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Abstract: Cluster analysis is one of the primary approaches in Machine Learning. Applications involving clustering 

often deal with large and high dimensional datasets. Clustering of large datasets is a task having high time complexity. 

Clustering algorithms iterate several times before converging to the solution. A way to speed up the clustering process 

is Parallel Processing. Parallel programs make use of Graphical Processing Unit (GPU) and/or multi-core CPUs to 

reduce the computation time. There is enough scope to parallelize clustering algorithms for obtaining faster results. 

This paper gives a review of parallel implementations of three clustering algorithms viz. k-means, DBSCAN and 

Expectation-Maximization. We survey the Shared Memory and Message Passing models of parallel programming and 

how clustering algorithms have been performed using them. We also highlight few applications involving large data 

where parallel programming would be helpful. 
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I. INTRODUCTION 

In Machine Learning, Unsupervised learning deals with unlabelled datasets. Its main task is to analyse this data and 

deduce a function to describe a structure out of it. One of the primary approaches to unsupervised learning is clustering. 

Clustering refers to grouping the data objects into classes (or clusters) in such a way that members of same cluster share 

some common characteristics and differ from the members of other clusters. 

 

Clustering is a task involving high time complexity especially when dealing with large and high dimensional data. The 

clustering algorithms run through several iterations before finally converging to the desired result which is the clustered 

data. The processing of large datasets demands use of parallel and distributed computing methods for faster results. The 

developments in processor technology such as multi-core processors, Graphical Processing Unit (GPU) for Parallel 

Programming and use of Workstations for scientific computing have made it possible to reduce the computation time of 

clustering algorithms. 

 

This paper gives survey of parallel implementation of various clustering algorithms and how particular steps of the 

algorithm can be computed using specific parallel programming models. The research paper is organized as follows. In 

II we survey the Parallel Programming models and software platforms / libraries for running parallel programs. In III 

we discuss three clustering algorithms and review how researchers have implemented these algorithms using parallel 

processing and their results. In IV we discuss the applications of clustering and parallel computing on large data sets in 

brief. In V we summarize and conclude our study. 

 
II. PARALLEL PROGRAMMING MODELS 

 

A parallel programming model is an abstraction of the hardware architecture on which the parallel code is running. 

There exist several parallel computing models as a result of the various ways in which different processors can be 

grouped together to make a parallel system [1]. Following is a brief study of two such models. 

A. Shared Memory 

Shared Memory refers to the Parallel Processing model where different processors access the same block of memory. 

In shared memory architectures communication is implicitly specified as memory is accessible to all processors [18]. 

Processors interact by modifying data objects stored in the common memory. If the processor takes same time to access 

any memory word then it is classified as a Uniform Memory Access (UMA) system. However if time taken to access 

different memory words differ then the platform is called Non-Uniform Memory Access (NUMA). 
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     1) OpenMP: 

Open Multi-Processing (OpenMP) is an API which supports programming of shared memory platforms. OpenMP 

consists of a set of compiler directives, pragmas and a runtime which provides both management of the thread pool and 

a set of library routines. These directives instruct the compiler to create threads, perform synchronization operations, 

and manage shared memory. Therefore, OpenMP does require specialized compiler support to understand and process 

these directives. One of the disadvantages of using OpenMP is that it cannot scale more than a couple of hundred nodes 

because of thread management overheads and cache coherence hardware requirement [16]. 

 

     2) CUDA: 

Compute Unified Device Architecture (CUDA) is a parallel computing platform created by NVIDIA in order to use the 

GPU for general purpose computing. CUDA allows developers to build applications using the large number of 

processor cores provided by the GPU. The parallel system using CUDA consists of host and device. CPU is the host 

and the device is usually the GPU where computation is carried out by several threads running in parallel. The GPU 

architecture for threads consists of two level structures of blocks and grids. A block is a set of tightly coupled threads 

while a grid is a set of loosely coupled blocks [17]. 

 

B. Message Passing 

Message Passing is a parallel programming model where communication between processes is done by exchanging 

messages [Parallel Review]. It supports only explicit parallelization. This is a common model for a distributed memory 

system, where communication cannot be achieved by sharing variables. In Message Passing communication occurs when 

part of the address space of one process is copied into the address space of another process [1].  
 

     1) MPI: 

Message Passing Interface (MPI) has been evolved as a library for Message Passing. It is extensively used for High 

Performance Computing (HPC) applications on distributed architectures [1]. With MPI it is the job of the programmer 

to explicitly partition the data and decide which tasks are to be managed by each process. It is found in clustered 

workstations and non-shared address space multi-computers [18]. MPI finds its use in high- performance scientific 

computing domain. Cluster computing systems having more than 1,00,000 nodes have successfully used MPI for 

various applications [16]. The basic communication operations in MPI are summarized in the following table: 

 
TABLE I  

MPI COMMUNICATION ROUTINES 

 

Operation Function 

MPI_Send Sends message to a process 

MPI_Recv Receives message from  a process 

MPI_Bcast Broadcasts messages to all processes 

MPI_Reduce Accumulates data into a single process 

MPI_Scatter Sends unique message to each process 

MPI_Gather Receives unique messages from all processes 

 
TABLE II 

 FEATURE COMPARISON OF PARALLEL PROGRAMMING PLATFORMS 

 

Features CUDA OpenMP MPI 

Memory model Shared Shared Shared and Distributed 

Management and division of 

data 
Explicit Implicit 

Explicit/ 

Implicit 

Communication 
Shared address 

space 

Shared address 

space 
Message passing 

Extensive Work on GPU GPU/CPU CPU 
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III. CLUSTERING ALGORITHMS AND THEIR PARALLELIZATION 

Most researchers describe a cluster by considering the internal homogeneity and the external separation i.e., patterns in 

the same cluster should be similar to each other, while patterns in different clusters should not. Both the similarity and 

the dissimilarity should be examinable in a clear and meaningful way [2]. Although the common goal of any clustering 

algorithm is to form groups of data objects on the basis of certain rules, researchers classify the algorithms into 

different types. Clustering algorithms have been divided into nine categories in [3]. However in this paper we 

concentrate on algorithms based on three of these categories: 

 
 

Fig. 1 Classification of Clustering Algorithms 
 

A clustering algorithm based on partition regards the centre of data points as the centre of corresponding cluster. K-

means [15] is one of the famous partition based algorithm. In density based algorithms data which is in the region of 

high density is considered to belong to the same cluster. Typical density based clustering algorithms is DBSCAN [10]. 

If there are several distributions in data such as Gaussian distribution then data belonging to a particular distribution 

can be grouped as one cluster. This is the basic idea of Distribution based clustering. The Expectation-Maximization 

algorithm [9] is a part of this category. An overview of these algorithms is as follows. 
 

A. K-means Algorithm 

The k-means algorithm was first presented by James MacQueen in 1967 [15]. The objective of k-means is to group n 

data points into k clusters such that each cluster has maximum similarity as defined by an objective function. The steps 

involved are: 

1. Choose value of k. 

2. Generate k clusters randomly and determine centre of each cluster which is the mean for that cluster. 

3. Compute the distance between data point and each of the k means and assign the point to the cluster having least 

distance with its mean. Repeat for all data points. 

4. Re-compute the centre of each new cluster formed. 

5. Repeat steps 3 and 4 until the algorithm converges i.e. the assignment in step 3 no longer changes. 

The choice of parameter k depends on the application and the distribution of data points in space. A common distance 

measure in step 3 is Euclidian distance, however different distance measures such as City-block, Chebyshev, Cosine 

distance etc. as described in [3] can be used depending on which is best suited for the application. 

 
 

 
Fig. 2 K-means algorithm 
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     1) Parallel Implementation of k-means clustering: 

The above mentioned K-means clustering algorithm leaves a lot of space for improvement in terms of speed and power 

consumption. A way to parallelize k-means algorithm is presented in [4]. The proposed approach is to implement 

parallelization in the first phase of each step, where we calculate the nearest centroid to each point. The 

parallelization is done on CUDA platform. CUDA technology gives computationally intensive applications access to 

the tremendous processing power of the latest GPUs through a C-like programming interface. 

 

Introducing parallelization basically consist of creating threads which are responsible for carrying out a job 

simultaneously. Each processor can implement one thread at a time. For uniform working, the number of threads 

should be a multiple of the number of processing units.   As previously mentioned, the time-dominant phase of the 

algorithm is in the assignment of data points to each cluster in which the Euclidean distance between data point and each 

of the k means is calculated and tries to reassign each point to the nearest cluster. In CUDA we can create a thread to 

calculate these distances for a single point. This thread would go through all the centroids, calculating the distance 

between them and the respective point and finding the minimum of them finally to become a part of that cluster. In a 

fantastic example where the number of processing units is equal to the thread, this would be finished in one single step. 

Otherwise, realistically, p cores would speed up our process by a factor of p. 

 

The next phase of the algorithm that recomputes the centre of each new cluster formed is better left untouched for 

several reasons. The most important is that the computations in this step require memory sharing and create a lot of 

congestion. As it is, parallelizing this step is not going accelerate our process by that great a factor. Hence, this step is 

done serially.   The results of implementing k-means clustering algorithm on CUDA are satisfactory as far as time 

consumption is concerned. The results of [4] are tabulated below. 
 

TABLE III  

RESULTS OF K-MEANS CLUSTERING ON DIFFERENT HARDWARE 

 

Platform Time (s) Performance Increase 

Intel Pentium D, 3 GHz 9.830 1 X 

NVIDIA 8600 GT 0.724 13.57 X 

NVIDIA 8800 Ultra GTX 0.144 68 X 

 

B. DBSCAN Algorithm 

Density Based Spatial Clustering of Applications with Noise (DBSCAN) [10] groups together points that are closely 

packed together in space and marks points in low-density region as noise. It has two parameters minPts (minimum 

number of points) and ɛ (Eps). DBSCAN defines a core point, border point and a noise point as follows: 

1. A point is a core point if it has more than minPts within a radius of ɛ. 
2. A border point has fewer than minPts within ɛ, but is in the neighbourhood of a core point. 

3. A point which is neither core nor border point is called as noise point. 

Formation of cluster is as follows: 

1. Any two core points which are within a distance ɛ of one another are put in the same cluster. 

2. Any border point which is within a distance ɛ from a core point is put in the same cluster as the core point. 

3. Noise points are discarded and are not a part of the cluster. 

 
Fig. 3 Visual representation of DBSCAN algorithm 
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     1) Parallel Implementation of DBSCAN algorithm: 

Parallelizing DBSCAN algorithm is a difficult task because the basic algorithm is sequential in nature. An existing but 

flawed parallelization method is the master-slave model in which the slave is responsible for a chunk of data. The slave 

calculates its local cluster. All the slaves send these clusters to the master which finally merges them all sequentially to 

get the final result [6]. 

  

A better alternative is to use disjoint-set data structure [5]. The algorithm is very simple. It creates a single node tree for 

each point in the set. Each thread/process is responsible for one node tree. This step is done in parallel without any 

communication. By recognizing which points belong in a cluster, their trees are merged together with the help of 

disjoint-set data structure. This is done until all the clusters are gone over. In the end we get a single tree for each 

cluster. This enables substantial speed up and scalability. 

 

 Parallel DBSCAN on Shared Memory Computers: 

In shared memory there are threads which run in parallel. The dataset is divided in p groups {X1, X2, . . , Xp }  such 

that each thread is responsible for each group [5]. Each thread finds a cluster using the points in its group. This is called 

local computing. The second step is merging. Both these steps run in parallel. The merging operation uses a lock 
mechanism. In order to be able to merge two nodes a thread must acquire its lock first. Depending on the status of its 

lock the thread understands whether the node is already a part of some cluster or if it is still a root. When two threads 

try to acquire the same lock, one of them has to wait for the other to finish. 

 

Parallel DBSCAN on Distributed Memory Computer: 

Parallel DBSCAN on distributed memory is very similar to that on shared memory. Instead of threads the data is 

divided such that each processor gets a chunk of data [5]. In order to find the neighbors of a local point the distance 

between them is found out. If it falls below a certain threshold value then that point is termed as its local neighbor. 

Similar to shared memory there are two steps: local computing and merging. The merging on distributed memory takes 

place by message passing between processors. 

 

Results of parallel DBSCAN on shared and distributed memory architectures are summarized below. 

 
TABLE IV 

RESULTS OF PARALLEL DBSCAN 

 

 

 

 

 

 

 

C. Expectation-Maximization Algorithm 

The Expectations-Maximization (EM) algorithm was presented by Arthur Dempster, Nan Laird, and Donald Rubin in 

1977. EM was summarized in [9]. Following the conventions in [9], EM is an algorithm which estimates unknown 

parameters Ө from data U marginalizing over hidden variables J. EM alternates between estimating the unknowns Ө 

and hidden variables J. After computing Ө at every iteration EM computes a distribution over space J. 

The E-step constructs a local lower-bound to the posterior distribution, whereas the M-step optimizes the bound, 

thereby improving the estimate for the unknowns.  

At each iteration, the EM algorithm first finds an optimal lower bound B(Ө;Ө
t
) at the current guess Ө

t
 and then 

maximizes this bound to obtain an improved estimateӨ
t+1

. The two steps in EM algorithm can thus be conveniently 

summarized as: 

 

1. E-step: Calculate f
t 
(J) = P(J|U,Ө

t
). 

2. M-step: Maximize the expression [Q
t
(Ө) +log P(Ө)] for Ө and assign value to Ө

t+1
. 

 

Q
t
(Ө) is calculated in the E-step by evaluating f

 t
(J) using the current guess Ө

t
, whereas in the M-step we are optimizing 

Q
t
(Ө) with respect to the free variable Ө to obtain the new estimate Ө

t+1
. 

 

     1) Parallel Expectation-Maximization: 

All steps of the algorithm are potentially parallelizable once they iterate over the entire data set. In [7], a parallel 

implementation of EM for training Gaussian Mixture Model (GMM) using CUDA is proposed. For parallelization, the 

Memory type Cores used Speedup factor 

Shared memory 40 25.97 

Distributed memory 8,192 5,765 
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main loop of the algorithm is implemented sequentially and different CUDA kernels are in charge of running different 

steps of the algorithm. Pseudo code for each CUDA kernel implementation is properly provided. 

Experiments performed over a UCI database and varying number of Gaussians have shown a speedup of 7 as compared 

to serial implementation. Modifications in two of the CUDA kernels have also been provided in order to allow more 

coalesced access to global memory.  

 
Parallel implementation of EM on GraphLab in [8] shows scaling for up to 8 machines. Good performance is, to some 

degree due to the lack of latent variable structure, which makes the computation highly data parallel. 

 
IV. APPLICATIONS 

Applications of clustering have been found in character recognition, web analysis, classification of documents, 

classification of astronomical data and classification of objects found in an archaeological study [14]. Many 

applications work on huge data sets. After maximizing the performance of each core the next logical step was going 

with a multi-core approach. With each generation of new multi-core and many-core processors parallel processing 

applications benefit hugely. Parallel processing has given way to better and faster implementations of many 

applications. Parallel processing is used in data mining which uses large data sets [13]. Data analysis creates complex 

problems which are solved by parallel and distributed computing-based systems and technologies. Another application 

which has to deal with a large data set is astronomy. Parallel processing takes complete advantage of the multi core 

facilities available in an astronomical application. Thus High Performance Computers are used efficiently and to their 

maximum capacity.  Power system computation can also be done using parallel mechanisms on shared and distributed 

memory [12]. Parallel computation also has applications in medical imaging and image processing fields which involve 

image reconstruction, image de-noising, motion estimation and deformable registration [11]. 

 

V.       CONCLUSION 

 

This paper reviews the current parallel programming landscape and its applicability to cluster analysis. It provides 

guidelines which help us in choosing the appropriate parallel programming model and platform according to our 

application and hardware availability. In case of a CPU with average performance, we can rely on multi-core GPUs for 

parallelization. Such applications can be performed on CUDA or OpenMP.  If we have a CPU rich in terms of its multi-

core architecture, distributed memory models like MPI should be used. For best results, a perfect combination of both 

shared memory and message passing models is recommended. The paper also talks about the parallel implementations 

of three clustering algorithms, namely k-means, DBSCAN and Expectation-Maximization. It is evident from the study 

that the degree of speedups provided by parallelizing these algorithms is considerably high. 
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