
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICITCSA 2017

Pioneer College of Arts and Science, Coimbatore

Vol. 6, Special Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 140

An Effective Fuzzy Set Theory with Neural

Networks for using Feature Selection and

Classification

Dr. N. Balakumar
1
,

A. Vaishnavi

2

Assistant professor, Dept. Computer Applications, Pioneer College of Arts and Science, Coimbatore, India
1,2

Abstract: In fuzzy set theory, Fuzzy set theory defines set membership as a possibility distribution. The fuzzy set

theory can be used in a wide range of domains in which information is incomplete or imprecise, such as bioinformatics.

The uncertainty may arise due to partial information about the problem, or due to information which is not fully

reliable, or due to inherent imprecision in the language with which the problem is obtained, or due to receipt of

information from more than one source about the problem which is conflicting. Fuzzy set theory is an excellent

mathematical tool to handle the uncertainty and vagueness inherent to human perception, speech, thinking and decision

making. In this paper used to how to find the error and make the analysis will be made up with the help of neural

networks

Keywords: Fuzzy Rules, Fuzzy Classifier, nueral networks, artifial nueral networks.

I.INTRODUCTION

Fuzzy set is categorized based on the different functions of

data mining that are modeled. The membership of

elements in a set is assessed in binary terms according to a

condition an element if either belongs to or does not

belong to the set. By contrast, fuzzy set theory permits the

gradual assessment of the membership of elements in a

set; this is described with the aid of a membership function

valued in the real unit interval [0, 1]. Fuzzy sets generalize

classical sets, since the indicator functions of classical sets

are special cases of the membership functions of fuzzy

sets, if the latter only take values 0 or 1.
[3]

 In fuzzy set

theory, classical double sets are usually called crisp sets.

The fuzzy set theory can be used in a wide range of empire

in which information is incomplete or imprecise, such as

bioinformatics.
[4]

1.1 FUZZY SETS & MEMBERSHIP FUNCTION

A fuzzy set A has a membership function µA defined as a

function from a well defined universe X into the unit

interval as µA: X→ [0, 1]. A fuzzy set A in X is also

expressed as a set of ordered pairs:

The degree of membership in a set expressed by a number

between 0 and 1; 0 means entirely not in the set,1 means

completely in the set, and a number between 0 to 1 means

partially in the set [6].

1.2 FUZZY RULE BASED SYSTEM

Fuzzy rules are the cornerstone of the fuzzy logic systems

also it has the potential to add human-like subjective

reasoning capabilities to machine intelligences, which are

usually based on bivalent Boolean logic. A fuzzy if-then

rule is a scheme for capturing knowledge that involves

imprecision. A Fuzzy Inference System (FIS) is a way of

mapping an input space to an output space using fuzzy

logic as shown in Figure 1. A FIS tries to formalize the

reasoning process of human language by means of fuzzy

logic (that is, by building fuzzy IF-THEN rules). FIS are

used to solve decision problems. The matching degree is

combined with the consequent of the rule to form a

conclusion inferred by the fuzzy rule [6]. The Rule base

and Data Base are defined in Figure 2.

Fig. 1 Fuzzy Inference

Fig. 2 Fuzzy Inference system components

}|))(,{(XxxxA A  

https://en.wikipedia.org/wiki/Principle_of_bivalence
https://en.wikipedia.org/wiki/Principle_of_bivalence
https://en.wikipedia.org/wiki/Principle_of_bivalence
https://en.wikipedia.org/wiki/Membership_function_%28mathematics%29
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Fuzzy_set#cite_note-3
https://en.wikipedia.org/wiki/Crisp_set
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Fuzzy_set#cite_note-4

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICITCSA 2017

Pioneer College of Arts and Science, Coimbatore

Vol. 6, Special Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 141

1.3 FUZZY CLASSIFIER

A classifier is an algorithm for that assigns a class label to

an object, based on the object description. The object

description comes in the form of a vector containing

values of the features are (attributes) deemed to be

relevant for the classification task. Typically, the classifier

learns to predict class labels using a training algorithm and

a training data set. When this type of a training data set is

not available, a classifier can be designed from prior

knowledge and expertise.

Classifier

A classifier is a function D: R
s
 →Ω where

 n ,..., 21 is a set of class labels. D takes as

input an object data i.e., a feature vector in s dimension

and assigns a class label to it.

Why fuzzy classifier
 The fuzzy classifier is being used in the following

situations:

 If there is insufficient information to properly

implement classical pattern recognition methods.

 The user needs not only the class label of an

object but also some additional information is needed (i.e.,

how typical this object is, how severe the disease is).

 Fuzzy set theory gives a mathematical tool for

including and processing expert opinions about

classification decisions, features and objects.

II. NEURAL NETWORKS

Neural Network represents the brain structure and

operating with varying degrees of sophistication. This

chapter provides an introduction to neural networks and

description about the neuron, the network architecture and

back propagation algorithm. The processing of input-

output network architecture of human brain are shown in

Figure 3.

Fig. 3 Network architecture of Human Brain

Neural Networks adopt various learning mechanisms.

Learning methods can be broadly classified into three

basic types

 Supervised learning

 Unsupervised learning

 Reinforced learning

In Supervised learning, every input pattern that is used to

the network is associated with an output pattern, which is

the target or the desired pattern. During the learning

process, when a comparison is made between the

network‟s computed output and the expected output, to

determine the error.

2.1 MODEL OF AN ARTIFICIAL NEURON

The behavior of a neuron can be captured by a simple

neuron model as shown in Figure 4.

Fig. 4 The Computation of a Neuron

where, nIIII ..,,.........,, 321 are the n inputs to the

artificial neuron nWWWW,, 321 are the weights

attached to the input links. The net sum is





n

j

jj Iwx
1

To generate the final output S, the sum is passed on to a

non-linear filter  called activation function or transfer

function, or squash function which releases the output

S=  x

The activation adopted in this work is sigmoid function. A

sigmoid function is a continuous function that varies

gradually between the asymptotic values 0 and 1 or -1 and

+1 and is given by
Ie

x






1

1
)(

where is the slope parameter, which adjusts the

abruptness of the function as it changes between the two

asymptotic values. Sigmoidal functions are differentiable,

which is an important feature of neural network.

2.2 NEURALNETWORK ARCHITECTURES

An Artificial Neural Network(ANN) is defined as a data

processing system consisting of a large number of simple

highly interconnected processing elements in an

architecture inspired by the structure of the cerebral cortex

of the brain.ANN structure can be represented using a

directed graph.

The neurons in a network are usually organized into fields

or layers. Inputs to the network are presented to the input

layer; the signal from the input layer is passed through one

or more intermediate or hidden layer which transforms the

signals depending upon the neuron signal functions, the

outputs of the network are generated in the output layer.

The two different classes of neural network are

FeedForward networks, Feedback Networks [7].

2.2.1 FEEDFORWARD NETWORK

The network comprises of two layers, namely the input

layer and the output layer. The input layer neuron receives

the input signals and the output layer neurons receive the

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICITCSA 2017

Pioneer College of Arts and Science, Coimbatore

Vol. 6, Special Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 142

output signals. The synaptic links carrying the weight

connect every input neuron to the output neuron but not

vice-versa. Such a network is said to be feedforward.

Fig.5 Single layer feedforward

Single-layer FeedForward Networks

In a layered neural network the neurons are organized in

the form of layers. In the simplest form of a layered

network, we have an input layer of source nodes that

projects onto an output layer of neurons but not vice versa.

Perceptrons(neurons) can be trained by a simple learning

algorithm that is usually called the delta rule. Single-unit

perceptrons are only capable of learning linearly separable

patterns. Figure 5 & Figure-6 illustrates the single layer

feedforward network and its flow graph.

Fig 6 Flow graph

where 121 ,...,, pxxx are the input

 110 .,,........., myyy are the output

 w0, w1, w2 are the weights.

The weights here are multiplicative factors of the inputs to

account for the strength of the synapse. To generate the

final output, the sum is passed on to a non-linear filter

(activation function) which releases the output.

Multilayer FeedForward Networks

The second class of a feedforward neural network

distinguishes itself by the presence of one or more hidden

layers, whose computation nodes are correspondingly

called hidden neurons or hidden units.

The hidden layer aids in performing useful intermediary

computations before directing the input to the output layer.

The input layer neurons are linked to the hidden layer

neurons and the weights on these links are referred to as

input-hidden layer weights.

Fig.7 Multilayer perceptrons

The hidden layer neurons are linked to the output layer

neurons and the corresponding weights are referred to as

hidden-output layer weights. Multilayer perceptrons and

its Flow graph are shown in Figure 7 and Figure 8.

Fig.8 Flow graph

2.2.2 FEEDBACK NETWORKS

A Feedback networks (Recurrent networks) distinguishes

itself from a feedforward network in that it has atleast one

feedback loop. Recurrent network may consist of a single

layer of neurons with each neuron feeding its output signal

back to the other neurons. The recurrent network has no

hidden neurons.Feedback networks thus possess a rich

reperotoire tasks such as pattern completion, topological

feature mapping and pattern recognition.

2.3 BACKPROPAGATION NETWORKS

Backpropagation(BP) is the most widely used algorithm

for training multilayer feedforward network. The

algorithm uses gradient descent technique to adjust the

connections of weights between neurons in order to

minimize the system error between the actual output and

the desired output. Backpropagation updates the weights

iteratively to map a set of input vectors  pxxx ...,, ,21

to a set of corresponding output vectors  pyyy ,...,, 21 .

The input is presented to the network and multiplied by

the weights.

All the weighted inputs fed to each neuron in the upper

layer are summed up, and produce output governed by the

following equation

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICITCSA 2017

Pioneer College of Arts and Science, Coimbatore

Vol. 6, Special Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 143

 













 

j

kjpkjkpkp ofnetfo 

Where kpo

is the output of neuron „k‟ for p-th pattern,

jpo

is the output of neuron „j‟ at the lower layer, kj is

the weight between the neurons „k‟ and „j‟. kpnet is the

net input feeding to neuron „k‟ from the lower layer for

pattern. „p‟, k is the bias for unit „k‟ and  f is the

activation function of the neurons.

The cost function to be minimized in back propagation

i.e., the sum of squared error is measured at the output

layer are defined as  2
2

1
 

p k

kpkp otE

where

kpt - target for pattern „p‟ kpo actual outputs of neuron

„k‟ for pattern „p‟. To calculate error in the output layer,

the error back propagation algorithm iteratively changes

the weight relative to error size and then propagate back to

previous layer. The training of a neural network involves

two passes, forward pass and reverse pass.

In the forward pass, the input signals propagate from the

network input to the output. In the reverse pass, the

calculated error signals propagate backwards through the

network to adjust the weights. The calculation of output is

carried out layer by layer in the forward direction. The

output of one layer in weighted manner will be the input to

the next layer. These processes get repeated until the error

is acceptably low.

2.4 NEURO-FUZZY SCHEME

Neural networks and fuzzy logic are two complementary

technologies. However, understanding the knowledge or

the pattern learned by the neural networks has been

difficult. More specifically, it is difficult to develop an

insight about the meaning associated with each neuron and

each weight. Hence, neural networks are often viewed as a

“black box” approach. i.e., we can understand what the

box does, but not how it is done conceptually. Fuzzy rule-

based models are easy to comprehend because it uses

linguistic terms and the structure of if-then rules.

However, fuzzy logic does not come with a learning

algorithm. The learning and identification of fuzzy models

need to adopt techniques from other areas (e.g. statistics,

linear system identification, etc) [7].

The integration of neural networks and fuzzy systems can

yield systems, which are capable of learning and decision

making. These systems are called neuro fuzzy systems,

and the neural networks are used to improve the

performance of fuzzy systems. In the ordinary neural

networks, nodes have the same functionality and are fully

connected to the nodes in the neighboring layers. But in a

neuro fuzzy system, nodes have different functionalities

and are not fully connected to the nodes in the neighboring

layer.

NNs with fuzzy capabilities, thereby increasing the

network‟s expressiveness and flexibility to adapt to

uncertain environments. One merit of the neuro fuzzy

systems over the ordinary neural networks is the easiness

of adding the expert knowledge before learning. The neuro

fuzzy systems are usually built from the given fuzzy

systems which are based on the expert or prior knowledge.

Thus, the neuro fuzzy systems can embed the knowledge

at the beginning. Hence, the neuro fuzzy scheme is more

suitable for our work.

III. FEATURE SELECTION & CLASSIFICATION

This chapter deals with the system study by explaining a

methodology for simultaneous feature analysis and system

identification in a four-layered neuro-fuzzy framework.

The network has a methodology to select the important

features in the given data set, which forms an important

phase for any classification process. All features that

characterize a data point may not have the same impact

with regard to NN classification. i.e., some features may

be redundant and also some may have derogatory

influence on the classification task. The selection of a

proper subset of features from the available set of features

is important for designing efficient classifiers. Features

(variables) are used to describe the objects numerically.

Feature values for a given object are arranged as an n-

dimensional vector
nT

n RxxX ],..[1 .
The feature

selection is not done in an online-manner. The network

method can do feature selection simultaneously with

designing the classifier [5], it would be able to select the

most appropriate set of features for the task and to produce

good results.

3.1 THE NETWORK STRUCTURE

There be s input features and c classes where
sRX  ,

the neural-fuzzy system deals with fuzzy rules of the form

Ri : if 1x is A1i and 2x is A2i ,…,and sx is Asi then X

belongs to class lt with certainty ld ,  cl 1 where

jiA is the i th fuzzy set defined on the domain of jx

[1]. The Neural-Fuzzy System is realized using a Four-

Layered Network.

 The First layer is the Input layer.

 The Second Layer is the Fuzzification and

Feature Analysis layer.

 The Third Layer is the Antecedent layer.

 The Fourth Layer is the Consequent layer.

Layer 1 (Input nodes)

Layer 2 (Fuzzification and feature analysis)

Layer 3 (Antecedent node)

Layer 4 (Consequent layer)

),...,(21 sxxx

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICITCSA 2017

Pioneer College of Arts and Science, Coimbatore

Vol. 6, Special Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 144

3.2 LEARNING PHASES

The learning phases are being categorized into three

phases, as phase-I, phase-II and phase-III.

PHASE I Feature selection and rule detection
The concept of back propagation is used to minimize the

error function

where c is the number of nodes in layer 4 and ily and

ilz are the target and actual outputs of node l in layer

4. In phase I, learnable weights between layer 3 and layer

4 and the parameters sp in layer 2 are updated based

on gradient descent search [4]. Learning rules are derived

by the instantaneous error function iE . The delta value

 of a node in the network is defined as the influence of

the node output on E. The derivation of the delta values

and the adjustment of the weights and p s are presented

layer wise next.

LAYER 2

The
n for layer 2 is

























n

m

Rm

Pn

q

n

q

nm
mn

z

zz 1



where Rn - set of indexes of nodes in layer 3 connected

with node in layer 2. The weight update equation and the

equation for updating p are

Similarly,

Rp- set of indexes of nodes in layer 2 connected to node p

of layer 1.

The update equation for the weights lmg and p

are
















lm

lmlm
g

E
tgtg )()1(




















p

pp

E
tt


)()1(

 where  and  are learning coefficients.

LAYER 3

 The delta for this layer is

0, otherwise, where Qm - set of indexes of the nodes in

layer 4 connected with node m of layer 3.

LAYER 4

The output of the nodes in this layer is given by lz and

the δ value for this layer δ l will be

3.3.2 PHASE II

Pruning of redundant nodes and further training
The network in layer 3 and layer 4 represent all possible

rules. But all the rules are never needed to represent a

system. Hence some of the nodes present in the network

may be redundant. The presence of these redundant nodes

will decrease the readability/interpretability of the network

and add to its computational overhead.

Since each node in layer 3 is connected with all nodes in

layer 4, it gives rise to incompatible rules that need to be

removed. Consequently, there may be some rules which

are never fired by the training data. Such rules which are

not supported by the training data could be harmful. The

certainty factors of such rules can be erratic and they can

lead to bad generalization. So it is necessary to get rid of

redundant nodes, incompatible rules and less used rules.

Pruning of redundant nodes

The layer 1 of the network has s nodes, let the indexes of

these nodes be denoted by 1(ii to s).

Let Ni be the set of indexes of the nodes in layer 2 and R

be the set of „r‟ indexes of the nodes, representing the „r‟

bad features. Hence any node with index i in layer 1 such

that Ri is redundant. After pruning of the redundant

nodes a few epochs of training is required in the reduced

architecture for the network to regain its performance [4].

A feature ρ is considered redundant, if

),...,(21 cttt 
 


N

i

c

l

ilil

N

i

i zyEe
1 1

2

1

)(
2

1

2

1

pep





1

)05.0( ththp

th


mQl

lmlm ifg


 ,2

}{max 2

''

2

' lmm
m

lmm gzgz 

}{max 2

''

2

' lmm
m

lmm gzgz 

0, otherwise






mQl

lmml

lm

ifgz
g

E



 ,2

2

)2(
2

 








 




 

p

p

Rn n

np

npn

p

z
ze

E












)(1 ll

l

zy
z

E







ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICITCSA 2017

Pioneer College of Arts and Science, Coimbatore

Vol. 6, Special Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 145

 where - threshold

sw

3.3.3 PHASE III

Pruning of Incompatible Rules, Less used Rules, and

Zero Rules

The network is pruned and the certainty factor of the rules

are again tuned to improve the performance. In phase III,

the parameters of the membership function is also tuned.

Pruning of Incompatible Rules

As per construction of network, the nodes in layer 3 and

layer 4 are fully connected and each link corresponds to a

rule. The weight associated with each link is treated as the

certainty factor of the corresponding rule. If there are c

classes then layer4 will have c nodes and there will be c

rules with same antecedent but different consequent,

which are inherently inconsistent. The link connecting

node m of layer 3 and node l of layer 4 has a weight

lm associated with it, which is interpreted as the

certainty factor of the rule represented by the link. For

each node m in layer 3, only one link is retained with a

node in layer 4 that has the highest certainty factor

associated with it.

Pruning of Zero Rules and Less used Rules
After removal of the incompatible rules each node in layer

3 is connected with only one node in layer 4. Suppose

node m in layer 3, which is connected to a node l in layer

4, has a very low weight

The rule associated with the node pair m and l has a very

low certainty factor and it does not contribute significantly

in the classification process. Such rules are zero rules.

These rules can be removed from the network. It means

removing a node in layer 3 along with its links. There may

be rules which are never fired or fired by only a few data

points. Such rules are not well supported by the training

data and will result in bad generalization. Such rules are to

be removed and this is said to be less used rules.

3.4 FEATURE SELECTION AND RULE

EXTRACTION

Iris setosa Iris virginica

Iris versicolor

Fig. 9 Classification of Iris flower

In this work, a feature selection and rule extraction has

done on Iris data set of 150 samples which consists of four

features and three classes. The four features were

measured from each sample such as sepal length, sepal

width, petal length and petal width, in centimeters. The

three classes of Iris flower are Iris setosa, Iris virginica and

Iris versicolor. The combinations of four features are used

to distinguish those classes.

The network is processed until the target value is obtained.

For instance[8], target value is fixed as 0.25 for Iris setosa,

.25 for Iris versicolor, 2.25 for Iris irginica.The Iris data‟s

have been processed in the network to identify the species.

The third layer represents the antecedent layer and fourth

layer represents the consequent layer. Therefore, the rules

are extracted from layer 3 and layer 4. Initially, the

antecedent layer has 9 nodes and the consequent layer has

3 nodes. The rules obtained from the network are, 9*3=27

rules.

Fig. 10 Rules for Iris Data

Fig. 11 The rules for classifying Iris

In Figure 3.4, the major axis represents the petal length

and the minor axis represents the petal width. The

ellipsoidal region represents the three classes and it is

distinguished by the line style. After the identification of

classes the rules obtained are,If pl is close to 1.5 and pw is

close to 0.25 then class 1.If pl is close to 4.5 and pw is

close to 1.25 then class 2If pl is close to 6.5 and pw is

 ~-~-~-~ Iris

setosa

 - - - - - - Iris

virginica

 Iris

versicolor

).001.0( lowlowlmW 

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICITCSA 2017

Pioneer College of Arts and Science, Coimbatore

Vol. 6, Special Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 146

close to 2.25 then class 3.Finally the classes are identified

and the rules are extracted from the Iris dataset.

IV CONCLUSION

The novelty of the system lies in the fact that the network

can select good features along with the appropriate rules in

an integrated manner. The rules required for the

classification task from the network are easily readable.

The network starts with all possible rules and the training

process retains only the rules required for classification,

thus resulting in a smaller architecture of the final

network. The final network has a lower running time than

the initial network. Neuro fuzzy computing, which is a

judicious integration of the merits of neural and fuzzy

approaches, enables one to built more intelligent decision

making systems. Hence the method is tested on Iris data

sets, the network could select good features and extract a

small but adequate set of rules for the classification tasks.

The results obtained are comparable to the results reported

in the literature.

REFERENCE
[1] D.Chakraborthy and N.R.Pal, “Integrated feature analysis and
fuzzy rule based system identification in a neuro-fuzzy paradigm”, IEEE

Trans.Syst. Man Cybern.B., vol.31, pp, 391-400, 2001.

[2] S.Haykin, Neural Networks-“A Comprehensive Foundation”,
New York: proc.Conc., 1994.

[3] K.Pal, R.Mudi and N.R.Pal, “A new scheme for fuzzy rule

based system identification and its application to self-tuning fuzzy
controllers”, IEEE Trans.Syst.Man Cybern.B., vol.13, pp.859-886, 1998.

[4] N.R.Pal, V.K.Eluri and G.K.Mandal, “Fuzzy Logic
approaches to structure preserving dimensionality reduction”, IEEE

Trans.Fuzzy Syst., vol.10, pp.277-286, 2002.

[5] Ludmila I. Kuncheva, “Fuzzy Classifier Design”, Physica-
Verlag Heidelberg New York., vol.49, 2000.

[6] John Yen, reza Langari, “Fuzzy logic-Intelligence, Control

and Information”, Pearson Education, 2003.
[7] J.-S.R.Jang, C.-T.Sun and E.Mizutani, “Neuro-Fuzzy and Soft

Computing-A computational Approach to Learning and Machine

Intelligence”,Prentice-Hall., 1997.
[8] Debrup Chakraborty and Nikhil R.Pal, “A Neuro-Fuzzy

Scheme for Simultaneous Feature Selection and Fuzzy Rule-Based

Classification”, IEEE Transactions on Neural Networks., vol.15, no.1,
January 2004.

