

Conf. on Systems, Man and Cybernetics, Oct. 2009, pp. 1803–
1808.

[6] H. Bai, D. Ouyang, X. Li, L. He, and H. Yu, “MAX-MIN ant

systemon GPU with CUDA,” in Fourth Int. Conf. on Innovative
Computing, Information and Control (ICICIC), Dec. 2009, pp. 801–

804.

[7] A. Del`evacq, P. Delisle, M. Gravel, and M. Krajecki, “Parallel ant
colony optimization on graphics processing units,” J. Parallel

Distrib. Comput., vol. 73, no. 1, pp. 52–61, 2013.

[8] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, Dipartiento di Elettronic, Politecnico di Milano, Milan,

Italy, 1992.

[9] M. Manfrin, M. Birattari, T. St¨utzle, and M. Dorigo, “Parallel ant
colony optimization for the traveling salesman problem,” in Fifth

Int. Workshop on Ant Colony Optimization and Swarm Intelligence

(ANTS),ser. Lecture Notes in Computer Science, M. Dorigo, L. M.
Gambardella,

[10] M. Birattari, A. Martinoli, R. Poli, and T. St¨utzle, Eds., vol. 4150.

Springer Verlag, 2006, pp. 224–234.
[11] T. St¨utzle, “Parallelization strategies for ant colony optimization,”

inFifth Int. Conf. on Parallel Problem Solving from Nature (PPSN-

V). Springer-Verlag, 1998, pp. 722–731.
[12] T. St¨utzle and H. H. Hoos, “MAX-MIN ant system,” Future Gener.

Comput. Syst., vol. 16, no. 9, pp. 889–914, Jun. 2000. [Online].

Available: http://dl.acm.org/citation.cfm?id=348599.348603
[13] D. Kirk and W.-M. W. Hwu, Programming Massively Parallel

Processors:A Hands-on Approach. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2010.
[14] NVIDIA, “Inside Kepler,” http://developer.download.

nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0642-

GTC2012-Inside-Kepler.pdf
[15] Y. You, “Parallel ant system for traveling salesman problem on

GPUs,” GPUs for Genetic and Evolutionary Computation, GECCO,
http://www.gpgpgpu.com/gecko 2009 (last accessed 29/01/2013).

[16] W. W. Hwu, GPU Computing Gems Emerald Edition. Morgan

Kaufmann, 2011.
[17] W.-M. W. Hwu, GPU Computing Gems Jade Edition. Morgan

Kaufmann, 2011.

[18] M. Dorigo, “Ant Colony Optimization - Public Software,”
http://iridia.ulb.ac.be/˜mdorigo/ACO/aco-code/ public-

software.html (last accessed: 29/01/2013.

[19] NVIDIA, “CUDA C Programming Guide,”
http://docs.nvidia.com//cuda/cuda-c-programing-guide/index.html

(last accessed 29/01/2013).

Insta

nce

20

Insta

nce

21

Insta

nce

22

Insta

nce

23

Insta

nce

24

time(ms) 46500 51245 51232 56303 58448

0

10000

20000

30000

40000

50000

60000

70000

ex
ec

u
ti

o
n

 t
im

e
(m

s)

EXECUTION TIME ON CPU

Insta
nce
20

Insta
nce
21

Insta
nce
22

Insta
nce
23

Insta
nce
24

time(ms) 2596 3549 4512 3985 4874

0

1000

2000

3000

4000

5000

6000

ex
ec

u
ti

o
n

 t
im

e
in

(m
s)

EXECUTION TIME ON GPU

http://dl.acm.org/citation.cfm?id=348599.348603

