
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51181 380

Design and Analysis of a Hybrid Technique for

Code Clone Detection

Jai Bhagwan
1
, Kumari Pramila

2

Assistant Professor, CSE Department, GJU S&T, Hisar, Haryana, India
1

PG Student, CSE Department, GJU S&T, Hisar, Haryana, India
2

Abstract: Nowadays, the software industry is getting more complex since the software systems are growing massively.

In order to meet the software demand, a developer often reuses the existing code. This reuse of code results as a code

cloning. Code cloning can be defined as a copying and pasting activity of code sections by doing a minor or no

modification. These modifications can be done in terms of addition, removal, renaming. Tremendous demands from

software industry could be one of the reasons for a developer to use the cloning beside his lazy behavior in writing a

code from new scratch. Though the cloning reduces the development time and efforts but it impacts the maintenance

cost of the software in terms of software readability and changeability. So, the demand for code clone detection arises

in the software industry to improve the readability and changeability in software. A number of clone detection methods

exist today to find out code clones in a software system. This paper presents a research work carried to design a hybrid

technique that combines the metric based clone detection approaches with text-based clone detection approaches and

gives a better result in accounts of precision, recall, and accuracy.

Keywords: Code clone, duplicate code, cloning, clone detection

I. INTRODUCTION

We can define the code clone, as a computer programming

term that is used when there is a multiple occurrence of a

sequence of source code either within the program itself or

in some other programs [1][8][12]. Code clones are the

semantically and syntactically similar results of copy-and-

paste activities [4]. The reason behind the cloning can be

intentional or unintentional [2]. In software development,

a developer usually, copies a section of code fragment and

pastes this code fragment to another code section by doing

a no or minor modification. This whole copy-and- paste

activity can be termed as software cloning and pasted code

(modified code) as well as copied code can be termed as

cloned code of each [2][4]. The term “code clone” does

not have a generic or precise definition for code clones,

each researcher defines cloning as their own.

As, a canonical example of code cloning, we often take the

example of copy and paste activity but cloning is not a

result of this copy-paste alone. Code clones may be

invoked in software programming as idioms of language

or libraries, common library API‟s or framework usage, or

even on common examples based on implementations.

Likewise, all copy-and-paste activities need not be

considered as code cloning. Copying and pasting of trivial

code sections like block statement or for loops are not

considered as code clone [8].

Today, the software industry is getting more complex

since the software systems are growing tremendously, so

the software companies need a huge amount of the

maintenance in terms of cost and efforts of existing

software systems [4][10].

Software maintenance in software engineering is defined

as the modification (corrective, adaptive, perfective, or

preventative) of a software product after delivery to

correct faults and improve the performance or other

attributes various research studies have shown that

maintenance of the software systems with code clones is

more difficult than a non-cloned code system.

In a software system, typically, about 60% of cloned code

is the modified code [1] and around 7% to 23% of the

code is the copied and pasted code [2] [3][4].

Generally, it is believed that cloning introduces additional

maintenance efforts like the maintenance cost will be

affected if a change made to one code fragment is to be

propagated in the another fragment of the program.

Further, problems are raised in the location and

maintenance.

There is no doubt that, code cloning is a “bad smell” kind

of [10] software design approach. So, there is an insistence

of code clone detection approaches for precise and

effective information of clones in system software.

A. Terminology associated with Code Cloning.

1) Code Fragment (CF). A code fragment is a sequence of

code lines of any granularity, for example, the

sequence of statements, begin-end block or function

definition etc. [8].

2) Code Clone (CC). A code fragment (CF1) is a clone of

another code fragment (CF2), if f (CF1) = f (CF2),

where f is a predefined function of similarity [8].

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51181 381

Fig 1. A Code Clone Example [1]

3) Clone Pair (CP). A pair of identical code fragments [4].

4) Clone Set (CS). A set of identical fragments [2].

5) Clone Relation (CR). A clone relation is an

equivalence relation defined on code portions. This

pair of clone portion is called clone pair. A clone class

is a maximal set of code portions in which an

equivalence clone relation exists between any pair of

code portions [3].

B. Classification of Code Clones.

Broadly, code clones can be categorized into two

categories i.e. the clones that are identical syntactically

and the other types of clones are related semantically [4]

[12]. Each of these categories is described below:

1) Syntactically Similar Clones: These are the structurally

or textually similar code fragments having minor

modification (white space removal, adding more

comments, adding one or more sequence of code to the

copied code fragments etc.) Type-I, Type -II and Type-

III clones fall under this category [12].

i. Type-I (Exact clones) - Textually identical code

segments except for variations in layout, whitespace,

and comments [2][3].

ii. Type-II (renamed/parameterized) - Textually identical

code segments except for variations in literals,

identifiers, whitespace, types, layout and comments

[1][3].

iii. Type-III (near-miss clones) - Copied segments with

further modifications such as added, changed or

removed statements, in addition to variations in literals,

identifiers, types, whitespace, layout, and comments

[3][4].

2) Semantically Similar Clone: These are code fragments

that are similar in computation but have syntactic

variation. These are also known as Type-IV code

clones [8].

C. Clone Detection Approaches.

Clone detection has been an active area of research since

1990‟s. A number of clone detection approaches have

been proposed in the literature. The clone detection

approaches can be classified into four main categories:

textual, lexical, syntactic and semantic [8].

Each of these approaches with their related research is

described below:-

1) Textual Approaches: Textual approaches are text-based

approaches that are using a little or no transformation

on the source code before its actual comparison. In

most cases, the detection processes directly employ

source code in their detection method [1] [8].

Limitations of text-based Approaches [4][8]:

i. A line-by-line method cannot handle identifier

renaming.

ii. Code segments having line breaks are not recognized

as clones.

iii. Adding or removing brackets can create a problem

during comparing two code portions when one of the

two portions has brackets and the second portion does

not have brackets.

iv. The text-based approaches cannot be used in source

code transformation, so it needs some normalization to

improve recall without reducing precision rate.

2) Lexical Approaches: Lexical approaches are token-

based approaches that transform source code into a

sequence of "tokens" with the usage of a lexical

analyzer. The transformed token sequence is then run

for duplicated subsequences of tokens and the

comparable original code is returned as clones. Lexical

approaches are robust over minor code changes like

renaming, formatting, and spacing than text-based

approaches. The approach can detect Type-I and Type-

II clones and, Type-III clones can be further detected

by concatenating Type-1 and Type-2 clones [8].

Limitations of Lexical Approaches:

i. Token-based approaches rely upon the order of

program lines. Whenever the order of statements is

modified in copied code, copied code can‟t be detected

[1][3].

ii. Code clones with added or removed tokens along with

the swapped lines can‟t be detected using these

techniques as the clone detection technique is more

focused on tokens [3].

iii. Token-based approaches cost more in terms of space

and time complexity than textual approaches since a

source line comprises of several tokens [1].

3) Syntactic Approaches: A parser is used to convert the

source programs into a parse tree or abstract syntax

trees (AST) [8] [11], which are then, processed either

by using a tree match or structural metrics match to

find clones.

i. Tree matching approaches - These are tree-based

approaches that detect clones by detecting similar sub-

trees. Literal values, variable names and other tokens in

the source code are abstracted in a tree representation,

for detection of clones [9].

ii. Metrics-based Approaches - Metrics-based approaches

calculates a number of metrics from code fragments

and then compares metrics vectors directly. Metrics are

calculated for syntactic units such as classes, loops,

functions and statements [1][2][3].

These metric values can now be used to detect clones.

In most cases, AST [8] or control flow graphs (CFG)

are used to parse the source code, on which the metrics

are then calculated. [3].

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51181 382

Limitations of Syntactic Approaches:

i. Tree-based techniques can‟t handle literal and

identifiers values for clone detection in ASTs.

ii. Tree-based techniques cannot detect reordered

statement clones.

iii. A metric-based technique requires a parser or a PDG

generator for metrics values computation.

iv. Based on matrices alone two code fragments may not

found to be similar code fragments even if they have

similar metric values.

4) Semantic Approaches: Static program analysis is used

to provide more precise information in semantics-based

clone detection approaches. In some approaches, a

PDG (program dependency graph) represents a

program. The nodes are representing statements and

expressions, while the edges are representing control

and data dependencies [4][8][9].

Limitations of Semantic Approaches:

i. PDG-based approaches are not scalable for large

systems [8].

ii. A PDG generator is required in PDG-based

approaches. Graph matching that is used in PDG-based

techniques is expensive [8].

5) Hybrid Approaches: Hybrid approaches are the

combination of any two earlier discussed approaches

[1][4][8]. For example, syntactic approaches can be

merged with the semantic approach to achieve their

combined goals [7] [11].

II. LITERATURE REVIEW

Manpreet Kaur et al. [1] proposed a code clone detection

technique for efficient detection of type I, type II and type

III clones. They segmented source code into a number of

functions for clone detection purpose. Their proposed tool

is built in MS.Net framework version 4.0 by using visual

studio 2010.

Potential clones were detected by calculating a number of

effective lines, the number of loops used, the number of

function calls, etc. Gitika et al. [2] presented an approach

to detect potential clones from software. Potential clones

are those parts of the code which are the candidates for a

clone but are not necessarily being cloned. This approach

can be used to reduce complications with other approaches

and is quite simple to use.

The proposed clone code detection approach gave results

on method level metrics extracted from source code.

Source Monitor is the name of the tool which was used to

calculate the required method level metrics. After

calculating the required metrics, the potential clones were

detected. The authors had used a chat server system

developed in java language to detect potential clones. This

code clone detection approach was applied only to a part

of the software system in which potential clones had been

detected rather than applying on the whole system.

Amandeep Kaur et al. [3] devised an algorithm which is

used to identify duplicate code piece.

The proposed algorithm is based on metrics, which are

being used to determine the complexity of a program

related to the number of operands and operators in the

program. The objective was to merge the metric based and

text based techniques to design and analyse a new hybrid

approach. In textual comparison, a line by line code

comparison is used in post-processing rather than by

taking token or word.

Visual Basic 6.0 programming language was used in user

interface design for detecting code clone in an application.

The software metrics which are used to compute and

analyse were the number of operands, number of

operators, the number of source lines of code etc.

The proposed algorithm gave a light-weight technique to

detect functional clones by computing metrics values and

then combining with simple textual analysis technique.

With the employment of metrics in the proposed approach,

a signified reduction was observed with the existing one.

A higher amount of recall was obtained as a result of

string matching and textual comparison. K. Raheja et al.

[4] had used the concept of hybrid clone detection

approach. The proposed approach used an algorithm for

detecting duplicity in the software.

The algorithm was used to calculate sufficient information

by computing software metrics that were required for the

software application and then potential clone could be

detected depending on the metrics that found a match.

MCD Finder was the proposed tool that used to calculate

the metrics of Java byte-code rather than using any

transformed representation.

Also, the researchers found that semantic clones can be

detected as byte code which was used for metric

calculation. Token based approach was applied on

potential clones for the detection of code clones. Perumal

et al. [6] proposed a combined approach of the textual

based and metric based code clone detection. A set of

twelve metrics were used in this proposed technique to

improve the precision and recall values. Use of metrics

had reduced the total overhead in comparisons.

Metrics and the textual comparison were performed over

different java source code fragments and it provided less

complexity in finding the clones and gave accurate results.

Kodhai E. et al. [7] proposed a light-weight metric-based

approach combined with the textual comparison of the

source code for the detection of functional clones. C

source code was used as an input.

The method comprised of four steps namely, input and

pre-processing, template conversion method identification,

and metric computation. Various metrics (a set of 7

existing metrics) had been formulated and their values

were utilized during the detection process. The obtained

results were compared with the two other existing tools

(Phoenix and NICAD) for the open source project

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51181 383

(Weltab). Phoenix-based tool reported six clone class

matches while the proposed method reported eight exact

match clone classes. Results were found to be similar with

NICAD. The only difference with NICAD and proposed

method was that the proposed method was built-in hand-

coded parser without any external parser deployment

while NICAD employed an external parser. C.K.Roy et al.

[8] had provided a qualitative comparison and evaluation

among various code clone detection techniques and tools.

The work was organised into a large volume of

information for a coherent conceptual framework that

began with background concepts and proceeded to a

generic clone detection process and thereafter it gave an

overall taxonomy of current techniques and tools. Further,

the classification, comparison, and evaluation of the

techniques and tools were discussed.

Jens Krinke et al. [9] proposed a new algorithm, KClone

for clone detection that incorporated a combination of

lexical and local dependence analysis to achieve precision.

It also presented a report on the initial case study

implementation result of KClone, which was used in

experimenting.

The results indicated that the KClone was more capable of

finding types-I, type-II, and type-III clones as compared to

token-based and PDG-based techniques. Rainer Koschke

et al. [11] compared the existing techniques and showed

that token-based clone detection methods relied on suffix

trees were extreme fast, but clone candidates yielded by

this technique are often no syntactic units.

Current techniques based on abstract syntax trees (AST)

were considerably less efficient but could find syntactic

clones. The research described how suffix trees could be

used to detect clones in abstract syntax trees.

The proposed approach could found the syntactic clones in

linear time and space. K.Kontogiannis [13] had performed

an examination and evaluation on the use of five data and

control flow related metrics for identifying similar

fragments. The metrics were used as code fragment

signature.

Matching on such metric resulted in fast detection, which

was used to locate code cloning instances even in the

presence of modifications. The paper reported on

experiments in three different software systems, conducted

for retrieving code clone fragments.

M. Merlo et al. [14] used Metric-based technique to detect

functional clones from the source code. A DATRIX tool

framework was used to accomplish this. DATRIX tool is a

source code analyser tool set that selects only the control

flow metrics and data flow metrics. This proposed

approach had been applied on two telecommunication

monitoring system, for automatic detection, in which

function clones were detected.

III. PROPOSED METHODOLOGY

IV. IMPLEMENTATION AND RESULT

A. Implementations

Fig 2. Architecture of Proposed Model

The proposed tool is an implementation of a hybrid

approach that merges metrics-based clone detection

approach and textual-based approach to detect clones. In

addition to that we have also used Levenshtein Distance

method to improve the results. The automated code clone

Algorithm:

Input: File1, File2

Output: Clones

1: BEGIN

2: Metric Calculation at file level

 for i←0, File1.Length do

 file1Metric.calculateMetric();
for j←0 File2.Length do

 file2Metric.calculateMetric();

3: If file1Metric== file2Metric

 for i←0, File1.Length do

 for j←0, File2.Length do

LevSim← LevDistance (File1𝑖, File2𝑗)
if LevSim==1 then

 Clones ← 𝐹𝑖𝑙𝑒1𝑖 ,

4: else

5: Extract File1.class(), File1.method()

6: Extract File2.class(), File2.method()
7: Compute File1_class.metric(), Compute File1_method.metric()

8: Compute File2_class.metric(), Compute File2_method.metric

9: for i←0, File1_class.Length do

 for j←0, File2_class.Length do

If classMetric[i]== classMetric[j]

LevSim← LevDistance (class𝑖, class𝑗)

if LevSim==1 then

 Clones ← 𝑐𝑙𝑎𝑠𝑠𝑖
10: for i←0, File1_method.Length do

 for j←0, File2_method.Length do

If methodMetric[i]== methodMetric[j]

LevSim← LevDistance (method𝑖, method𝑗)

if LevSim==1 then

 Clones ← 𝑚𝑒𝑡ℎ𝑜𝑑𝑖 ,
11: END

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51181 384

detection tool has been implemented in JDK 1.8, JRE 1.8

and Net Beans IDE 8. It takes two java source code files as

input and compares these files based on a hybrid method

which is given in proposed methodology sec III. The

architecture of proposed tool is given in figure 2.

B. Results

We have done experiments with existing and proposed

technique to detect the clones. The results of both

approaches have been tested on two java source code files

and their resultants are shown in table 1 and table 2. The

results show that our proposed approach is better than the

existing one in terms of parameters precision rate, recall,

accuracy rate and error rates values which are obtained by

using the equations (1), (2), (3) and (4) discussed in next

section.

In Table 1 and Table 2:

TP is an abbreviation for true positive i.e. these are the

actual clones which are detected by the tool.

TN is an abbreviation for true negative i.e. these are the

actual clones which are not detected by the tool.

FP is an abbreviation for false positive i.e. these are not

the actual clones but are detected as clones by the tool.

FN is an abbreviation for false negative i.e. these are not

the actual clones and also the tool didn‟t detect these.

P is the sum of TP and FN.

N is the sum of FP and TN.

Table 1. Clones found using existing technique

 Detected Clones

Yes No

Actual Clones Yes 45 (TP) 33 (FN)

No 0 (FP) 11 (TN)

Table 2. Clones found using proposed technique

 Detected Clones

Yes No

Actual Clones Yes 59 (TP) 19(FN)

No 0(FP) 11(TN)

C. Performance Measures

For clone detection, the parameters precision, recall,

accuracy and error are obtained using the equations given

below [9]:

Precision (P) =
TP

TP +FP
 (1)

Recall (R) =
TP

P
 (2)

Accuracy (A) =
TP +TN

P+N
 (3)

Error (E) =
FP +FN

P+N
 (4)

Using the above four equations we have compared the

performance of our proposed approach and existing

approach based on table 1 and table 2. The obtained results

are shown in table 3.

Table 3. Performance Table

Parameters to

compare

Existing

Approach

Proposed

Approach

Precision 0.80 0.84

Recall 0.57 0.75

Accuracy 0.62 0.78

Error 0.38 0.22

V. CONCLUSION

In this paper, we have presented a hybrid technique that

detects software code clones for Java programs on the

basis of metrics and text-based approaches. The proposed

approach looks for clones in the code at the file level, class

level, and method level. The proposed approach detects

potential clones on metric-based match. Potential clones

are further compared line by line using a text-based

approach to check whether the potential clones detected

using metric based comparison are actually clones or not.

We have implemented the existing and proposed

techniques in the form of a tool named JHCCD written in

java. Based on the results from this tool, we have observed

that our proposed method is better than existing one in

terms of parameters such as precision, recall, accuracy,

error rate „0.80, 0.84‟, „0.57, 0.74‟, „0.62, 0.78‟, „0.38,

0.22‟ respectively for existing and proposed method.

The proposed method was tested on Java Source Code

only and further it can be enhanced to support several

kinds of programming languages. Additionally, more

metrics can be introduced to enhance the results correction

rate. Soft computing technique can be integrated to get

optimization in case of a large dataset.

ACKNOWLEDGMENT

The authors express great thanks and acknowledge all the

research scholars and other contributors whose valuable

work have been used to understand the background and

literature review in this work. Authors have used this

information for a successful design and implementation of

the proposed approach. At last but not the least we express

our thanks to almighty for giving us a rapid motive and

inner peace throughout our research.

REFERENCES

[1] Manpreet Kaur and Madan Lal, “Code Clone Detection Using

Function Based Similarities and Metrics”, International Journal of

Emerging Research in Management & Technology, vol. 4, no. 7,
pp. 156–159, Jul. 2015.

[2] Geetika and Rajkumar Tekchandani, “Detection of potential clones

from software using metrics”, International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 4,

no. 4, Apr. 2014.

[3] A. Kaur and B. Singh, “Study on Metric Based Approach for
Detecting Software Code Clones”, International Journal of

Advanced Research in Computer Science and Software

Engineering, vol. 4, no. 1, Jan. 2014.
[4] K. Raheja and R. K. Tekchandani, “An efficient code clone

detection model on Java byte code using hybrid approach”,

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51181 385

Confluence 2013: The Next Generation Information Technology
Summit (4th International Conference), 2013, pp. 16–21.

[5] M. Mondal, M. S. Rahman, R. K. Saha, C. K. Roy, J. Krinke, and

K. A. Schneider, “An Empirical Study of the Impacts of Clones in
Software Maintenance”, IEEE 19th International Conference on

Program Comprehension (ICPC), 2011, pp. 242–245.

[6] Kodhai, Perumal and Kanmani, “Clone Detection using Textual and
Metric Analysis to figure out all Types of Clones”, International

Journal of Computer Communication and Information System, vol.
2, no. 1, July-Dec 2010.

[7] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika, and B.

VijayaSaranya, “Detection of Type-1 and Type-2 Code Clones
Using Textual Analysis and Metrics”, International Conference on

Recent Trends in Information, Telecommunication and Computing

(ITC), 2010, pp. 241–243.
[8] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and

Evaluation of Code Clone Detection Techniques and Tools: A

Qualitative Approach”, Science of Computer Programming, vol. 74,

no. 7, pp. 470–495, May 2009.

[9] M. Matsushita, Jens Krinke, M. Harman, and David Binkley,

“KClone: A Proposed Approach to Fast Precise Code Clone
Detection,” in Int. Workshop Detect. Softw. Clones, pp. 12–16,

2009

[10] C. Kapser and M. W. Godfrey, “„Cloning Considered Harmful‟
Considered Harmful,” in 13th Working Conference on Reverse

Engineering, 2006. WCRE ‟06, pp. 19–28

[11] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection Using
Abstract Syntax Suffix Trees,” in 13th Working Conference on

Reverse Engineering, 2006. WCRE ‟06, pp. 253–262.

[12] I. Baxter, A. Yahin, L. Moura, M. Anna ,"Clone Detectio Using
Abstract Syntax Trees," in Proceedings of 14th International

Conference on Software Maintenance (ICSM), November 1998

[13] K. Kontogiannis, “Evaluation experiments on the detection of
programming patterns using software metrics,” in Proceedings of

the Fourth Working Conference on Reverse Engineering, 1997.

[14] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the
automatic detection of function clones in a software system using

metrics,” in , International Conference on Software Maintenance

1996, Proceedings, 1996, pp. 244–253

BIOGRAPHIES

Kumari Pramila graduated with B.Tech

and presently she is pursuing M.TECH

(CSE) in Guru Jambheshwar University

of Science & Technology, Hisar, India.

Her area of interests includes Software

Engineering.

Jai Bhagwan received the M.TECH

degrees in Computer Science and

Engineering from Maharishi

Markandeshwar University, Mullana in

2011. After this, he stayed in Maharishi

Markandeshwar University, Mullana on

the post of Lecturer in Information

Technology department for a period of one year. Now, he

is working as Assistant Professor in the Computer Science

& Engineering Department in Guru Jambheshwar

University of Science & Technology, Hisar, India. He has

around 5 years of teaching experience. His areas of

research are Cloud Computing and Software Engineering.

