
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 668

Data Leakage Detection

Sandip A. Kale
1
, Prof. S.V.Kulkarni

2

Department Of CSE, MIT College of Engg, Aurangabad, Dr.B.A.M.University, Aurangabad (M.S), India
1,2

ABSTRACT: This paper contains the results of implementation of Data Leakage Detection Model. Currently watermarking

technology is being used for the data protection. But this technology doesn’t provide the complete security against date leakage.

This paper includes the difference between the watermarking & data leakage detection model’s technology. This paper leads for

the new technique of research for secured data transmission & detection, if it gets leaked.

Keywords: watermarking, robust watermarking, spectrum, guilty agent, implicit request, explicit request.

I. INTRODUCTION

Data leakage is the big challenge in front of the

industries & different institutes. Though there are number

of systems designed for the data security by using

different encryption algorithms, there is a big issue of the

integrity of the users of those systems. It is very hard for

any system administrator to trace out the data leaker

among the system users. It creates a lot many ethical

issues in the working environment of the office.

The data leakage detection industry is very

heterogeneous as it evolved out of ripe product lines of

leading IT security vendors. A broad arsenal of enabling

technologies such as firewalls, encryption, access control,

identity management, machine learning content/context-

based detectors and others have already been

incorporated to offer protection against various facets of

the data leakage threat. The competitive benefits of

developing a "one-stop-shop", silver bullet data leakage

detection suite is mainly in facilitating effective

orchestration of the aforementioned enabling

technologies to provide the highest degree of protection

by ensuring an optimal fit of specific data leakage

detection technologies with the "threat landscape" they

operate in. This landscape is characterized by types of

leakage channels, data states, users, and IT platforms.

II. EXISTING SYSTEM

Traditionally, leakage detection is handled by

watermarking, e.g., a unique code is embedded in each

distributed copy. If that copy is later discovered in the

hands of an unauthorized party, the leaker can be

identified. Watermarks can be very useful in some cases,

but again, involve some modification of the original data.

Furthermore, watermarks can sometimes be destroyed if

the data recipient is malicious. E.g. A hospital may give

patient records to researchers who will devise new

treatments. Similarly, a company may have partnerships

with other companies that require sharing customer data.

Another enterprise may outsource its data processing, so

data must be given to various other companies. We call

the owner of the data the distributor and the supposedly

trusted third parties the agents.

II. PROPOSED SYSTEM

Our goal is to detect when the distributor’s

sensitive data has been leaked by agents, and if possible

to identify the agent that leaked the data. Perturbation is a

very useful technique where the data is modified and

made “less sensitive” before being handed to agents. we

develop unobtrusive techniques for detecting leakage of a

set of objects or records.

In this section we develop a model for assessing

the “guilt” of agents. We also present algorithms for

distributing objects to agents, in a way that improves our

chances of identifying a leaker. Finally, we also consider

the option of adding “fake” objects to the distributed set.

Such objects do not correspond to real entities but appear

realistic to the agents. In a sense, the fake objects acts as

a type of watermark for the entire set, without modifying

any individual members. If it turns out an agent was

given one or more fake objects that were leaked, then the

distributor can be more confident that agent was guilty.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 669

III. TECHNIQUES OF WATERMARKING

SYSTEM

A. Embedding and Extraction

In this technique the insignificant portion of the

fractional part of the pixel intensity value of the cover

image is encoded to provide watermark. A watermark in

the insignificant part has helped to maintain the fidelity

of the cover image. As seen from the results,

imperceptibility is well preserved. Large capacity of

watermarking is an added advantage of this scheme.

Thus, large capacity watermark may be successfully

embedded and extracted using this scheme, which can be

extremely useful for companies engaged in developing

watermarking applications and digital information

security products. Embedding and extraction algorithms

are used in this technique.

B. Secure Spread Spectrum Watermarking

We describe a digital watermarking method for

use in audio, image, video and multimedia data. We

argue that a watermark must be placed in perceptually

significant components of a signal if it is to be robust to

common signal distortions and malicious attack.

However, it is well known that modification of these

components can lead to perceptual degradation of the

signal. To avoid this, we propose to insert a watermark

into the spectral components of the data using techniques

analogous to spread spectrum communications, hiding a

narrow band signal in a wideband channel that is the data.

The watermark is difficult for an attacker to remove, even

when several individuals conspire together with

independently watermarked copies of the data. It is also

robust to common signal and geometric distortions such

as digital-to-analog and analog-to-digital conversion,

resampling, quantization, dithering, compression,

rotation, translation, cropping and scaling. The same

digital watermarking algorithm can be applied to all three

media under consideration with only minor

modifications, making it especially appropriate for

multimedia products. Retrieval of the watermark

unambiguously identifies the owner, and the watermark

can be constructed to make counterfeiting almost

impossible. We present experimental results to support

these claims.

C. DCT-Based Watermarking

The image is first divided into 8 × 8 pixel

blocks. After DCT transform and quantization, the

midfrequency range DCT coefficients are selected based

on a Gaussian network classifier. The mid-frequency

range DCT coefficients are then used for embedding.

Those coefficients are modified using a linear DCT

constraints. It is claimed that the algorithm is resistant to

JPEG compression.

D. Spread Spectrum

Cox et al. [1997] [2] used the spread spectrum to

embed the watermark in the frequency components of the

host image. First the Fourier Transform is applied to the

host image is inserted to obtain a modified values V_

using the following equation: V_ = V + α × W.

The scaling parameter α is used to determine the

embedding strength of the watermark. Different spectral

components exhibit different tolerance to modification.

To verify the presence of the watermark, the cross

correlation value between the extracted watermark W_

and the original watermark W is computed as follows:

sim =W_ × WT (W_ × W_T)(W × WT)

Here, we call the cross correlation the similarity (sim).

Experimental results showed that this method resists

JPEG compression with a quality factor down to 5%,

scaling, dithering, cropping and collusion attacks.

E. Wavelet Based Watermarking

The multi resolution data fusion is used for

embedding where the image and the watermark are both

transformed into the discrete wavelet domain. The

watermark is embedded into each wavelet decomposition

level of the host image. During detection, the watermark

is an average of the estimates from each resolution level

of wavelet decomposition. This algorithm is robust

against JPEG compression, additive noise and filtering

operations.

F. Robust Watermarking Technique

Contrary to the LSB approach, the key to

making a watermark robust is that it should be embedded

in the perceptually significant components of the image.

A good watermark is one which takes into account the

behavior of human visual system. For the spread

spectrum based watermarking algorithm, a scaling factor

can be used to control the amount of energy a watermark

has. The watermark energy should be strong enough to

withstand possible attacks and distortions. Meanwhile

large watermark energy will affect the visual quality of

the watermarked image. A perceptual model is needed to

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 670

adjust the value of the scaling factor based on the visual

property of the host image to achieve the optimal trade-

off between robustness and invisibility.

G. Invisible Watermarking

This technique presents a novel invisible robust

watermarking scheme for embedding and extracting a

digital watermark in an image. The novelty lies in

determining a perceptually important sub image in the

host image. Invisible insertion of the watermark is

performed in the most significant region of the host

image such that tampering of that portion with an

intention to remove or destroy will degrade the esthetic

quality and value of the image. One feature of the

algorithm is that this sub image is used as a region of

interest for the watermarking process and eliminates the

chance of watermark removal. Another feature of the

algorithm is the creation of a compound watermark using

the input user watermark (logo) and attributes of the host

image. This facilitates the homogeneous fusion of a

watermark with the cover image, preserves the quality of

the host image, and allows robust insertion-extraction.

Watermark creation consists of two distinct phases.

During the first phase, a statistical image is synthesized

from a perceptually important sub image of the image. A

compound watermark is created by embedding a

watermark (logo) into the statistical synthetic image by

using a visible watermarking technique. This compound

watermark is invisibly embedded into the important block

of the host image. The authentication process involves

extraction of the perceptive logo as well statistical testing

for two-layer evidence. Results of the experimentation

using standard benchmarks demonstrates the robustness

and efficacy of the proposed watermarking approach.

Ownership proof could be established under various

hostile attacks.

H. Watermarking of Digital Audio and Image using

Mat lab Technique

Watermarking, a Watermark is encrypted using

RSA Algorithm and is embedded on the audio file using

LSB technique. LSB technique is an old technique which

is not very robust against attacks. Here, in audio

watermarking we have embedded the encrypted

watermark on the audio file, due to which removal of the

watermark becomes least probable. This would give the

technique a very high robustness. In the retrieval, the

embedded watermark is retrieved and then decrypted.

This method combines the robustness of Transform

domain and simplicity of spatial domain methods. For

image Watermarking, DWT technique is used. DWT

technique is used in Image watermarking. Here, the

watermark is embedded in the image as a pseudo-noise

sequence. This gives a remarkable security to the image

file as only if the exact watermark is known can the

embedded watermark be removed from the watermarked

image.

I. Watermarking While Preserving the Critical Path

The first intellectual property protection

technique using watermarking that guarantees

preservation of timing constraints by judiciously

selecting parts of the design specification on which

watermarking constraints can be imposed. The technique

is applied during the mapping of logical elements to

instances of realization elements in a physical library.

The generic technique is applied to two steps in the

design process: combinational logic mapping in logic

synthesis and template matching in behavioural synthesis.

The technique is fully transparent to the synthesis

process, and can be used in conjunction with arbitrary

synthesis tools. Several optimization problems associated

with the application of the technique have been solved.

The effectiveness of the technique is demonstrated on a

number of designs at both logic synthesis and

behavioural synthesis.

J. Buyer-seller watermarking protocols

This technique integrates watermarking

techniques with cryptography, for copyright protection,

piracy tracing, and privacy protection. In this paper, we

propose an efficient buyer seller watermarking protocol

based on homomorphism public-key cryptosystem and

composite signal representation in the encrypted domain.

A recently proposed composite signal representation

allows us to reduce both the computational overhead and

the large communication bandwidth which are due to the

use of homomorphism public-key encryption schemes.

Both complexity analysis and simulation results confirm

the efficiency of the proposed solution, suggesting that

this technique can be successfully used in practical

applications.

K. Watermarking using Cellular Automata Transform

Another watermarking technique is using cellular

automata transform. An original image is CA-

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 671

transformed and watermark is embedded in to

coefficients of CA-transformed pattern. This

watermarking model has flexibility in data hiding. it is

possible to embed watermark in many CAT plans with

different rule number parameters and CA bases class of

CAT and all kind of image models such as shape, letter,

photo can be used as watermark data. Using CAT with

various rule number parameters, it is possible to get many

channels for embedding.

V. RESULTS OF WATERMARK SYSTEM

A. Results of Fragile Watermarking

The degree of fragility was verified using the

gray-scale “MonaLisa” image, size 256 256, as shown in

Fig. 4(a). The length of a watermark depends on both the

host image and the wavelet-based visual model. Here, its

length was dynamically determined to 6593. Using

cocktail watermarking [19],13 186 wavelet coefficients

were modulated. The PSNR of the watermarked image

shown in Fig. 4(b) was 39.7 dB. Next, the watermarked

MonaLisa image was maliciously modified at the

position of her face by means of texturing, as shown in

Fig. 4(c). We wanted to see whether our fragile

watermarks were sensitive to texture changes. Figs. 4(d)–

(f) show when , the tampering detection results at

different scales. Figs. 4(g)–(i) show another set of results

when . It is found that in Fig. 4 that the altered regions

were almost located. It is worth noticing that for different

values, the difference between and only slightly reduced

even when has been changed from one to ten. This

implies that our multipurpose watermarking scheme is

indeed fragile enough because the change of would not

affect fragility significantly. As for color images, the

beach image with size 512 512 (shown in Fig. 5) was also

used to demonstrate the fragility of our approach. The

watermarks were embedded in the illumination channel

and the PSNR was 41.2 dB [Fig. 5(b)].

Fig. 1. Fragile watermarks facing incidental tampering:

(a) SPIHT with compression ratio 64 : 1; (b) JPEG with

quality factor 20% (compression ratio 20 : 1); (c)

rescaled; (d) histogram equalized; (e) contrast adjusted;

(f) Gaussian noise added; and (g) the BR values obtained

at different t(1 _ t _ 10) with respect to six distinct

incidental manipulations.

B. Results of Robust Watermarking

In this section, we shall discuss the experimental

results with regard to robust watermarking. The same

watermarked “MonaLisa” image [Fig. 4(b)], used for

fragile test in the previous section, had also been used for

robustness test in [20] under several attacks. Here, we

used a different image for robust watermarking to

demonstrate that our scheme adapts to different images.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 672

The “sailboat” image with size 256 256 was

used to evaluate the robustness of our scheme. After

watermarking, 23 different attacks including blurring,

median filtering, rescaling, histogram equalization, jitter

attack, changing the brightness/ contrast, the negative

film effect, segmentation, Gaussian noise adding,

mosaicing, sharpening, texturizing, shading, the ripple

effect, net dotting, uniform noise adding, the twirl effect,

SPIHT compression, JPEG compression, StirMark2 [27],

dithering, pixel spreading, and cropping were selected to

test the robustness of our watermarking scheme. Fig. 8

shows the robust watermark detection results. The lowest

detector response as shown in Fig. 8 was 0.32 (the ninth

attack), which corresponds to the Gaussian noise attack.

We used the worst result to verify the uniqueness

requirement, i.e., to show the false positive probability.

Fig. 9 shows the detector responses with respect

to 10 000 random marks (including the hidden one, i.e.,

the 500th mark). It is obvious that the response with

respect to the hidden one is a recognizable spike.

Fig. 2. Uniqueness verification of robust watermarking

under a Gaussian noise adding attack (a) attacked image

after the Gaussian noise was added and (b) the detector

responses of the extracted watermark with respect to 10

000 random marks (including the hidden the hidden one,

the 5000th mark).

VI. MODULES OF DATA LEAKAGE DETECTION

SYSTEM

A. Data Allocation Module

The main focus of our project is the data

allocation problem as how can the distributor

“intelligently” give data to agents in order to improve the

chances of detecting a guilty agent, Admin can send the

files to the authenticated user, users can edit their account

details etc. Agent views the secret key details through

mail. In order to increase the chances of detecting agents

that leak data.

B. Fake Object Module

The distributor creates and adds fake objects to

the data that he distributes to agents. Fake objects are

objects generated by the distributor in order to increase

the chances of detecting agents that leak data. The

distributor may be able to add fake objects to the

distributed data in order to improve his effectiveness in

detecting guilty agents. Our use of fake objects is

inspired by the use of “trace” records in mailing lists. In

case we give the wrong secret key to download the file,

the duplicate file is opened, and that fake details also

send the mail. Ex: The fake object details will display.

C. Optimization Module

The Optimization Module is the distributor’s

data allocation to agents has one constraint and one

objective. The agent’s constraint is to satisfy distributor’s

requests, by providing them with the number of objects

they request or with all available objects that satisfy their

conditions. His objective is to be able to detect an agent

who leaks any portion of his data. User can able to lock

and unlock the files for secure.

D. Data Distributor Module

A data distributor has given sensitive data to a

set of supposedly trusted agents (third parties). Some of

the data is leaked and found in an unauthorized place

(e.g., on the web or somebody’s laptop). The distributor

must assess the likelihood that the leaked data came from

one or more agents, as opposed to having been

independently gathered by other means Admin can able

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 673

to view the which file is leaking and fake user’s details

also.

E. Agent Guilt Module

To compute this PrfGijSg, we need an estimate

for the probability that values in S can be “guessed” by

the target. For instance, say some of the objects in T are

emails of individuals. We can conduct an experiment and

ask a person with approximately the expertise and

resources of the target to find the email of say 100

individuals. If this person can find say 90 emails, then we

can reasonably guess that the probability of finding one

email is 0.9. On the other hand, if the objects in question

are bank account numbers, the person may only discover

say 20, leading to an estimate of 0.2. We call this

estimate pt, the probability that object t can be guessed by

the target. To simplify the formulas that we present in the

rest of the paper, we assume that all T objects have the

same pt, which we call p. Our equations can be easily

generalized to diverse pt’s though they become

cumbersome to display. Next, we make two assumptions

regarding the relationship among the various leakage

events. The first assumption simply states that an agent’s

decision to leak an object is not related to other objects.

IV. RESULTS OF DATA LEAKAGE DETECTION

MODEL

A. Agent Guilt Model

To compute this PrfGijSg, we need an estimate

for the probability that values in S can be “guessed” by

the target. For instance, say some of the objects in T are

emails of individuals. We can conduct an experiment and

ask a person with approximately the expertise and

resources of the target to find the email of say 100

individuals. If this person can find say 90 emails, then we

can reasonably guess that the probability of finding one

email is 0.9. On the other hand, if the objects in question

are bank account numbers, the person may only discover

say 20, leading to an estimate of 0.2. We call this

estimate pt, the probability that object t can be guessed by

the target. To simplify the formulas that we present in the

rest of the paper, we assume that all T objects have the

same pt, which we call p. Our equations can be easily

generalized to diverse pt’s though they become

cumbersome to display. Next, we make two assumptions

regarding the relationship among the various leakage

events. The first assumption simply states that an agent’s

decision to leak an object is not related to other objects.

Assumption 1. For all t; t0 2 S such that t 6= t0 the

provenance of t is independent of the provenance of t0.

To simplify our formulas, the following assumption

states that joint events have a negligible probability. As

we argue in the example below, this assumption gives us

more conservative estimates for the guilt of agents, which

is consistent with our goals. Assumption 2. An object t 2

S can only be obtained by the target in one of two ways:

 A single agent Ui leaked t from his own Ri set; or

The target guessed (or obtained through other means) t

without the help of any of the n agents.

In other words, for all t 2 S, the event that the

target guesses t and the events that agent Ui (i = 1; : : : ;

n) leaks object t are disjoint. Before we present the

general formula for computing PrfGijSg, we provide a

simple example. Assume that sets T, R’s and S are as

follows:

T = ft1; t2; t3g; R1 = ft1; t2g; R2 = ft1; t3g; S = ft1; t2;

t3g:…..(Eqn 1)

In this case, all three of the distributor’s objects

have been leaked and appear in S.

Let us first consider how the target may have obtained

object t1, which was given to both agents. From

Assumption 2, the target either guessed t1 or one of U1

or U2 leaked it. We know that the probability of the

former event is p, so assuming that the probability that

each of the two agents leaked t1 is the same we have the

following cases:

the leaker guessed t1 with probability p;

agent U1 leaked t1 to S with probability (1 � p)=2

agent U2 leaked t1 to S with probability (1 � p)=2

Similarly, we find that agent U1 leaked t2 to S with

probability 1 � p since it is the only agent that has this

data object. Given these values, the probability that agent

U1 is not guilty, namely that U1 did not leak either object

is:

PrfG_1jSg = (1 � (1 � p)=2) _ (1 � (1 � p)) (1)

Hence, the probability that U1 is guilty is:

PrfG1jSg = 1 � Prf G_1jSg (2)

In the general case (with our assumptions), to find the

probability that an agent Ui is guilty given a set S, first

we compute the probability that he leaks a single object t

to S. To compute this we define the set of agents Vt =

fUijt 2 Rig that have t in their data sets. Then using

Assumption 2 and known probability p,

we have:

Presume agent leaked t to Sg = 1 � p: (3)

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 674

Assuming that all agents that belong to Vt can leak t to S

with equal probability and using Assumption 2 we

obtain:

……..(Eqn 2)

Given that agent Ui is guilty if he leaks at least one value

to S, with Assumption 1 and Equation 4 we can compute

the Probability PrfGijSg that agent Ui is guilty:

……..(Eqn 3)

B.Guilt Model Analysis

In order to see how our model parameters

interact and to check if the interactions match our

intuition, in this section, we study two simple scenarios.

In each scenario, we have a target that has obtained all

the distributor’s objects, i.e., T ¼ S.

B.1 Impact of Probability p

In our first scenario, T contains 16 objects: all of

them are given to agent U1 and only eight are given to a

second agent U2. We calculate the probabilities PrfG1jSg

and PrfG2jSg for p in the range [0, 1] and we present the

results in Fig. 1a. The dashed line shows PrfG1jSg and

the solid line shows PrfG2jSg. As p approaches 0, it

becomes more and more unlikely

that the target guessed all 16 values. Each agent has

enough of the leaked data that its individual guilt

approaches 1. However, as p increases in value, the

probability that U2 isguilty decreases significantly: all of

U2’s eight objects were also given to U1, so it gets harder

to blame U2 for the leaks.

Graph 1 of Impact of Guilt Probability p

On the other hand, U2’s probability of guilt

remains close to 1 as p increases, since U1 has eight

objects not seen by the other agent. At the extreme, as p

approaches 1, it is very possible that the target guessed all

16 values, so the agent’s probability of guilt goes to 0.

5.2 Impact of Overlap between Ri and S In this section,

we again study two agents, one receiving all the T ¼ S

data and the second one receiving a varying fraction of

the data. Fig. 1b shows the probability of guilt for both

agents, as a function of the fraction of the objects owned

by U2, i.e., as a function of jR2 \ Sj=jSj. In this case, p

has a low value of 0.2, and U1 continues to have all 16S

objects. Note that in our previous scenario, U2 has 50

percent of the S objects.

We see that when objects are rare (p ¼ 0:2), it

does not take many leaked objects before we can say that

U2 is guilty with high confidence. This result matches

our intuition: an agent that owns even a small number of

incriminating objects is clearly suspicious. Figs. 1c and

1d show the same scenario, except for values of p equal

to 0.5 and 0.9. We see clearly that the rate of increase of

the guilt probability decreases as p increases. This

observation again matches our intuition: As the objects

become easier to guess, it takes more and more evidence

of leakage (more leaked objects owned by U2) before we

can have high confidence that U2 is guilty. In [14], we

study an additional scenario that shows how the sharing

of S objects by agents affects the probabilities that they

are guilty. The scenario conclusion matches our intuition:

with more agents holding the replicated leaked data, it is

harder to lay the blame on any one agent.

B.2 Experimental Results

We implemented the presented allocation

algorithms in Python and we conducted experiments with

simulated data leakage problems to evaluate their

performance. In Section 8.1, we present the metrics we

use for the algorithm evaluation, and in Sections 8.2 and

8.3, we present the evaluation for sample requests and

explicit data requests, respectively. 8.1 Metrics In Section

7, we presented algorithms to optimize the problem of (8)

that is an approximation to the original optimization

problem of (7). In this section, we evaluate the presented

algorithms with respect to the original problem. In this

way, we measure not only the algorithm performance, but

also we implicitly evaluate how effective the

approximation is. The objectives in (7) are the _

difference functions. Note that there are nðn _ 1Þ

objectives, since for each agent Ui, there are n _ 1

differences _ði; jÞ for j ¼ 1; . . . ; n and j 6¼ i.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 675

We evaluate a given allocation with the following

objective scalarizations as metrics:

(Eqn 4)

Metric _ is the average of _ði; jÞ values for a given

allocation and it shows how successful the guilt detection

is, on average, for this allocation. For example, if _ ¼

0:4, then, on average, the probability PrfGijRig for the

actual guilty agent will be 0.4 higher than the

probabilities of non guilty agents. Note that this scalar

version of the original problem objective is analogous to

the sum-objective scalarization of the problem of (8).

Hence, we expect that an algorithm that is designed to

minimize the sum-objective will maximize _.

Metric min _ is the minimum _ði; jÞ value and it

corresponds to the case where agent Ui has leaked his

data and both Ui and another agent Uj have very similar

guilt probabilities. If min _ is small, then we will be

unable to identify Ui as the leaker, versus Uj. If min _ is

large, say, 0.4, then no matter which agent leaks his data,

the probability that he is guilty will be 0.4 higher than

any other non guilty agent. This metric is analogous to

the max-objective scalarization of the approximate

optimization problem. The values for these metrics that

are considered acceptable will of course depend on the

application. In particular, they depend on what might be

considered high confidence that an agent is guilty. For

instance, say that PrfGijRig ¼ 0:9 is enough to arouse our

suspicion that agent Ui leaked data. Furthermore, say that

the difference between PrfGijRig and any other PrfGjjRig

is at least 0.3. In other words, the guilty agent is ð0:9 _

0:6Þ=0:6 _ 100% ¼ 50% more likely to be guilty

compared to the other agents.

In this case, we may be willing to take action

against Ui (e.g., stop doing business with him, or

prosecute him). In the rest of this section, we will use

value 0.3 as an example of what might be desired in _

values. To calculate the guilt probabilities and _

differences, we use throughout this section p ¼ 0:5.

Although not reported here, we experimented with other

p values and observed that the relative performance of

our algorithms and our main conclusions do not change.

If p approaches to 0, it becomes easier to find guilty

agents and algorithm performance converges. On the

other hand, if p approaches 1, the relative differences

among algorithms grow since more evidence is needed to

find an agent guilty.

B.3 Explicit Requests

In the first place, the goal of these experiments was to see

whether fake objects in the distributed data sets yield

significant improvement in our chances of detecting a

guilty agent. In the second place, we wanted to evaluate

our e-optimal algorithm relative to a random allocation.

We focus on scenarios with a few objects that are shared

among multiple agents. These are the most interesting

scenarios, since object sharing makes it difficult to

distinguish a guilty from non guilty agents. Scenarios

with more objects to distribute or scenarios with objects

shared among fewer agents are obviously easier to

handle. As far as scenarios with many objects to

distribute and many overlapping agent requests are

concerned, they are similar to the scenarios we study,

since we can map them to the distribution of many small

subsets.

Graph.2 Evaluation of Explicit Data Requests (1)

In our scenarios, we have a set of jTj ¼ 10

objects for which there are requests by n ¼ 10 different

agents. We assume that each agent requests eight

particular objects out

of these 10. Hence, each object is shared, on average,

among Pn i¼1 jRij jTj ¼ 8 agents.

Such scenarios yield very similar agent guilt

probabilities and it is important to add fake objects. We

generated a random scenario that yielded _ ¼ 0:073 and

min _ ¼ 0:35 and we applied the algorithms e-random

and e-optimal to distribute fake objects to the agents (see

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 676

[14] for other randomly generated scenarios with the

same parameters). We varied the number B of distributed

fake objects from 2 to 20, and for each value of B, we ran

both algorithms to allocate the fake objects to agents. We

ran optimal once for each value of B, since it is a

deterministic algorithm. Algorithm e-random is

randomized and we ran it 10 times for each value of B.

The results we present are the average over the 10 runs.

Fig. 3a shows how fake object allocation can affect _.

There are three curves in the plot. The solid curve is

constant and shows the _ value for an allocation without

fake objects (totally defined by agents’ requests). The

other two curves look at algorithms e-optimal and e-

random. The y-axis shows _ and the x-axis shows the

ratio of the number of distributed fake objects to the total

number of objects that the agents explicitly request. We

observe that distributing fake objects can significantly

improve, on average, the chances of detecting a guilty

agent. Even the random allocation of approximately 10 to

15 percent fake objects yields _ > 0:3. The use of e-

optimal improves _ further, since the e-optimal curve is

consistently over the 95 percent confidence intervals of e-

random. The performance difference between the two

algorithms would be greater if the agents did not request

the same number of objects, since this symmetry allows

nonsmart fake object allocations to be more effective than

in asymmetric scenarios. However, we do not study more

this issue here, since the advantages of e-optimal become

obvious when we look at our second metric. Fig. 3b

shows the value of min _, as a function of the fraction of

fake objects. The plot shows that random allocation will

yield an insignificant improvement in our chances of

detecting a guilty agent in the worst-case scenario. This

was expected, since e-random does not take into

consideration which agents “must” receive a fake object

to differentiate their requests from other agents. On the

contrary, algorithm e-optimal can yield min _ > 0:3 with

the allocation of approximately 10 percent fake objects.

This improvement is very important taking into account

that without fake objects, values min _ and _ are close to

0. This means that by allocating 10 percent of fake

objects, the distributor can detect a guilty agent even in

the worst-case leakage scenario, while without fake

objects, he will be unsuccessful not only in the worst case

but also in average case. Incidentally, the two jumps in

the e-optimal curve are due to the symmetry of our

scenario.

Algorithm e-optimal allocates almost one fake

object per agent before allocating a second fake object to

one of them. The presented experiments confirmed that

fake objects can have a significant impact on our chances

of detecting a guilty agent. Note also that the algorithm

evaluation was on the original objective. Hence, the

superior performance of optimal (which is optimal for the

approximate objective) indicates that our approximation

is effective. 8.3 Sample Requests With sample data

requests, agents are not interested in particular objects.

Hence, object sharing is not explicitly defined by their

requests. The distributor is “forced” to allocate certain

objects to multiple agents only if the number of requested

objects Pn i¼1 mi exceeds the number of objects in set T.

The more data objects the agents request in total, the

more recipients, on average, an object has; and the more

objects are shared among different agents, the more

difficult it is to detect a guilty agent.

Graph No.3 of Evaluation of Sample Data Request

Algorithm (2)

Consequently, the parameter that primarily

defines the difficulty of a problem with sample data

requests is the ratio Pn i¼1 mi jTj : We call this ratio the

load. Note also that the absolute values of m1; . . .; mn

and jTj play a less important role than the relative

values=jTj. Say, for example, that T ¼ 99 and algorithm

X yields a good allocation for the agents’ requests m1 ¼

66 and m2 ¼ m3 ¼ 33. Note that for any jTj and m1=jTj

¼ 2=3, m2=jTj ¼ m3=jTj ¼ 1=3, the problem is

essentially similar and algorithm X would still yield a

good allocation. In our experimental scenarios, set T has

50 objects and we vary the load. There are two ways to

vary this number: 1) assume that the number of agents is

fixed and vary their sample sizes mi, and 2) vary the

number of agents who request data. The latter choice

captures how a real problem may evolve. The distributor

may act to attract more or fewer agents for his data, but

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 677

he does not have control upon agents’ requests.

Moreover, increasing the number of agents allows us also

to increase arbitrarily the value of the load, while varying

agents’ requests poses an upper bound njTj.

Our first scenario includes two agents with

requests m1 and m2 that we chose uniformly at random

from the interval 6; . . . ; 15. For this scenario, we ran

each of the algorithms s-random (baseline), s-overlap, s-

sum, and s-max 10 different times, since they all include

randomized steps. For each run of every algorithm, we

calculated _ and min_ and the average over the 10 runs.

The second scenario adds agent U3 with m3 _ U½6; 15_

to the two agents of the first scenario. We repeated the 10

runs for each algorithm to allocate objects to three agents

of the second scenario and calculated the two metrics

values for each run.

We continued adding agents and creating new

scenarios to reach the number of 30 different scenarios.

The last one had 31 agents. Note that we create a new

scenario by adding an agent with a random request mi _

U½6; 15_ instead of assuming mi ¼ 10 for the new

agent. We did that to avoid studying scenarios with equal

agent sample request sizes, where certain algorithms have

particular properties, e.g., s-overlap optimizes the sum-

objective if requests are all the same size, but this does

not hold in the general case. In Fig. 4a, we plot the values

_ that we found in our scenarios. There are four curves,

one for each algorithm. The x-coordinate of a curve point

shows the ratio of the total number of requested objects

to the number of T objects for the scenario. The y-

coordinate shows the average value of _over all 10 runs.

Thus, the error bar around each point shows the 95

percent confidence interval of _ values in the 10 different

runs. Note that algorithms s-overlap, s-sum, and s-max

yield _ values that are close to 1 if agents request in total

fewer objects than jTj. This was expected since in such

scenarios, all three algorithms yield disjoint set

allocations, which is the optimal solution. In all

scenarios, algorithm s-sum outperforms the other ones.

Algorithms s-overlap and s-max yield similar _ values

that are between s-sum and s-random.

Algorithm s-sum now has the worst performance

among all the algorithms. It allocates all highly shared

objects to agents who request a large sample, and

consequently, these agents receive the same object sets.

Two agents Ui and Uj who receive the same set have _ði;

jÞ ¼ _ðj; iÞ ¼ 0. So, if either of Ui and Uj leaks his data,

we cannot distinguish which of them is guilty. Random

allocation has also poor performance, since as the number

of agents increases; the probability that at least two

agents receive many common objects becomes higher.

Algorithm s-overlap limits the random allocation

selection among the allocations who achieve the

minimum absolute overlap summation. This fact

improves, on average, the min_ values, since the smaller

absolute overlap reduces object sharing, and

consequently, the chances that any two agents receive

sets with many common objects. Algorithm s-max, which

greedily allocates objects to optimize max-objective,

outperforms all other algorithms and is the only that

yields min_ > 0:3 for high values of Pn i¼1 mi. Observe

that the algorithm that targets at sum objective

minimization proved to be the best for the _

Maximization and the algorithm that targets at max

objective minimization was the best for min_

maximization.

VIII. CONCLUSION
From this study we conclude that the data

leakage detection system model is very useful as compare

to the existing watermarking model. We can provide

security to our data during its distribution or transmission

and even we can detect if that gets leaked. Thus, using

this model security as well as tracking system is

developed. Watermarking can just provide security using

various algorithms through encryption, whereas this

model provides security plus detection technique. This

model is very helpful in various industries, where data is

distribute through any public or private channel and shred

with third party. Now, industry & various offices can rely

on this security & detection model.

ACKNOWLEDGEMENT

For all the efforts behind the paper work, I first

& foremost would like to express my sincere appreciation

to the staff of Dept. of Computer Sci.& Engg., for their

extended help & suggestions at every stage of this paper.

It is with a great sense of gratitude that I acknowledge the

support, time to time suggestions and highly indebted to

my guide Prof. S.V.Kulkarni (my project guide), and

Dr.R.B.Naik (HOD). Finally, I pay sincere thanks to all

those who indirectly and directly helped me towards the

successful completion of the paper.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 678

REFERENCES

[1] Sandip A.Kale, Prof. Kulkarni S.V. (Department Of Computer Sci.

&Engg,MIT College of Engg, Dr.B.A.M.University, Aurangabad(M.S),
India, Data Leakage Detection: A Survey, (IOSR Journal of Computer

Engineering (IOSRJCE)ISSN : 2278-0661 Volume 1, Issue 6 (July-Aug

2012), PP 32-35 www.iosrjournals.org
 [2] IEEE Transactions On Knowledge And Data Engineering, Vol. 22,

No. 3, March 2011 Data Leakage Detection Panagiotis Papadimitriou,

Member, IEEE, Hector Garcia-Molina, Member, IEEE P.P (2,4-5)
[3] Faith M. Heikkila, Data Leakage: What You Need to Know, Pivot

Group Information Security Consultant. P.P (1-3)

[4] Rudragouda G Patil Dept Of CSE, The Oxford College Of Engg,
Bangalore.International Journal Of Computer Applications In

Engineering Sciences [VOL I, ISSUE II, JUNE 2011] [ISSN: 2231-

4946] P.P (1, 4) Development Of Data Leakage Detection Using Data

Allocation Strategies

[5] Chun-Shien Lu, Member, IEEE, and Hong-Yuan Mark Liao,

Member, IEEE MultipurposeWatermarking for Image Authentication
and Protection

 [6] A. Shabtai, a. Gershman, M. Kopeetsky, y. Elovici Deutsche

Telekom Laboratories at Ben-Gurion University, Israel. Technical
Report TR-BGU-2409-2010 24 Sept. 2010 1 A Survey of Data Leakage

Detection and Prevention Solutions P.P (1-5, 24-25)

[7] Panagiotis Papadimitriou 1, Hector Garcia-Molina 2 Stanford
University 353 Serra Street, Stanford, CA 94305, USA P.P (1, 4-5)

A Model for Data Leakage Detection

[8]Web-based Data Leakage Prevention Sachiko Yoshihama1, Takuya
Mishina1, and Tsutomu Matsumoto2 1 IBM Research - Tokyo, Yamato,

Kanagawa, Japan fsachikoy

[9] Joseph A. Rivela Senior Security Consultant P.P (4-6) Data
Leakage: Affordable Data Leakage Risk Management

[10] Data Leakage Prevention: A news letter for IT Professionals Issue

5 P.P (1-3)

[11] Panagiotis Papadimitriou, Student Member, IEEE, and Hector

Garcia-Molina, Member, Data Leakage Detection IEEE P.P (2-6)IEEE

transactions on knowledge and data engineering, vol. 23, no. 1,
JANUARY 2011

[12] Archie Alimagno California Department of Insurance P.P (2-

7),The Who, What, When & Why of Data Leakage
Prevention/Protection

[13] An ISACA White Paper Data Leak Prevention P.P (3-7)

[14] Mr.V.Malsoru, Naresh Bollam/ REVIEW ON DATA LEAKAGE
DETECTION , International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 1, Issue 3,
pp.1088-1091 1088 | P a g e.

Biography
Sandip A. Kale- Passed Bachelor of Engg in
Computer Science & Engg, Pursuing Master of

Engg in software Engg at MIT College of Engg,

MS, India. Has worked as Head of Computer

Science & Engg Dept at MSS’s College of Engg &

Technology, Jalna, MS, India. Currently working as

Lecturer at Govt. Polytechnic, Aurangabad, MS,
India. Total teaching Experience-4.3 years.

Prof.Swati V. Kulkarni: Has completed Master of Engg in Computer
Science & Engg. Currently working as Associate Professor at MIT

College of Engg, Aurangabad, MS, India. Total teaching experience-8.6

years.

http://www.ijera.com/

