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ABSTRACT: Extended Kalman filter (EKF) is widely used for tracking moving objects like missiles, aircrafts, robots etc. In 

this paper we examine the case of a single sensor or observer bearing only tracking (BOT) problem for two different models. 

In model 1, the target is assumed to have a constant velocity and constant course. In model 2, the target is assumed to follow 

a coordinated turn model with constant velocity but varying course. Extended Kalman Filter is used to track the target in 

both cases. The goal of this paper is to demonstrate how the performance of the filter is affected by the initial assumptions 

and measurement error variances in these two models. Simulation results have been presented, which demonstrate the effect 

of initial assumptions and measurement error covariance on the performance of the filter. 
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I. INTRODUCTION 

     In 1960, R.E. Kalman published his famous paper[6] 

describing a recursive solution  to the discrete-data linear 

filtering problem. Since then,the Kalman filter has been 

the subject of extensive research and application, 

particularly in the area of autonomous or assisted 

navigation[2].The filter is said to be very powerful as it 

can estimate the state of a process even when the precise 

model of the system is unknown. 

A Kalman filter is simply an optimal recursive data 

processing algorithm that blends all available information, 

including measurement outputs, prior knowledge about 

the system and measuring sensors, to estimate the state 

variables in such a manner that the error is statistically 

minimized In practice, linear equation system with white 

Gaussian noises is commonly taken as the standard model 

of a Kalman filter[1]. In this paper bearing only tracking 

is employed, which means the sensors provide the bearing 

angle measurements only. Bearing angle is the angle 

between the horizontal plane of the observer(sensor) and 

the line of sight between target and the observer. 

II. EXTENDED KALMAN FILTER FOR TARGET 

TRACKING 

Kalman filter estimates a process by using a form of 

feedback control i.e. the filter first estimates the state 

using the previous state and then obtain feedback in the 

form of measurements. Thus the filter equations are of 

two groups.The time update equations that projects 

current state estimate ahead in time and measurement  

 

 

update equations that adjusts the projected estimate by an 

actual measurement at that time. 

The system state and output equations are of the 

following form 

 

Xk=f[Xk-1, k]+vk        (1)   

                                                                                                                           

Zk=h[Xk,k]+wk                                                               (2) 

                                                             

where f and h are non-linear functions depending on the 

system state. Xk and Zk are the corresponding state vector 

and output vector. vk and wk  are the corresponding 

process and measurement noises. These noises are zero 

mean Gaussian noises with error covariance as Qk and Rk 

respectively. 

 

Prediction equation 

x^ k
-
  = f (x^k – 1, uk – 1, 0)                    (3) 

                                                                                                             

Pk
-
 =AkPk – 1Ak

T
+ Wk Qk -1 Wk 

T                       
(4)

  
     

Update equation    

x^ k = x^ k
-
  + Kk( zk- h(x^ k

-
  ,0))   

      (5) 

Pk =(I – KkHk )Pk
-
     

      (6) 

Kalman gain 

 

Kk= Pk
-
Hk

T
 (HkPk

-
Hk

T
+ VkRkVk 

T
 ) 

–1 
  (7) 

  

Papers [2],[3] describes the above equations in detail. 

Here Hk+1= h[Xk,k] and Pk is the error covariance matrix. 
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A. Constant Velocity And Course Target 

   In this model the target moves with constant velocity 

in a linear path. Original path of the target is modeled 

using kinematics equations. The position of the target in 

2D is given by (x,y) and velocity is given by (vx,vy).  

Since the target moves with constant velocity the state 

vector at time tk is given as 

                         Xk=[xk,yk,vxk,vyk]
T 

where 

xk=x coordinate of the target at k
th

 instant 

yk= y coordinate of the target at k
th

 instant 

vxk= velocity of the target in x direction at k
th

 instant 

vyk= velocity of the target in y direction at k
th

 instant 

The state equation is given as  

              Xk=AXk-1   +wk 

where 

 A = 1 0 t 0 

        0 1 0 t 

        0 0 1 0 

        0 0 0 1 

wk=process noise 

In this model the relationship between the observations 

and state vector is non linear. 

                zk=h(Ѳk+ vk)    

where   

Ѳk= bearing angle measurement 

vk=measurement noise vector 

h(.)= non linear function that relates observations and 

state  given by 

                    h(.)=tan
-1

(yk/xk) 

B.  Constant Velocity And Varying Course Target 

     Till now we have considered a linear or a straight line 

motion, but in real time system the targets manoeuvre. A 

manoeuvre typically means a deviation from ordinary 

straight line path or a change in course or direction. Here 

we have considered manoeuvres involving turns with 

constant velocity and course rather than the more general 

case of changing velocity.  We have modelled constant 

velocity and varying course target using coordinated turn 

(CT) model. In CT model the state vector is augmented 

with additional parameter called angular turn rate (ω, 

measured in radiance/sec) which is to be estimated with 

the other system parameter. Here the state vector is given 

by Xk=[ xk yk vxk vyk ωk  ]
T
  where xk and yk is the 

Cartesian position  coordinates, vxk and vyk are the 

velocity components and  ωk the constant turn rate[4],[5]. 

If we assume velocity v to be a constant, then 

 

                                     V=[vxk
2
+vyk

2
]

1/2 
  (10) 

 

Since we have assumed a constant velocity model, 

acceleration is zero. For two dimensional system, the 

discrete time state equation is given as 

 

                      Xk+1=FXk + BVk     (11) 

 

Where F=  

 
 

 
 

∆t is the sampling period and Vk=N(0,σω
2
) is the 

uninvariant white Gaussian  process noise for turn rate 

with zero mean and variance σω
2
. Papers [4],[5] discusses 

these equations in detail. The rest of the equations used 

are same as that of extended kalman filter. 

III. SIMULATION RESULTS 

A.  Constant Velocity And Course Target 

     Initially the target is assumed to be at (6000,10000). 

The target moves with a constant velocity of 5km/hr. The 

observer remains stationary and is located at (1000,-500) 

of the Cartesian coordinate system. Now this model was 

evaluated for three different cases 

Case 1: Measurement error covariance is large value and 

initial state estimate assumption is good. The plot of 

estimated target trajectory and root mean square error 

(rmse) for the mentioned case is shown in Fig.1 and Fig. 2  

respectively. 

 
Fig.1 Target trajectory of case1 
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Fig.2  RMSE of case 1 

  

Case2:Measurement error covariance is large  and 

initialization is poor. Fig. 3 and Fig.4 respectively 

represent  the estimated trajectory and  rmse plot for the 

case 

 
Fig.3 Target tragectory of case 2 

 
Fig. 4 RMSE of case 2 

 

Case3: Measurement error covariance is very small but 

initial assumption is good..Figure 5 and 6 shows the target 

trajectory and rmse plot for this case 

 
Fig.5 Target trajectory of case3 

 

 
Fig.6 RMSE of  case 3 

B. Constant Velocity And Varying Course Target 

     For the simulation algorithm we have considered  a 

body initially at (100,5) moving with a constant velocity  

of 12km/sec on a course of 0.1rad/sec. The observer is 

stationary and is at (-200,200). The system is simulated 

for 100 times. Now this model is evaluated for three 

different cases. 

  

Case1: Measurement error covariance is a large value and 

initial state estimate assumption is good. The plot of 

estimated target trajectory and root mean square error 

(rmse) for the mentioned case is shown in Fig.7 and Fig.8 

respectively. 
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Fig. 7 Target trajectory of case 1 of manoeuvring target 
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Fig. 8 RMSE of case 1 of manoeuvring target 

 

 

 
 

 

Case2:Measurement error covariance is large  but 

initialization is poor. Fig.9 and Fig.10 respectively 

represent the estimated trajectory and  rmse plot for the 

case.   
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Fig. 9 Target trajectory of case 2 of manoeuvring target 
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Fig. 10 RMSE of case 2 of manoeuvring target 

 

 

Case3: Measurement error covariance is very small but 

initial assumption is good.Figure 11 and Figure 12 shows 

the target trajectory and root mean square error (rmse) 

plot for this case. 
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Fig. 11 Target trajectory of case 3 of manoeuvring target 
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Fig. 12 RMSE of case 3 of manoeuvring target 

 

IV. CONCLUSION 

    In this paper we have analyzed various scenarios of 

target tracking using extended kalman filter. Based on the 

simulation results obtained we have arrived at three major 

conclusions. Firstly if the initialization or initial state 

assumption is poor it would result in track loss, even for 

most robust filter. Secondly if the initialization is good or 

close to the real values, then however large be the value 

of measurement error co-variance (R), the estimated 

trajectory will be optimal. Lastly, for smaller values of 

measurement error covariance (i.e. more accurate the 

measurement) though we expect a good performance for a 

properly designed filter, it is not true. This is because for 

smaller values of measurement error covariance, the 

measurement non linearity would be more significant that 

deviates the filter performance.   
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