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Abstract: Large numbers of algorithms have been proposed to solve shortest path query problems for static or time-

dependent spatial networks; however, these algorithms do not perform well to find the nearest shelter with fastest paths 

in disaster situations. In disasters, path computed through existing algorithms and saved as the fastest might become 

damaged. ONSC approach provide optimal path in disaster situation but do not deal with congestion control. To solve 

this problem, this paper proposes a method to reduce the travelling time with an existing dynamic network model, 
which is called an event-dependent network, to represent a spatial network in a disaster which help the people to choose 

the optimal path by giving weight-factor(in percentage) of the congestion in the road network. 

 

Index Terms: congestion control, event dependent network, path planning, disaster management. 

 

I. INTRODUCTION 

 

One of the primary and critical information technology tasks in disaster management is helping people escape from 

danger and, more importantly, reach available shelters for safety. To accomplish this task, flexible path planning that 

can adapt to unpredictable and varying circumstances during disasters is crucial. General static spatial networks are 

defined as networks with fixed edge costs. The static fastest-path approaches make the simple assumption that the 
traveling time for each edge of a road network is constant. In reality, the traveling time on a road segment depends on 

the level of traffic congestion. Therefore, time-dependent networks are used to model traffic situations in which the cost 

of traveling on a road varies as a function of time; thus, the traveling time on a road is determined by the arrival time of 

using the road. Because of the traveling time functions of roads, the solution to the shortest-path planning problem for 

time-dependent networks is to compute the shortest path between a source point and a destination point.                                                                                                  

This paper make use of  an event-dependent spatial network for modeling disaster situations in which a road becomes 

blocked because of various unpredictable events such as broken roads, floods, or car accidents. Road changes are 

unpredictable and frequent; therefore, the fastest paths cannot be effectively precomputed. In addition, the destinations 

(i.e., the nearest shelter) for people are also unknown and may change when roads become impassable. These types of 

unpredictable events may also cause the original destination to become unreachable or farther away than other 

destinations. Therefore, the path planning of event-dependent spatial networks in disasters should resolve the following 

problems simultaneously: 1) promptly recognizing people who are affected by disaster; 2) locating the newly 
established nearest shelters (if necessary); and 3) computing the fastest paths from the current position to the 

destination. This problem is called the event-dependent fastest-path (EDFP) problem. 

 

The procedure of existing ONSC, comprises two phases: a system initialization phase and a running phase. At the 

system initialization phase, geographic city maps, which are referred to as spatial networks, are transformed into an 

event-dependent graph (EDG) by the server. An EDG is a graph on which vertices represent geographical coordinates 

of the city maps, and edges are the roads connecting any two geographical coordinates. The locations of shelters on the 

maps, such as hospitals, churches, and schools, are designated as vertices called sources in the EDG. The higher the 

number of vertices is, the more accurate the EDG is. For each vertex in the EDG, the server computes its nearest shelter 

and the fastest path between them. The computed fastest paths are represented by the NFG (Navigation Forest Graph) 

structure and stored in the NFG database. 
 

When a mobile client executes its mission, it contacts the server to obtain the required NFG information. A mobile 

client may have the ability to flexibly determine the range of the NFG to be downloaded but cannot get the full NFG 

and client can also choose between less congestion and less distance depending on the congestion in the road network. 

When the spatial network is static or the fastest paths to the nearest shelter are unchanged, the mobile clients can 

directly follow the fastest paths stored by the NFG to reach the nearest shelters. If the control center receives damage of 

any node in the NFG from any source like updates from traffic police, the server executes the running phase which 

provides the new path to mobile client by reconstructing the path according to the newly constructed NFG. 
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II. PROPOSED WORK 

 

Existing systems are finding the optimal path to nearest available shelters by using the different algorithms and Path 

Reconstruction Algorithms and giving the highest performance in comparison to available methods for route finding in 

case of disaster situation. But there can be one problem with the existing system: In case of large numbers of people on 

the same route are using this method when a disaster has occurred, then all of them will be suggested the same optimal 

path that will cause a lot of load on the suggested route. In that case the person should be able to choose between 

optimal path and load on the path. 

So we are extending the existing systems for the shelter computation in case of disaster by giving the load matrix to the 
existing system and asking the client for the weight percentage of the load factor and also for the distance factor in the 

form of percent. Client can give zero weight percentage to any of the load or distance factor and get the result based on 

choice.  

 

 
Figure 1 Congestion Control with ONSC 

We get the result on the basis of simple formula 

(m_adjMatrix[i][j] * ( ( 100.0 - m_loadWeight) / 100.0 ) ) + (m_loadMatrix[i][j] * (m_loadWeight / 100.0) ) 

Where 

m_adjMatrix[i][j] is the value of the distance matrix 

m_loadWeight is the choice of user( weightage for the load consideration) 

m_loadMatrix[i][j] is the value for the load matrix 

 
This change is completely flexible as client has right to decide what he/she want less congestion or less distance by 

giving the appropriate weight factor(m_loadWeight) as input. This change helps in load balancing and saves time also 

while maintaining the performance level. The Fig. 1 is representing the way how changes are actually working. 

Proposed work is a simulation on the existing work in case load is very high in the road network so that client could 

choose between the shortest path and less load by providing weightage to the load matrix as given in the Fig. 1. Here 

the load matrix is fixed. 

 

III. ALGORITHMS USED FOR CONGESTION CONTROL IN CASE OF DISATER APPROACH 

 

This section first presents the data structure for recording essential information of a vertex in NFG. This structure is 

used to compute the new fastest paths. Two algorithms are presented to identify the damage range and the recovery 
vertices when some of the vertices in the NFG become damages. A damage-range reconstruction method has been to 

compute the new fastest paths in the damage range.  
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A. NFG Vertex Data Structure 

Each NFG vertex vi has four fields : ID, Type, Neighbor, and FastestPath, shown in Fig. 2. 

 

• ID is used for vertex identification. 

• Type is to categorize between the root and general vertex. 

• Neighbor is used to store the set of adjacent nodes in the EDG and the edge costs between each of them and vi. 

• FastestPath is used to store the information of the NT, including the root ID (RID), the previous and the next vertices 

along the fastest path, and the total path cost. 

 
The NFG vertex data structure has two important properties. One feature is the use of a bidirectional link to 

acknowledge each vertex with the next (i.e., outgoing) vertex and the previous (i.e., incoming) vertex along the fastest 

path. The other feature is the attributing of each vertex to only one NT such that no two NTs overlap. Because of these 

two critical features, when an event occurs, the computation time of reconstructing the NFG can be reduced, and the 

fastest path can be rapidly determined. We describe how these features facilitate NFG reconstruction later. 

 

 
Figure 2 NFG Data Structure 

 

A simple method for constructing the NFG is to use a one-by-one spreading algorithm. Assume that the EDG contains 
multiple roots. The one-by-one spreading algorithm determines the fastest paths for all vertices from a single root for 

each root. In other words, for each round, only one root runs the Dijkstra algorithm and stops when all vertices in the 

EDG have been visited. Values for NFG vertex vi, such as RID and path cost, are initialized as null and infinity.  
 

They are updated only when the stored path cost is higher than the values generated in new spreading rounds. Finally, 
the values of all the vertices in the EDG are determined, and each vertex vi is attributed to NT(r(j)), where 
 

|p[vi, r(j)]|= 𝐦𝐢𝐧∀𝐫(𝐤)∈𝐍𝐅𝐆{|p [vi, r(k)]|}   (1) 

 
Another method is using the simultaneous-spreading algorithm, where multiple Dijkstra algorithms are executed with 

all roots simultaneously, and the spreading of each root stops when it visits a vertex vi with a value lower than that 

which it is going to donate. 

 

B. DRVF Algorithm 

As mentioned, in addition to making fastest paths invalid, impassable edges might also cause shelters to become 

unreachable or lead to other shelters being closer. The objective of the DRVF algorithm is to determine the damage 

range D(vim(i)) and the recovery-vertex set R(vim(i)) simultaneously. 

 

Further section reports the use of the recovery-vertex set to determine the fastest paths and the new nearest shelters of 

vertices in damage range D(vim(i)). The pseudo code of DRVF is provided in  

 
Algorithm 1. The inputs of the DRVF algorithm are impassable vertex vim(i) and the NFG. The outputs of the DRVF 

algorithm are damage range D(vim(i)) and recovery vertex set R(vim(i)). 
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Figure 3 DRVF Algorithm 

 

Two crucial properties of the DRFV algorithm are that the parent of a damaged vertex in the NFG must be a damaged 

vertex  and that a neighbor of a damaged vertex in the EDG is either a damaged vertex or a recovery vertex. Based on 

the first property, the DRVF uses vim(i) as the first damaged vertex (see Step 1) and recursively visits all the neighbors 

of damaged vertices (see Steps 2–8) until all the descendants of vim(i) in the NFG are checked. A neighbor vp of a 

damaged vertex vq is identified as a damaged vertex if its next outgoing vertex is vq (see Steps 5 and 6). Otherwise, 

except for the next outgoing vertex vq, vp can be selected as a potential recovery vertex (see Steps 7 and 8) on the basis 

of the second property. Finally, the recovery vertices are produced by removing duplicate copies and the vertices that 
are identified as damaged from the potential recovery vertices (Steps 9 and 10).  

 

C. Damage-Range Reconstruction 

Damage-range reconstruction is performed to determine the fastest paths for vertices in the damage range. Vertices in 

the recovery-vertex set contain all the outgoing connections of vertices in the damage range. On the basis of this 

property, the damage-range reconstruction method first initializes the values of Fastestpath, such as RID and path cost, 

as null and infinite in the NFG vertex structure for vertices in the damage range. Because the fastest paths of recovery 

vertices are not deleted, the NFG can be reconstructed by simply re-computing the fastest paths of damaged vertices to 

their nearest recovery vertices. Therefore, the damage-range reconstruction method considers all the recovery vertices 

as roots with the beginning costs and runs the simultaneous-spreading algorithm for all the damaged vertices to 

determine the fastest paths. The beginning weights here are the path costs between the recovery vertices and their 

nearest roots. It is proven later that damage range reconstruction can obtain the global fastest path from a damaged 
vertex to its nearest root. Algorithm2 presents the damage-range reconstruction method. 

 

 
Figure 4 Reconstruction Algorithm 
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V. PERFORMANCE COMPUTATION 
 

This section discuss about the experimentation environment. We are the comparing the proposed work with Dijkstra 

algorithm and simultaneous-spreading algorithms. 
 

A. Experimental Environment 

The experiments shown further were implemented in C++ language by using Visual Studio 2010-32 bits and executed  

on a laptop computer with Pentium Processor 2.13 –GHz processor, 8GB of memory and running Windows 7 32 bits. 

We have done simulation using taking adjacency matrix as input and also a congestion matrix to reduce the travelling 

time in case of excess congestion in the road network; we modeled the event occurrence by randomly selecting some of 

nodes in the NFG as impassable node. 
 

B. Results 

Performance of the proposed work is completely dependent on the ONSC procedure with some additional computation 

cost to calculate the effective matrix for congestion control. To evaluate the Dijkstra, Spreading Algorithms, 

preprocessing is defined as time to preprocess the data for speeding up online responses, “query” as response time of 

the online fastest-path query when map is static, and “reconstruction” as the response time of the online fastest-path 

query when changes in the road network occurs. Table 1 is representing the time complexity of different shortest path 

computing algorithms. All mentioned algorithm such as Dijkstra, Spreading Algorithm, All pair shostest path 

computing Algorithm cannot be use in the case of disaster still having higher time complexity. This ONSC approach 

used to control congestion is having (mlogm+m) time complexity where m is the number of vertices in damaged area 
when an event has occurred. Maximum value of m can be n/2 where n is the no of nodes in the EDG. 
 

Table 1 Complexity of different Algorithms 

Algorithm Complexity 

Dijkstra O(nlogn) 

Spreading O(nlogn) 

APSP O(n^3) 

ONSC mlogm+m 

 

Table 2 is representing the complexity of different algorithm with different values of n, where n is the no of nodes. 

Complexity have been computed  according to the Table 1. Computation of ONSC is done in worst case in Table 1 by 

taking  m=n/2 as mentioned before. 
 

Table 2 Complexity of algorithms with changes in graph size 

Algorithm Dikastra APSP ONSC 

n=10 10 1000 3.4948 

n=50 84.9485 125000 34.9485 

n=100 200 1000000 84.9485 

n=500 1349.485 125000000 599.485 

n=1000 3000 1000000000 1349.485 

 

As this paper is working on the future scope of the ONSC [6] procedure so it has all the advantage of the existing 

system. This approach takes less than 3 to 4 ms to compute the nearest shelter and its shortest path which is faster than 

other existing approaches.  
 

 
Figure 5 Comparison of dijkstra and ONSC 
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V. CONCLUSION 

 

In this paper, we have used a dynamic network model called the event-dependent network to make simulation for load 

balancing in unpredictable networks such as spatial networks during disasters to reduce the travelling time. Unlike 

other spatial networks, the edge weights of this network are unpredictable and change rapidly rather than being static or 

time varying. To address the fastest-path problem in an event-dependent network, we utilized ONSC approaches to 

dynamically and promptly respond to queries for the nearest shelter with the fastest paths with the advantage of load 

balancing. NFG not only stored the fastest paths of the static network but also effectively sped up the calculation of the 

fastest path when the network changed frequently. ONSC with DRVF algorithms was developed to address various 
system restrictions such as computing power and memory space. Compared with other fastest-path studies, our 

experiments with real-world spatial networks and simulated spatial networks show that ONSC approaches substantially 

outperform competitors in storage and response time. In conclusion, our approaches are applicable to real-world spatial 

networks during disasters. We next intend to extend this study in two directions. One is to support real-time network 

recovery such as providing temporary alternative roads or resolving congestion during disasters by taking dynamic load 

matrix. The other is to extend our work to the global path-planning problem.  
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