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ABSTRACT: Clustering the case of non-axis-aligned subspaces and detection of outliers is a   major challenge due to the curse of 

dimensionality. To solve this problem, the proposed implementation is extension to traditional clustering and finds subsets of the 

dimensions of a data space .In this project, a probability model is proposed to describe in hidden views and the detection of possible 

selection of relevant views. A projective clustering is proposed for Outlier Detection in High Dimensional Dataset that discovers the 

detection of possible outliers and non-axis –aligned subspaces in a data set and to build a robust initial condition for the clustering 

algorithm. Improving the parameters in the connection between L∞ corsets and sensitivity that is made in Lemma and improve 

clustering in the case of non-axis-aligned subspaces and detection of outliers in datasets. The suitability of the proposal 

demonstrated is done with synthetic data set and some widely used real-world data set. 
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I. INTRODUCTION 

DATA clustering has a wide range of applications and 

has been studied extensively in the statistics, data mining, 

and database communities. Many algorithms have been 

proposed in the area of clustering [1], [2]. One popular 

group of such algorithms, the model-based methods, have 

sparked wide interest because of their additional 

advantages, which give them the capacity to describe the 

underlying structures of populations in the data.  In 

model-based methods, data are thought of as originating 

from various possible sources, which are typically, 

modeled by Gaussian mixture. The goal is to identify the 

generating mixture of Gaussians, that is, the nature of 

each Gaussian source, with its mean and covariance. 

Examples include the classical k-means and its variants. 

The goal of clustering is to group a given set of data 

points into clusters that capture some notion of similarity 

between the data points in each cluster. Data is 

represented by a number of features, not all of which are 

useful for comparing individual data points. 

A. Basic Concepts of Subspace Clustering 
 

A subspace clustering is a collection of subspace 

clusters. The first2 subspace clustering algorithm 

CLIQUE was published in 1998 and was soon followed  

by many related methods [1, 2, 3, 9, 13, 14, 15, 16, 19, 

20, 26, 33, 39, 41, 44, 49, 51, 55, 63, 66, 67]. The 

algorithms have been applied for instance to clustering 

gene expression data: it is often the case that a group of 

genes behaves similarly only in a subset of experiments 

(i.e. in a subspace) [15, 16, 20, 26, 55, 63, 66]. Reviews 

of some of the existing subspace clustering algorithms can 

be found in [47, 48, and 68]. 1Other names that have been 

used for the same or a closely 

In high dimensional spaces1, traditional clustering 

methods suffer from the curse of dimensionality, which is 

why their application is often preceded by feature 

selection and extraction. For instance, a practitioner might 

apply Principal Component Analysis (PCA) to project the 

data onto a low-dimensional subspace before trying to 

cluster the data points. However, it is sometimes 

unrealistic to assume that all clusters of points lie in the 

same subspace of the data space. Subspace clustering 

methods address this issue by assigning a distinct 

subspace to each group of data points. 

Before proceeding, let us introduce our notation. The 

data matrix X consists of elements xij 2 R, where i 2 {1, 

2, . . . ,m} and j 2 {1, 2, . . . , p}. We denote the m rows 

by {r1, r2, . . . , rm}, where ri = (xi1, xi2, . . . , xip), and 

the p columns by {c1, c2, . . . , cp}, where ci = (x1i, x2i, . 

. . , xmi)T . We will often refer to the rows as data points 

and to the columns as attributes. A clus- ter Ci _ {r1, r2, . 

. . , rm} is a subset of the data points. A clustering2 C is a 

partitioning of the set of m data points into clusters 

C1,C2, . . . ,CK of sizes m1,m2, . . . ,mK. 
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Two examples of a subspace cluster. Traditional 

clustering algorithms will not find clear clusters in these 

two-dimensional data sets. However, if the points are 

projected onto an appropriate one-dimensional subspace, 

a compact cluster emerges in each case. In (a), the 

appropriate subspace is the x-axis, but in (b), the subspace 

is not aligned along the axes. a 2 R it holds that vi + vj 2 F 

and that avi 2 F. A subspace cluster is a pair (R,F), where 

R _ {r1, r2, . . . , rm} is a subset of the rows and F is a 

subspace of Rp. A subspace clustering S = {S1, S2, . . . , 

SK} is a collection of subspace clusters. 

In the two-dimensional data sets, no clustering 

structure is visible, but if the data is projected onto a 1-

dimensional subspace, a compact cluster emerges. 

However, in general, using feature extraction/selection 

before clustering is not enough to find the subspace 

clusters. As an example, Fig. 2.2 illustrates that PCA is of 

no use in solving the subspace clustering problem. The 

three-dimensional data set contains three subspace 

clusters with orthogonal 1-dimensional s. 

II. NON-AXIS-ALIGNED SUBSPACE 

CLUSTERINGS 

A non-axis-aligned subspace cluster S is a pair (R,W), 

where R _ {r1, r2, . . . , rm} is a subset of the rows and W 

is a collection of vectors {w1,w2, . . . ,wD}, where wi 2 

Rp. The vectors in W form a basis for an arbitrary 

subspace of the original p-dimensional data space. We use 

W also to denote this subspace. Naturally, an axis-aligned 

subspace cluster is a special case of a non-axisaligned 

subspace cluster.  In the case of an axis-aligned subspace 

cluster, W is a subset of the original basis vectors {e1, e2, 

. . . , ep}, where e1 = (1 0 0 . . . 0),e2 = (0 1 0 0 . . . 0), etc. 

A non-axis-aligned subspace clustering S is a 

collection {S1, S2, . . . , SK} of K non-axis aligned 

subspace clusters. The algorithms ORCLUS, KSM , and 

4C produce these kinds of clusterings. Non-axis-aligned 

subspace clustering is a generalization of feature 

extraction; instead of defining a single set of features for 

the whole data.  

A.   Meta-Clustering 

Meta-clustering refers to investigating the structure 

of a set of clusterings. Meta-clustering discards the idea of 

trying to derive a single good clustering for a data set; 

instead, it is acknowledged that the data can be well 

represented in several different, complementary ways. For 

instance, assume that a given data set has been clustered 

several times by different algorithms. A metaclusterer 

might now observe that these clusterings form two tight 

groups of clusterings, and give the user a representative of 

each of these groups, instead of a single ’best’ clustering.  

There are various ways to produce different 

clusterings for a data set: we could use different 

algorithms, a single algorithm with various parameter 

values and initializations, change metrics, use various 

dimensionality reduction schemes, or sample the data. 

Meta-clustering may be used to investigate whether some 

of these clusterings form tight groups, whether some of 

the clusterings are outliers, whether the effect of the 

parameter values is strong or weak, etc. For instance, it 

has been empirically shown by means of metaclustering 

that only a small number of clustering algorithms is 

enough to represent a large number of clustering criteria. 

B.  Measures Based on Counting Point Pairs 

An important class of criteria for comparing 

clusterings is based on counting the pairs of points on 

which two clusterings agree/disagree. Each pair of data 

points falls in one of the four categories labeled as N11, 

N10, N01, and N00. The category N11 contains the pairs 

of points that are in the same cluster both in C and in C0. 

The category N10 contains the pairs of points that are in 

the same cluster in C but not in C0. The definitions of 

N01 and N00 are similar.  

All four Algorithm  

1. Hungarian method. 

Input: A cost matrix M of size K × K0. 

Output: A modified cost matrix M0 of size 

max(K,K0)×max(K,K0) in which 

it is possible to find one or more permutations of the 

rows/columns such that 

the total cost (the sum of the diagonal elements) 

becomes zero. The same permutations 

(excluding the extra rows/columns) are optimal also for 

the original 

cost matrix M. 

1. Make the matrix square by adding rows or columns 

of zeroes if necessary. 

The matrix is now of size max(K,K0) × max(K,K0). 

2. Subtract the row minimum from the entries of each 

row. Each row now 

has at least one zero. 

3. Subtract the column minimum from the entries of 

each column. Each 

row and each column now has at least one zero. 

4. Select rows and columns across which you draw 

lines, in such a way that 

all the zeroes are covered and that no more lines have 

been drawn than 

necessary.3 

5. (i) If the number of the lines is max(K,K0), return 

the modified cost 

matrix. 
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(ii) If the number of the lines is smaller than 

max(K,K0), go to step 6. 

6. Find the smallest element which is not covered by 

any of the lines. Then 

subtract it from each entry which is not covered by the 

lines and add it 

to each entry which is covered by both a vertical and a 

horizontal line.Go back to step 4. 

III. A NEAR-LINEAR ALGORITHM FOR 

PROJECTIVE CLUSTERING INTEGER POINTS 

 A near-linear algorithm for integer (j; k) projective 

clustering in the L1 sense when the dimension is part of 

the input. Recall that in this problem we are given a set P 

of n points in Rm and integers j _ 1, k _ 0, and the goal is 

to _nd j k-subspaces so that the sum of the distances of 

each point in P to the nearest subspace is minimized; the 

point coordinates are integers of magnitude polynomial in 

m and n. Our randomized algorithm , for any parameter " 

> 0, runs in time O(mn polylog(mn)) and outputs a 

solution that with constant probability is within (1 + ") of 

the optimal solution. 

A. Probability Model 

It is important to note that the Gaussian mixture is a 

fundamental hypothesis that many model-based clustering 

algorithms make regarding the data distribution model. In 

this case, data points are thought of as originating from 

various possible sources, and the data from each 

particular source is modeled by a Gaussian.  

B. Chenet al.: model-based method for  

projectiveclustering 

 

 

 

 

 

 

Fig.1.Model-based method for projective clustering 

 

Changes in probability density with different weighting 

values 

C. j-flat Fitting Using Lemma Concepts: 

In this section, we consider the j-at fitting problem. 

We first introduce the concept of shape kernel and then 

use it to derive PTAS for the j-at fitting problem. To solve 

the j-at setting problem, one way is to use the concept of 

kernel set introduced by Agarwal et al. in. For a set P of 

Rd points, its kernel set is a new set of Rd points of size O 

(1 (__)(d�1)=2 ) which can be constructed through an _-

net inside a unit sphere, where _ is a measure of the 

fatness of P. Kernel set captures the structure and extent 

of P and is rather powerful for solving many problems. 

Despite the obvious advantages provided by kernel set, 

there are also some issues when used for solving the RPC 

problem, which leads us to adopt a different structure 

called shape kernel. One issue is that the value of _ could 

be large for some point sets.  

Although as pointed out in [1], it can be reduced by 

using some linear transform on the point set. However, 

this seems to be difficult to extend to the case of k _ 2 

(i.e., multiple j-ats as in the RPC problem), as there may 

not exist a single linear transform for all j-ats. Another 

issue is that kernel set maintains more than succinct 

information for RPC. For RPC, it is actually succinct to 

maintain a small set of points which jointly approximate 

the mean of the original point set. One consequence of the 

redundant information in the kernel set is that its size 

could still be relatively large, making it di_cult to further 

improve the total running time of kernel set based 

algorithms. 

To resolve the aforementioned issues, we use a 

different strategy to construct the kernel.  

IV. AVERAGE VPC OF THE THREE FUZZY 

CLUSTERING ALGORITHMS 

Average FScore of the algorithms, with increment of 

variances on the relevant dimensions algorithms choose 

their initial cluster centers via some random selection 

methods, and thus the clustering results may vary 

depending on the initialization. Figs. 3 and 4 show the 

average results of the algorithms on these data sets, in 

terms of VPC and FScore, respectively. Detailed 

clustering results on the data set with s ¼ 8, which is the 

most difficult case of the seven data sets (as shown in 

Table 2), are illustrated in Table 3. The values in the max 

columns correspond to the best results of the algorithms, 

and the average results are reported in the format average 

_ 1 standard deviation in the table. Figs. 3 and 4 show that 

outlier is able to achieve high quality overall results, 

especially when the clusters overlap considerably, 

whereas FCM, Fuzzy-FWKM, and EWKM perform 

poorly, and the other algorithms encounter difficulties 

when the cluster overlapping becomes significant, i.e., 

when s > 6. Examining these results in more detail, we 

can see that the values of VPC yielded by FCM and 

Fuzzy-FWKM are close to 1 K , which indicates that 

these two algorithms tend to assign each point to all the 

clusters with approximately equal membership degrees. 

This is due to the fact that FCM measures the similarity 
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between data points by considering all features of a data 

set. With the high-dimensional data used in the 

experiments, such a similarity measurement in the entire 

data space would be less meaningful due to the empty 

space phenomenon . Fuzzy-FWKM employs a feature 

weighting mechanism in the clustering process; however, 

each dimension is assigned the same weight for different 

clusters in this algorithm.  

 
 

Fig 2. Average vpc of the three fuzzy clustering 

algorithms 

 

Our result is a near-linear algorithm for integer (j; k) 

projective clustering in the L1 sense when the dimension 

is part of the input. Recall that in this problem we are 

given a set P of n points in Rm and integers j _ 1, k _ 0, 

and the goal is to _nd j k-subspaces so that the sum of the 

distances of each point in P to the nearest subspace is 

minimized; the point coordinates are integers of 

magnitude polynomial in m and n. Our randomized 

algorithm, for any parameter " > 0, runs in time O(mn 

polylog(mn)) and outputs a solution that with constant 

probability is within (1 + ") of the optimal solution. To 

obtain this result, we observe that in a fairly general 

sense, shape setting problems that have small coresets in 

the L1 setting also have small coresets in the L1 setting. 

Using this observation, and the coreset construction of for 

the L1 setting in axed dimension, we are able to obtain a 

small coreset for the L1 setting in axed dimension. To 

solve the problem when the dimension is part of the input, 

we use a known dimension reduction result. 

V.  EXPERIMENTAL RESULTS 

Six clustering algorithms, OUTLIER, PROCLUS, 

EWKM, LAC, FSC, and FWKM, were tested on the real 

world data sets. Since FCM and Fuzzy-FWKM are not 

projective clustering algorithms, we left them out of this 

set of experiments. The performances of the algorithms 

were measured in terms of FScore. Table 5 illustrates the 

clustering results returned by each algorithm on its 20 

clustering processes. The two figures in each cell 

represent the maximal and average FScore values. The 

latter is in the format average _ 1 standard deviation. The 

best clustering results are marked in bold typeface. From 

the table, we can see that outlier is able to achieve high-

quality results on all the data sets. On the two UCI data 

sets, which have collections, such as cash and sex of 

Email1431, advertisement and unsolicited for Ling-Spam, 

and play and hot for Enron- Spam.  

A. Proposed method 

Clustering the case of non-axis-aligned subspaces and 

detection of outliers is a   major challenge due to the curse 

of dimensionality. To solve this problem, the proposed 

implementation is extension to traditional clustering and 

finds subsets of the dimensions of a data space .In this 

project, a probability model is proposed to describe in 

hidden views and the detection of possible selection of 

relevant views. 

 In this paper, we first discussed the problem of 

providing a probability model to describe projected 

clusters in high dimensional data. The experiments were 

conducted on synthetic data sets, UCI data sets, and email 

corpora widely used in real-world applications and the 

results show the effectiveness of outlier. 

There are many directions that are clearly of interest 

for future exploration. One avenue of further study is to 

extend outlier to the case of non-axis-aligned subspaces. 

Another interesting extension would be for the detection 

of possible outliers in a data set. Our future efforts will 

also be directed toward developing techniques to build a 

robust initial condition for the clustering algorithm. 

VI. CONCLUSION 

In this paper, we first discussed the problem of 

providing a probability model to describe projected 

clusters in high dimensional data. This problem becomes 

difficult due to the sparsity of high-dimensional data and 

the fact that only a small number of the dimensions may 

be considered in the clustering process. We proposed an 

extended Gaussian model which meets the general 

requirements of projective clustering well. We also 

derived an objective clustering criterion based on the 

model, allowing the use of a k-means type paradigm. By 

mathematical derivations, we obtained computational 

expressions for calculating the optimal values of the 

parameters automatically, and proposed a fuzzy clustering 

algorithm named outlier. The experiments were 

conducted on synthetic data sets, UCI data sets, and email 

corpora widely used in real-world applications and the 

results show the effectiveness of outlier. Outlier to the 

case of non-axis-aligned subspaces. Another interesting 

extension would be for the detection of possible outliers 

in a data set. Our future efforts will also be directed 

toward developing techniques to build a robust initial 
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condition for the clustering algorithm. the Ling-Spam data 

set, the maximal FScore of LAC was large (0.98), but the 

average FScore was only 0.88 and the standard deviation 

reached 0.10. In general, outlier is more robust than the 

other algorithms. This can be explained by the 

observation of Jain et al. that fuzzy clustering is usually 

better than hard clustering at avoiding local minima. 

 

The experiments show that outlier is suitable for 

clustering real-world data, especially for e-mail 

documents. To confirm the suitability of our algorithm for 

document clustering, the capability of outlier in 

identifying the keywords of document categories is 

analyzed below. From the subspaces of resulting clusters, 

we can obtain the relevant dimensions that represent 

important keywords by sorting the dimension weights in 

descending order. Table 6 gives some examples for the 

three e-mail data sets used in the experiments. From the 

table, we can see outlier has identified important 

keywords that indicate the spam category 
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