
ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2607

Performance Improvement of a Packet Filter By

Filtering Compressed Packet

Archita Dad
1
, Anil Saroliya

2

Student, Computer Science, Amity University, Rajasthan, India
 1

Assistant Professor, Computer Science, Amity University, Rajasthan, India
 2

Abstract: Internet is used as an extensive source for communication. It has also growths the unlawful activities by terrorist

and criminals to communicate information. For crime detection and prevention, law enforcement agencies need to keep up

with the rising trends in these areas and needs a tool to monitor network traffic. This tool is not a need of only law

enforcement agencies but also commercial sector so that companies can prevent their valuable data from falling into hands

of their competitor. Now day’s these tools are provided with network devices and also available in market such as

PickPacket, PKTD, JPCAP, NetXMS, etc. Data can be filtered at 3 levels in these tools by network parameters, application

specific and content specific Filter. To speed up the transaction and for security reasons data is used in compressed form on

internet. In content specific level it is difficult to apply sting searching algorithm on compressed data. This paper presents a

solution to decompress HTTP data on network.

Keywords: Pick-Packet, HTTP, TELNET, FTP, Compressed Data, gzip.

I. INTRODUCTION

In last few decades internet has an exponential growth.

Large volume of data can be exchanged on internet. This has

resulted in an ever increasing need for effective tools that

can monitor the network. Basic goal of network monitoring

is to read packets from network and analyze its content.

 Introduction part of this paper contains the basic

idea about Network monitoring tool and pick-packet. Second

point describes the architecture and levels of pick-packet. It

also describes the working of Pick-Packet. Third section of

this paper describes the application protocol supported by

Pick-Packet specially HTTP protocol. After that need of

compressed data and processed of filtering compressed data

is discussed. In fifth section how we can filter compressed

data on fly is shows and what are the modifications needed

after filtering data compression on fly is shown in last

section. After that conclusion of this paper is describe.

Network monitoring tools are also known as Sniffer. Sniffers

have used in law enforcement agencies for crime detection

and prevention and in unlawful activities to break the

computer. Generally sniffers work by putting the Network

Interface Card into promiscuous mode. In this mode the

Ethernet card listens to “all the traffic which is coming in”.

If the Network Interface Card is not in promiscuous mode, it

ignores all traffic which is not intended for it. Filtering can

be done in two modes, on-line filtering and off-line filtering.

On-line filtering is implemented in kernel while capturing

the traffic. Off-line filtering is done after the captured data is

stored on disk. However sniffers can be rendered useless

through the use of encryption mechanisms. Several tools

exist that can monitor network traffic. Usually such tools put

the network card of a computer into the “promiscuous

mode”. This enables the computer to listen to the entire

traffic on that subsection of the network. There can be an

additional level of filtering of these packets based on the IP

related header data present in the packet. Usually such

filtering specifies simple criteria for the IP addresses and

ports present in the packet. Filtered packets are written on to

the disk. And after that offline analysis is done on these

packets to gather the required information from these

packets. [1]

Pick-Packet is a monitoring tool that can filter packets

across the network layer and application layer of the OSI

network stack for selected applications. Criteria for filtering

can be specified in Pick-Packet Configuration File Generator

for network layer and application layer for applications like

TELNET, SMTP, HTTP, FTP etc. It also supports real-time

searching for text string in application and packet content.

Pick-Packet filter the packet according to specified criteria

in configuration file and store them to some for further

processing.

A special provision has been made in the tool for two modes

of capturing packets depending on the amount of granularity

with which data has to be captured. These are the “PEN”

mode and the “FULL” mode of operations. In the first mode

it is only established that a packet corresponding to a

particular criterion specified by the user was encountered

and minimal information required for further detailed

investigation is captured. In the second mode the data of

ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2608

such a packet is also captured. Judiciously using these

features can help protect the privacy of innocent users.

The packets dumped to the disk are analyzed in the offline

mode. Post dump analysis makes available to the

investigator separate files for different connections. The tool

provides a summary of all the connections and also provides

an interface to view recorded traffic. A GUI for generating

the input rules to the filter is also provided.[2,3]

II. PACKET FILTERING BY PICK-PACKET

Pick-Packet can be logically viewed as aggregate of four

components working in pipeline, ideally deployed on four

different machines. These components are – the Pick-Packet

Configuration File Generator, the Pick-Packet Filter, the

Pick-Packet Post Processor and the Pick-Packet Data

Viewer GUI. An architectural view of Pick-Packet is shown

in Figure 1.

A. Pick-Packet Configuration File Generator

The Pick-Packet Configuration File Generator is a java

based graphical user interface (GUI) that generates the

configuration file that is input to the Pick-Packet Filter. The

user can specify different filtering criteria for filtering the

data which is subsequently written to configuration file in a

format that is understood by the filter.

Fig 1: Pick-Packet Architecture [1]

B. Pick-Packet Packet Filter

The Pick-Packet packet filter takes the configuration file as

input. It reads packet from the network and stores those

packets which match the criteria specified in configuration

file. Filtering is done at different levels based on criteria like

IP address, port number and application layer information.

C. Pick-Packet Post Processor

 The Pick-Packet Post Processor processes the packet

stored on the disk, and retrieves the meta-information from

them and creates a directory structure which is used by the

Data Viewer.

D. Pick-Packet Data Viewer

 The Pick-Packet Data Viewer is a web based GUI. It takes

the directory created by the post-processor as input and

displays the data in an interactive manner.[4]

Pick-Packet Packet Filter takes packet from network and

filters them on basically three levels.

Fig 2: Levels of Filtering [3]

1. Filtering based on network parameters (IP address,

Port No., etc)

2. Filtering based on application layer protocol

specific criteria (user name, email id, etc.)

3. Filtering based on content present in application

pay load (text string search, etc.)[5]

Since it would be convenient to have different filters for

different application layer protocol based filters, the

combined second and third level filtering can be split into

several application specific filters one for each application.

If this model of filtering is chosen a demultipelexer is

required between the first level filter and application specific

filters so that each application gets only relevant packets.

The demultiplexer uses its own set of criteria for

demultiplexing packets as shown in fig 3.

 Fig 3: Demultiplexing packets for filtering

ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2609

The purpose of Pick-Packet, like the filters discussed above

is to monitor network traffic and to copy only selected

packets for further analysis. However, the scope and

complexity of criteria that can be specified for selecting

packets is greatly increased.

 The criteria for selecting packets can be specified at

several layers of the protocol stack. Thus there can be

criteria for the Network Layer – IP addresses, Transport

Layer – Port numbers and Application Layer – Application

dependent such as file names, email ids, URLs, text string

searches etc. The filtering component of this tool does not

inject any packets onto the network. Once the packets have

been selected based on these criteria they are dumped to

permanent storage. [1, 5, 6, 7]

 Fig 4 shows the basic design of the Pick-Packet

Filter. The filter takes as input a configuration file that

contains packet capturing parameters at the various levels of

filtering. First set of parameters are the IP addresses and

ports. These parameters are used by the in-kernel filtering

module – the Basic Filter and the Demultiplexer. The second

sets of parameters are required by the Application Level

Filters. These parameters are application specific and

include user names, URLs, the text string to be searched etc.

The third sets of parameters are used by an Output File

Manager that controls the format of the dumped packets and

the size of the output file etc. It is the task of the

Demultiplexer to route packets. Sequencing of packets may

have to be determined to perform searches on text split

between packets.

Fig 4: Basic design of Pick-Packet Filter [7]

The Demultiplexer, therefore, routes packets to a Connection

Manager that performs this task. The Connection Manager

passes packets to the Application Level Filter. There are

several considerations that go into designing the connection

manager. First the connection manager need not determine

the sequencing of packets for all connections. Rather, it

should determine sequencing for only those connections that

an application layer filter is interested in. Communication

between the application layer filter and the connection

manager to indicate such interest is provided by means of

alerts. A second consideration pertains to the level at which

history data is remembered for an application. A cursory

design would store remembered data at the application layer

level. Searching for this data is done based on the four tuples

(source IP, destination IP, source port and the destination

port). [8,9]

However this four tuple is also examined by the

demultiplexer. States dependent on this four tuple are also

maintained by the connection manager. Therefore it is best

to pass the data that the application wishes to associate with

a connection to the connection manager and subsequently to

the demultiplexer. Alerts incorporate this mechanism also.

[4]

III. APPLICATION PROTOCOL SUPPORTED BY PICK-

PACKET

Pick-Packet filter support many application level filters such

as TELNET, HTTP, FTP, SMTP and RADIUS. [5, 6, 7] For

each application protocol a filter is used which is work on

the criteria specified by user. Header of a packet is checked

by a filter on specified criteria. If it matched packet is

dumped on disk.

Each application level filter is capable of searching for

parameters relevant to the application also. Thus the SMTP

filter can search for senders, receivers and addresses.

Similarly the FTP filter can search for user names, file

names and the HTTP filter can search for URLs.

Fig 5: HTTP Request Header

For example an HTTP request header and HTTP response

header contains basic information about the host, URL, http

version, browser and many other field that are used by the

HTTP Application Level Filter to filter an HTTP packet.

ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2610

Additional features of HTTP 1.1 that have been addressed

by the HTTP Filter are persistent connections, chunked

transfer encoding and the “HOST:” header. Persistent

connection also allows pipelining of requests. Client can

send requests to the server without waiting for a response.

This directly impacts the HTTP Filter as a single packet can

content multiple requests. Chunked Transfer Encoding has a

direct bearing on the HTTP Filter.

If a response has to be sent before its total length is known

the simple chunked transfer-encoding can be used. This

breaks the complete response into smaller chunks and sends

them in series. Such a response can be identified as it

contains the “Transfer-Encoding: chunked” header. A

chunked message body contains a series of chunks, followed

by a line with “0” (zero), followed by optional footers, and a

blank line. Sample headers shown in figure 5 and 6:

Fig 6: HTTP Response Header

In HTTP filter a provision have been made for specifying

host names, paths, and text string that will be monitored in

HTTP connection. Once a host name and path has matched

in some packet of a HTTP connection the message body of

HTTP request and response as well as URI is searched for a

match of a specified text string. If all the criteria specified by

user match for connection request packet are dumped to

disk.

Fig 7: Filtering a HTTP Response Packet [3]

HTTP filter has a structure that is allocated for each

connection. This structure holds the information pertaining

to that connection. Response and request structure are

important member of this structure. Handling of HTTP

request and packet by HTTP Filter is shown in figure 5 and

figure 6 the flowchart for respectively. [5]

The basic idea behind the flowchart is to parse the packet in

a loop till packet data is exhausted. The parser for the

request consumes the packet data and returns after setting

states for the request structure. Data may be left in the

packet after parsing because of pipelining or error. After the

parser returns further processing is necessary if parsing has

either parsed an entire request or has retrieved partial content

of request. The parser may be able to retrieve partial content

in cases where the message body of request is split across

packets. Under these conditions, the data retrieved from the

packet by the parser is checked for match of user supplied

criteria. If the criteria match the connection can be dumped

otherwise, if the entire packet data has been exhausted, the

packet can be put into a list of history packets. [5]

ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2611

Fig 8: Filtering a HTTP Response Packet [3]

IV. APPLICATION PROTOCOL SUPPORTED BY PICK-

PACKET

HTTP filtering as shown in the above example is done on

normal text or image format as mentioned by the request

header’s accept field and response header’s content type

field. This type of filtering is done before saving data on

disk. It is also known as On-line filtering or data on fly

filtering.

 Fig 9: HTTP Request Header for Compressed Data

But normal text or image takes more time to download a

web page. So to speed up the transactions and full utilization

of available bandwidth compression is now being used on

web. The compressed data at server can be generated in two

types, dynamically and pre-compressed. Browsers and

servers have a brief conversation before actual transfer of

compressed data for example HTTP compression is

introduce to improve web performance by having the server

send compressed files to client and having the browser

uncompress before displaying. HTTP compressions accept

standard gzip and deflate encoding algorithms to compress

CSS, XHTML and JavaScript to speed up web page

downloads and save bandwidth.

 Fig 10: HTTP Response Header for Compressed Data

Before compressed data is transferred conversation is done

using HTTP headers. A compression-aware browser’s

HTTP request message informs the server that it prefers to

receive compressed data.

When web server receives request header with Accept-

Encoding: gzip, it delivers the requested document with the

encoding accepted by client. Client downloads the

compressed file, displays the pages after decompression.

Content filtering will works only on decompressed data so to

apply text string searching algorithm ones need to store all

the packets into a buffer until the whole file is captured, then

decompress the file and apply string searching algorithm.

This method does not support data on the fly filtering.

V. COMPRESSED DATA FILTERING

To apply content filtering (string search algorithm) on

compressed data packet ones need to store these packets on

disk and decompressed the data because it is difficult to

apply on the fly string searching algorithm on the

compressed data.[10] This violates the entire goal of packet

filtering (Pick-Packet).

ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2612

 Fig 11: Content filtering on compressed data

Another efficient solution for data on fly filtering is provided

in this paper. When HTTP application layer filter parse the

response header, it checks whether there is any Transfer-

Encoding: Chunked is present. It shows that file is

transferred in no. of packets. If it present Pick-Packet calls

parser_transfer_encoding to un-chunk the chunked data.

Otherwise directly comes to parse_content_encode. In this

Accept-Encoding: gzip field is checked. If it is found HTTP

connections data structure is initialized with default values

for first packet and checks for gzip file header values one

after another and find offset of compressed data block. For

other packets a method is called with compressed content as

a parameter. This method takes compressed data and its

length as input parameters and return equivalent

uncompressed data and its length. It remembers the data

structure to decompress next consecutive packet of a file.

Decompression on fly succeeds only if packets received in

order. It fails to decompress a packet if packets before it

have been lost.

On successful decompression of compressed HTTP data,

pick-packet sends uncompressed data to string search

methods of application level filtering to match user specified

keywords. If match occurs, then the packet is stored to disk

for future analysis.

VI. UPGRADING OF POST-PROCESSOR

Post-Processor needs to handle compressed HTTP data. Data

Viewer needs some meta-information to show the

connection data along with criteria because of which

connection is selected. If those criteria are keyword, then it

displays that keyword and frequency of that keyword in the

connection. In order to get keyword and to find its frequency

in compressed data, Post-Processor has to uncompress the

packet data and apply string search algorithm. Finally after

processing of compressed HTTP data, Pick-Packet stores it

in compressed form only. In web based Data Viewer, when

we request that content, browser will get that from the disk

and uncompress it and displays it to the user.

VII. CONCLUSION

Network monitoring tools are essential need of today’s

word. In these days to speed up the transaction data are sent

in compressed format. Some Network monitoring tools can’t

apply the content filter on compressed data before storing it

on disk like pick-packet.

 This paper takes pick-packet as example of network

monitoring tool and tried to implement text string searching

on HTTP compressed data on fly. But the basic condition for

filtering the data on fly is that packets must receive in order.

Same method may be also applicable on other application

layer protocol.

REFERENCES

[1] N. Kapoor. “Design and Implementation of a Network Monitoring

Tool”. Master’s thesis, Dept. of Computer Science and Engg., IIT Kanpur,

Apr 2002.

[2] Hal Abelson, Ken Ledeen, Chris Lewis (2009). "Just Deliver

the Packets, in: "Essays on Deep Packet Inspection", Ottawa".

Office of the Privacy Commissioner of Canada. Retrieved 2010-01-

08.
[3] Spy-Gear Business to Be Sold - Amesys to Sell Business That

Provided Surveillance Technology Used by Gadhafi, the Wall Street

Journal, German edition, friday, march the 9th of 2012.

[4] “The Book of PF: A No-Nonsense Guide to the OpenBSD

Firewall” by Peter N. M. Hansteen. No Starch Press. Second

edition 2010. ISBN 978-1-59327-274-6.
[5] B. Pande. “The Network Monitoring Tool - Pickpacket: Filtering

FTP and HTTP Packets”. Master’s thesis, Dept. of Computer Science and
Engg., IIT Kanpur, Sept 2002.

[6] A. Prashant. “Pickpacket: Design and Implementation of the HTTP

Postprocessor and MIME Parse Decoder”. Technical report, Dept. of
Computer Science and Engg., IIT Kanpur, Apr 2003.

[7] S. K. Jain. “Implementation of RADIUS Support in Pickpacket”.

Master’s thesis, Dept. of Computer Science and Engg., IIT Kanpur, May
2003.

[8] S. McCanne and V. Jacobson. “The BSD Packet Filter: A New

Architecture for User-level Packet Capture”. In Proc.of USENIX Winter
Conf., pages 259–269, Jan 1993.

[9] R. Boyer and J. Moore. “A Fast String Searching Algorithm”. In

Comm. ACM 20, pages 762–772, 1977.
[10] V. Jacobson, C. Leres, and S. McCanne. “pcap - PacketCapture

Library”, 2001. Unix man page.

http://dpi.priv.gc.ca/index.php/essays/just-deliver-the-packets/
http://dpi.priv.gc.ca/index.php/essays/just-deliver-the-packets/
http://dpi.priv.gc.ca/index.php/essays/just-deliver-the-packets/
http://www.wallstreetjournal.de/article/SB10001424052970203961204577269391401776590.html
http://www.wallstreetjournal.de/article/SB10001424052970203961204577269391401776590.html
http://www.nostarch.com/pf2.htm
http://www.nostarch.com/pf2.htm
http://en.wikipedia.org/wiki/Special:BookSources/9781593272746

