
ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

   
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 8, August 2013 

 

Copyright to IJARCCE                                                              www.ijarcce.com                                                                             3001 

Robust Ramp Metering Design using Sliding 

Mode Control of a Hybrid Dynamical Model 

with Functional Uncertainties 
 

Bhawna Sharma
1
, Devanand

2
, Pushkin Kachroo

3
 

Assistant Professor, Department of Computer Engineering, Govt. College of Engineering & Technology, Jammu, India
1
  

Professor, Department of Computer Science & Information Technology, University of Jammu, Jammu, India
 2
 

Professor, Department of Electrical & Computer Engineering, University of Nevada, Las Vegas, NV 89154, USA
3
 

 

Abstract: This paper presents an application of sliding mode control based concept to real time freeway ramp metering. A 

robust hybrid feedback control design for controlling the traffic flow on ramp and entering a freeway to reduce traffic 

congestion has been designed. This model uses Godunov based hybrid switching with sliding mode control to produce 

robust stability for the system in presence of parametric uncertainties and functional disturbances. The main obstacle 

encountered in real time application using sliding mode control is chattering which is suppressed by introducing a boundary 

layer around the switching surface and using a continuous control function within the boundary layer. Simulations have 

been performed that show the effectiveness of the proposed novel approach and confirm that sliding mode is reachable in 

finite time. 
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I. INTRODUCTION 

An increasingly important area in the field of intelligent 

transportation systems is freeway traffic control, which 

has become feasible owing to the freeway infrastructure 

development in metropolitan areas in both developed and 

developing countries. The dramatic increase in the 

vehicular traffic worldwide has led to the congestions on 

the freeways resulting in increased environmental 

pollution, reduced traffic safety and thereby economic loss 

to the country. 

Ramp metering is a way to improve traffic flow by 

regulating the ramp inflow to a freeway.  By effectively 

controlling the ramp inflow, the traffic density on the 

mainline freeway can be kept below critical level to provide 

a congestion free freeway.  For this type of operation, many 

factors have to be considered such as the inflow at the 

mainline, the queue holding capacity of the ramp, availability 

of sensors and the arterial system connected to the ramp 

system. 

The ramp flow problem has been studied for more than 

forty five years.  Some of the early work is documented in 

references [1], [2], [3] and [4].  This work was related to 

merge control and ramp metering control design based on 

demand -capacity relationships.  Some early deployment 

studies were also performed at various sites such as Chicago 

and Houston.  Reference [5] provides a current overall 

overview of ramp  

metering.  References [6], [7] and [8] show the work that 

used optimization techniques for solving optimal ramp 

control problems.  Some evaluation studies and simulation  

 

 

based evaluation methods are described in [9] and [10]. Some 

researchers have designed feedback control laws for ramp 

metering [11] and [12]. These laws are designed after 

performing linearization of the dynamics about the nominal 

equilibrium state. Recently, ramp meters have been deployed 

in many places internationally, such as in France [13], 

Germany [14], U.S.A [15], Italy [16], U.K. [17] and New 

Zealand [18]. Model formulations of distributed model and 

lumped model are discussed in [19] and [20]. 

II. BACKGROUND 

Feedback control is a very powerful technique for ramp 

control since it is traffic responsive and has the least 

computation cost, hence is a real-time control strategy.  

However, until now, mainly linear control design has been 

studied, which is powerful but provides only local results.  

For global results, nonlinear techniques become necessary. 

The topology of a ramp metering system is shown in Fig. 1. 

The designer of the controller needs to address issues such 

as controllability and observability of the traffic system, 

actuation and sensing, robustness, and stability of the closed 

loop system. 

Earlier ramp metering models using lumped parameters for 

feedback control design do not produce the rarefaction 

behaviour of the traffic. It means that when the traffic 

density is at jam density, the outflow of traffic from the 

section becomes zero, thereby meaning that traffic would 

never come out of the jam. Moreover, these models do not 

satisfy the entropy conditions required by the distributed 
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parameter hybrid dynamic model. However, this problem 

has been overcome by Godunov based model for feedback 

ramp metering [21]. This model gives the feedback control 

design for ramp metering which provides asymptotic 

behaviour for the closed loop system and reproduces 

rarefaction behaviour of the traffic. This model is also 

entropy consistent and uses Godunov based switching 

ordinary differential equations to produce a hybrid dynamic 

model. 

 

 
Fig. 1. Topology of Ramp Metering System 

 
However, there are uncertainties in the dynamics of the non 

linear control systems which result in modelling 

inaccuracies. Robust control deals with uncertainties in its 

approach to controller design. Robust control methods are 

designed to function properly so long as uncertain 

parameters or disturbances are within some 

typically compact set. Robust methods aim to achieve 

robust performance and stability in the presence of 

bounded modelling errors. 

A simple approach to robust control is sliding control 

methodology. Sliding mode control strategy helps in 

achieving a satisfactory level of robustness and invariant 

behavior by a simple method of changing the structure of 

control law. Robust hybrid feedback control design for 

ramp metering using sliding mode has been presented in 

[22]. Here feedback control design is presented for 

controlling the inflow into the freeways to reduce 

congestion on the highways using hybrid dynamics based 

on sliding control methodology. The sliding controller 

design provides a systematic approach to the problem of 

maintaining stability and consistent performance.  

Our contribution in this paper is to modify the control laws 

using sliding mode control to minimize the estimation 

error in the upstream traffic flow and downstream traffic 

flow. Thus sliding controller design has been presented to 

provide a systematic approach to the problem of 

maintaining stability and consistent performance. A trade- 

off between tracking performance and functional 

uncertainties has been achieved. The major drawback of 

application of sliding mode control to real applications is 

control chattering. This drawback has been dealt with 

using the boundary layer approach wherein the design has 

been further modified to move to the steady state to the 

sliding surface in finite time by reducing chattering. 

Simulation results of the proposed hybrid model are also 

presented.  

The next section presents the mathematical model for the 

system, followed by a section on control design, and 

finally the section that presents simulation results. 

III. MATHEMATICAL MODEL 

The LWR (Lighthill-Whitham-Richards) model [23] and 

[24] is a macroscopic one dimensional traffic model. 

According to this model, traffic behavior for a single one-

way road can be described using three variables that vary 

in time t and space x: flow u(x,t), density ρ(x,t),and speed 

v(x,t). Flow is the product of speed and the density:  

𝑢 𝑥, 𝑡 = 𝜌 𝑥, 𝑡  𝑣 𝑥, 𝑡     ∀ 𝑥, 𝑡 
 

(1) 

 

For a highway without entrance or exits, the number of 

vehicles between any two locations x1 and x2 (x1 < x2) 

needs to be conserved at any time t , i.e. the change in the 

number of vehicles between x1 and x2 is equal to the flow 

entering via x1 minus the flow leaving via x2 : 

𝑑

𝑑𝑡 
 𝜌 𝑥, 𝑡 𝑑𝑥

𝑥2

𝑥1

= 𝑢 𝑥1 , 𝑡 − 𝑢(𝑥2 , 𝑡) 

 

(2) 

 

or in differential form: 

𝜕

𝜕𝑡
 𝜌 𝑥, 𝑡 + 

𝜕

𝜕𝑥
 𝑢 𝑥, 𝑡 =  0 

 

(3) 

 

 The two relations (1) and (3) are the basic relations that 

any model must satisfy. We have three variables of 

interest, a third relation is needed. Greenshield’s model 

[25] uses a linear relationship between traffic density and 

traffic speed. 

𝑣  𝜌 =  𝑣𝑓   1 −
𝜌

𝜌𝑚𝑎𝑥
   

 

(4) 

 

 Here 𝑣𝑓  is free flow speed and 𝜌𝑚𝑎𝑥  is the maximum 

traffic density. Equation (4) indicates that as the density 

(ρ) approaches zero, speed (v) approaches free flow speed 

𝑣𝑓 . Also, as the speed 𝑣 approaches zero, the density 

approaches 𝜌𝑚𝑎𝑥  which is the jam density. The maximum 

flow occurs when the traffic is flowing at half of free flow 

speed. 

A space discretized model of (3) for a free way ramp 

metering is presented in Fig. 2 

 
Fig. 2. Space Discretized Model for Ramp Metering 

 

Here 𝑢𝑖𝑛   𝑡  is the inflow, 𝑢𝑜𝑢𝑡   𝑡 is the outflow and 

𝑢𝑟𝑝   𝑡  is the ramp inflow into the free way. For a unit 

length of the section, the ordinary differential equation 

model for Fig. 2 given by: 

𝑑𝜌(𝑡) 

𝑑𝑡
 =   𝑢𝑖𝑛   𝑡 + 𝑢𝑟𝑝   𝑡  − 𝑢𝑜𝑢𝑡   𝑡  

 

(5) 

 

http://en.wikipedia.org/wiki/Stability_theory
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The outflow traffic 𝑢𝑜𝑢𝑡   𝑡  using Greenshield’s model is 

given by 

𝑢𝑜𝑢𝑡   𝑡    =   𝑣𝑓    𝜌 𝑡    1 −
𝜌 𝑡 

𝜌𝑚𝑎𝑥
   

 

(6) 

 

Using (5) and (6), if the traffic density is equal to jam 

density and 𝑢𝑟𝑝   𝑡  is zero, then the rate of increase of 

traffic density is non-negative. For positive inflow, the 

density increases according to the equation. Hence, there 

are two problems in this model which needs to be fixed 

when traffic density is equal to the jam density. Firstly, the 

inflow from upstream can increase the density above the 

jam density and secondly the outflow is zero from the 

section not allowing for the traffic to be dissipated to 

downstream. 

Godunov’s model has been used successfully to address 

those two problems and is based on using the 

characteristic information within the framework of a 

conservation method. Godunov proposed to solve 

Riemann problems forward in time rather than attempting 

to follow characteristics backward in time. Here initial 

condition is a piece wise constant function with two values 

𝜌𝑙𝑡  and 𝜌𝑟𝑡  for the upstream (left) and downstream (right) 

densities [27]. From the junction of two densities, either a 

shockwave or a rarefaction wave emanates.  

A shockwave develops if 𝑓 ′ 𝜌𝑙𝑡 > 𝑓 ′ 𝜌𝑟𝑡  . A rarefaction 

develops if 𝑓 ′ 𝜌𝑙𝑡 < 𝑓 ′ 𝜌𝑟𝑡   [28]. The shockwave and 

rarefaction is shown in Fig. 3. 

The shockwave speed, s is given by (7) in which 𝑥𝑠 (𝑡) is 

the position of the shockwave as a function of time. The 

inflow at the junction between the two traffic densities will 

be a function of upstream traffic density if the shockwave 

speed is positive. But if the shockwave speed is negative, 

then the inflow at the junction will be a function of 

downstream traffic density. 

𝑠 =  
𝑑𝑥𝑠 (𝑡)

𝑑𝑡
=  

  𝑓 𝜌𝑙𝑓 − 𝑓(𝜌𝑟𝑔) 

𝜌𝑙𝑓 −  𝜌𝑟𝑔
 

 

(7) 

 

Godunov based ODE model for traffic is obtained from 

the analysis of shockwave and rarefaction conditions. The 

ODE for the Godunov law obeys the conservation law and 

is given as 

𝑑𝜌(𝑡) 

𝑑𝑡
 =   𝑢𝑖𝑛   𝑡 − 𝑢𝑜𝑢𝑡   𝑡 + 𝑢𝑟𝑝   𝑡   

 

(8) 

 

The Godunov based hybrid dynamics are shown in Fig.4.  

Here the inflow 𝑢𝑖𝑛(𝑡) is a function of the upstream 

density and downstream density, where upstream and 

downstream are with respect to left junction and 𝑢𝑖𝑛 (𝑡) is 

given by (9), using a new function F(.,.) obtained from 

Godunov’s method. 

 
Fig. 3. Shockwave and Rarefaction Phenomenon 

 

 
Fig. 4. Godunov based hybrid dynamics 

  

𝑢𝑖𝑛  𝑡 =  𝐹   𝜌𝑙𝑓 ,𝜌  
 

(9) 

 

For the right junction, the outflow 𝑢𝑜𝑢𝑡 (𝑡) is given as: 

𝑢𝑜𝑢𝑡  𝑡 =  𝐹   𝜌,𝜌𝑟𝑓   
 

(10) 

 

The function 𝐹    𝜌𝑙𝑓  ,𝜌𝑟𝑓    is given by the Godunov 

method [27]. 

𝐹    𝜌𝑙𝑓  ,𝜌𝑟𝑓   =  𝑓   𝜌∗  𝜌𝑙𝑓  ,𝜌𝑟𝑔     

 

(11) 

 

where 𝜌∗  is the flow dictating density and is obtained 

from the four cases [27]: 
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Here 𝜌𝑠  is obtained as a solution to 𝑓 ′(𝜌𝑠) = 0, where, 𝜌𝑠 
is neither 𝜌𝑙𝑓  nor 𝜌𝑟𝑔  but is some intermediate value 

satisfying Godunov dynamics. 

Godunov method calculates the steady state traffic density 

of a free way segment on the basis of densities on both 

sides of the junction viz. upstream(left) and 

downstream(right) i.e. the know boundary conditions. But 

there are functional uncertainties. Robust control is one of 

the best approaches to deal with uncertainties in the 

model. 

A. Sliding Control Methodology 

Sliding mode control (SMC) [29] is a powerful non linear 

robust control technique. The sliding mode design is 

widely used due to the finite time convergence, robustness 

with respect to uncertainties and the possibility of 

uncertainty estimation. However, full state information is 

required in controller design which is basically a 

drawback, since in most practical applications, only the 

output measurement is available. To solve this problem, a 

feedback based sliding mode control will be designed 

which provides systematic approach to achieve the 

stability and consistent performance.  

In this methodology, the n
th

 order differential equation is 

replaced its equivalent first order equations and then in 

presence of arbitrary parametric inaccuracies, the perfect 

performance shall be achieved. SMC utilizes 

discontinuous control laws to drive the system state 

trajectory onto a specified surface in the state space, the 

so called sliding or switching surface, and to keep the 

system state on this manifold for all the subsequent times. 

Consider the first order dynamical system,  

𝑥   𝑡 = 𝑓(𝑥 𝑡 ) +  𝑢 𝑡    
 

(12) 

 

where the 𝑥 𝑡  is the output of interest and 𝑢 𝑡  is the 

control input. In (12) the dynamics of function 𝑓(𝑥 𝑡 ) is 

not exactly known, but the extent of the imprecision on 

𝑓 𝑥 𝑡   is upper bounded by a known continuous 

function of 𝑥 𝑡 . 
So the time varying surface 𝑠 𝑡  is written as 

𝑠 𝑡 =  𝑥 𝑡 −  𝑥𝑑   𝑡  
 

(13) 

 

which is also the tracking error. Here 𝑥𝑑   𝑡  is the desired 

output. The problem of keeping the scalar 𝑠 𝑡  at zero can 

be achieved by choosing the control law 𝑢 𝑡  of (12) such 

that outside of 𝑠 𝑡 , 

1

2

𝑑

𝑑𝑡
𝑠2 ≤ −𝜂 𝑠  

 

(14) 

 

where η is a strictly positive constant. Equation (14) 

states that the squared distance to the surface 𝑠2 

decreases along all system trajectories pointing 

towards surface 𝑠 𝑡  as shown in Fig. 5. 

 
 

Fig. 5. Sliding Condition 
 

Here, 𝑠 𝑡  is referred to as sliding surface and the system 

behavior is called sliding mode. Thus a stable feedback 

control 𝑢 𝑡  in (12) is designed such that s
2   

remains a 

Lyapunov like function of the closed loop system in spite 

of functional uncertainties. The designing of controller is 

a two step process. First, a feedback control law 𝑢 𝑡  is 

selected to verify sliding condition given in (14). The 

control law has to be discontinuous across 𝑠 𝑡 . But in 

real life applications, the control signal cannot switch at 

infinite frequency and is necessarily imperfect, thereby 

leading to chattering as shown in Fig 6. Chattering is 

dangerous high frequency vibration of the controlled 

system and is undesirable in practice. Therefore, in 

second step the discontinuous control law 𝑢 𝑡  is suitably 

smoothened to achieve an optimal tradeoff between 

control bandwidth and tracking precision. Thus in totality 

both functional uncertainties and robustness is achieved.  

 
Fig. 6. Chattering Effect 

Now (14) can be rewritten as 

𝑠𝑠 ≤ −𝜂 𝑠  
 

(15) 

 

From (13), 𝑠   is given as  

𝑠  𝑡 =  𝑥  𝑡 −  𝑥𝑑    𝑡  (16) 

Case 1 𝑓 ′ 𝜌𝑙𝑓 , 𝑓 ′ 𝜌𝑟𝑔 ≥ 0 ⇒ 𝜌∗ = 𝜌𝑙𝑓  

Case 2 𝑓 ′ 𝜌𝑙𝑓 , 𝑓 ′ 𝜌𝑟𝑔 ≤ 0 ⇒ 𝜌∗ = 𝜌𝑟𝑔  

Case 3 𝑓 ′ 𝜌𝑙𝑓 ≥ 0 ≥  𝑓 ′ 𝜌𝑟𝑔 ⇒ 𝜌∗ = 𝜌𝑙𝑓 ,  

𝑖𝑓 𝑠 > 0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 𝜌∗ = 𝜌𝑟𝑔  

Case 4 𝑓 ′ 𝜌𝑙𝑓 < 0 <  𝑓 ′ 𝜌𝑟𝑔 ⇒ 𝜌∗ = 𝜌𝑠  
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Substituting the value of 𝑥   𝑡  from (12), we have 

𝑠  𝑡 =  𝑓(𝑥 𝑡 ) +  𝑢 𝑡 −  𝑥𝑑    𝑡  
 

(17) 

 

Therefore, 

𝑠𝑠 =   𝑓(𝑥 𝑡 ) −  𝑥𝑑    𝑡 +  𝑢 𝑡  𝑠 

 

(18) 

 

As the dynamics of 𝑓(𝑥 𝑡 ) is not known, but it can be 

estimated as 𝑓 (𝑥 𝑡 ). The estimation error on f is 

assumed to be bounded by some known function  

𝐹 = 𝐹 (𝑥, 𝑥 ) ∶   𝑓 (𝑥 𝑡 ) − 𝑓(𝑥(𝑡)) ≤ 𝐹  
 

(19) 

 

In order to have the system track 𝑥 𝑡 ≅ 𝑥𝑑(𝑡), the 

sliding surface 𝑠 𝑡  is defined to be zero. Therefore, the 

best approximation 𝑢   𝑡  of a continuous control law that 

would achieve  𝑠  𝑡 = 0 is given by: 

𝑢   𝑡 = −𝑓 (𝑥 𝑡 ) + 𝑥𝑑  (𝑡) 

 

(20) 

 

In order to satisfy the sliding condition (14) in spite of 

uncertainties on the dynamics 𝑓(𝑥 𝑡 ), a term 

discontinues across the surface 𝑠 𝑡  is added to 𝑢   𝑡  : 

𝑢(𝑡) = 𝑢 (𝑡) − 𝑘 𝑠𝑔𝑛(𝑠(𝑡)) 

 

(21) 

 

where 𝑠𝑔𝑛 is the sign function and is defined as 

𝑠𝑔𝑛 𝑠 𝑡  =  
+1 𝑖𝑓 𝑠 𝑡 ≥ 0

−1 𝑖𝑓 𝑠 𝑡 < 0
  

 

(22) 

 

and k is the control discontinuity across the surface. 

From (18) and (21) we have 

𝑠𝑠 =   𝑓(𝑥 𝑡 ) −  𝑥𝑑    𝑡 + 𝑢 (𝑡) − 𝑘 𝑠𝑔𝑛(𝑠(𝑡)) 𝑠 

 

(23) 

 

Substituting 𝑢   𝑡  from (20) in (23), we have 

𝑠𝑠 =   𝑓(𝑥 𝑡 ) − 𝑓 (𝑥 𝑡 ) − 𝑘 𝑠𝑔𝑛(𝑠(𝑡)) 𝑠 

 

(24) 

 

or 

𝑠𝑠 = 𝐹𝑠 − 𝑘 𝑠   
 

(25) 

 

Assuming, 𝑘 =  𝐹 +  𝜂, (25) is reduced to (15), which 

proves the sliding condition for the control function. The 

control discontinuity k across the surface 𝑠 𝑡  increases 

with the extent of parametric uncertainty. The control 

algorithm causes chattering, which can be removed for 

the controller to be stable. This can be achieved by 

smoothing out the control discontinuity in a thin boundary 

layer neighbouring the switching surface by introducing 

the saturation function. Saturation function is continuous 

approximation of sign function [26] and is defined as: 

𝑠𝑎𝑡 𝑠 𝑡 ,𝜑 =

 
 

 
+1 𝑖𝑓 𝑠 𝑡 ≥ 𝜑

−1 𝑖𝑓 𝑠 𝑡 ≤ −𝜑

𝑠 𝑡 

𝜑
, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

                   
 

(26) 

 

 

IV. HYBRID DYNAMICAL MODEL AND 

CONTROL DESIGN 

The ODE model for the switched hybrid ramp metering 

system [30] is given by: 

𝑑𝜌(𝑡) 

𝑑𝑡
 =   𝐹   𝜌𝑙𝑓  ,𝜌  − 𝐹   𝜌,𝜌𝑟𝑔     + 𝑢𝑟𝑝  𝑡    

 

(27) 

 

Here the switching takes place based on the values of 

 𝜌𝑙𝑓 ,𝜌 and 𝜌𝑟𝑔 . The function 𝐹   𝜌𝑙𝑓  ,𝜌  can have three 

different values, 𝑓 𝜌𝑙𝑓 , 𝑓 𝜌  𝑜𝑟 𝑓(𝜌𝑠). Similarly, the 

function 𝐹   𝜌,𝜌𝑟𝑔    can have three different values 

𝑓 𝜌 , 𝑓 𝜌𝑟𝑔  𝑜𝑟 𝑓(𝜌𝑠). 

Hence dynamics can be written as: 

𝑑𝜌 𝑡 

𝑑𝑡
=  𝐺𝑛    𝜌𝑙𝑓 ,𝜌 ,𝜌𝑟𝑔   + 𝑢𝑟𝑝   𝑡  

 

(28) 

 

where 𝑛 ∈ {1,2,3,…… .9} and different Gn function can be 

obtained from (11),(27),(28) applying Godunov 

dynamics. 

 

To keep the freeway traffic density at ρs (which is ρm/2 as 

per Greenshield’s model to maximize the flow), the 

feedback linearization model for ramp metering control is 

given  

𝑢𝑟𝑝   𝑡 = − 𝐺𝑛    𝜌𝑙𝑓 ,𝜌 ,𝜌𝑟𝑔 − 𝑘 (𝜌 𝑡 − 𝜌𝑠), 𝑘

> 0 

 

(29) 

 

where, k is control discontinuity. 

We propose the control law using sliding model as: 

𝑢𝑟𝑝   𝑡 = − 𝐺𝑛    𝜌𝑙𝑓 ,𝜌 ,𝜌𝑟𝑔 −  𝑘  𝑠𝑔𝑛  𝑠(𝑡) , 𝑘

> 0 

 

(30) 

 

where 𝑠 𝑡 = (𝜌 𝑡 − 𝜌𝑠),  which is the sliding surface. 

As the inflow and outflow given in (27) are not exactly 

known, their estimated values are taken. 

  

The function 𝐺𝑛  in (30) can be obtained by taking the 

estimated values of upstream traffic flow ,𝑢 𝑖𝑛(𝑡) and 

downstream traffic flow, 𝑢 𝑜𝑢𝑡 (𝑡). The control law given 

by 𝑢𝑟𝑝   𝑡  in (30) satisfies the sliding condition given in 

(14) is discontinuous across 𝑠 𝑡 . This control law leads 

to chattering which is undesirable. Chattering is removed 

by using a non linear saturation function described in (26) 

which smoothens the control discontinuity in a boundary 

layer neighbouring the switching surface. 

The modified control law is given as: 

𝑢𝑟𝑝  𝑡 = − 𝐺𝑛  𝜌𝑙𝑓 ,𝜌 ,𝜌𝑟𝑓  − 𝑘  𝑠𝑎𝑡  𝑠 𝑡 ,∅ ,𝑘

> 0 

 

(31) 

 

which reduces the chattering. 
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V. SIMULATIONS 

The modified control design has been implemented by 

using MATLAB simulator.  The feedback linearization 

based hybrid dynamical model for the ramp metering 

control is consistent with the conservation law as well as 

the Godunov conditions.  Further to deal with the 

functional uncertainties in the dynamics of the nonlinear 

system and to have a robust control design, sliding mode 

control is applied using sign function. But this leads to 

chattering. The chattering has been removed by using a 

non linear saturation function in the control law.  

The ordinary differential condition (ODE) given in (27) 

which uses the hybrid control scheme developed in this 

study is implemented in this simulation. The lower and 

upper limits of traffic flow are taken as zero and 75% of 

the maximum flow is applied at the inflow of the control. 

The simulation was run with different initial values of 

traffic density viz. ρ0 = 50, 20, 10 (vehicles / km) with 

jam density, ρm= 86 (vehicles / km) and the simulation 

results are depicted in the following figures. The free low 

speed is taken as 70 km/hour. As shown in the Traffic 

Density using Hybrid Control Plot, the traffic density 

converges to the desired critical density that maximizes 

the flow. The desired result is obtained as the steady state 

traffic density of 43 (i.e. ρm/2) is achieved. The chattering 

phenomenon is clearly shown in Traffic Density with 

parametric uncertainties using Sliding Mode Control Plot, 

where high control activity is observed around the steady 

state value of traffic density i.e. 43. The estimated value 

of free flow speed is taken as 69 km/hour. The chattering 

reduction using the saturation function is also shown in 

Traffic Density using Sliding Mode Control with 

Saturation Function Plot. Here the value of φ is taken as 

1.0, 2.0 & 2.25 for applying boundary layer conditions. 

The effect of increasing the boundary layer smoothes the 

steady state value and eliminates chattering as is clearly 

depicted in the simulation results. However, increasing 

the boundary layer shifts the steady state value to little 

lower than 43. The simulation results are shown in Fig. 7 

to Fig. 18. 

 

 
Fig. 7.  Freeway segment traffic density using the hybrid based control, 

ρ0 = 50 and vf = 70 

 

 
 
Fig. 8.  Freeway segment traffic density using the sliding mode control 

depicting chattering phenomenon, ρ0 = 50, vf = 70, 𝑣 𝑓=69 

 

 

 
 

Fig. 9.  Freeway segment traffic density using sliding mode control by 

adopting non linear saturation function, ρ0 = 50, vf = 70, 𝑣 𝑓=69 and φ = 

2.25 

 

 

 
 
Fig. 10. Freeway segment traffic density using the hybrid based control, 

ρ0 = 20 and vf = 70 
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Fig. 11.  Freeway segment traffic density using the sliding mode control 

depicting chattering phenomenon, ρ0 = 20, vf = 70, 𝑣 𝑓=69 

 

 

 
 
 

Fig. 12.  Freeway segment traffic density using sliding mode control by 

adopting non linear saturation function, ρ0 = 20, vf = 70, 𝑣 𝑓=69 and φ = 1 

 
 

 

 
Fig. 13. Freeway segment traffic density using sliding mode control by 

adopting non linear saturation function, ρ0 = 20, vf = 70, 𝑣 𝑓=69 and φ =2 

 

 

 
 
Fig. 14.  Freeway segment traffic density using the hybrid based control, 

ρ0 = 10 and vf = 70 
 
 

 
 

 

Fig. 15.  Freeway segment traffic density using the sliding mode control 

depicting chattering phenomenon, ρ0 = 10, vf = 70, 𝑣 𝑓=69 

 

 

 
 
 

Fig. 16.  Freeway segment traffic density using sliding mode control by 

adopting non linear saturation function, ρ0 = 10, vf = 70, 𝑣 𝑓=69 and φ =1 
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Fig. 17.  Freeway segment traffic density using sliding mode control by 

adopting non linear saturation function, ρ0 = 10, vf = 70, 𝑣 𝑓=69 and φ = 2 
 

 
Fig. 18.  Freeway segment traffic density using sliding mode control by adopting 

non linear saturation function, ρ0 = 10, vf = 70, 𝑣 𝑓=69 and φ = 2.25 

VI. CONCLUSIONS 
 

The paper presents a robust hybrid feedback control 

design of an isolated ramp based on Godunov dynamics 

and sliding mode control methodology. Functional 

uncertainties are taken into account and sliding mode 

control is used to present a design which is stable and 

shows consistent performance. The control design 

presented maximizes the flow of traffic on the freeways 

and traffic congestion is avoided. Since the control 

function in real life applications is imperfect, it leads to 

chattering. Therefore, the control law was further 

modified by using a boundary layer approach 

neighbouring the switching surface by introducing a non 

linear saturation function which smoothes the control 

discontinuity. Simulations for the model have been 

performed that show the effectiveness of the proposed 

novel approach. 
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