
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2906

An Approach for assessing the Quality of Software

for small and medium sized firms

N. Veeranjaneyulu

Associate Professor, School of Computing, Vignan University, Vadlamudi, India
1

Abstract: Software quality and flexible development approaches become increasingly important in software engineering to

meet the wide range of frequently changing customer requirements in various application domains. Software development

and assessment methods have caught the attention of software engineers and researchers worldwide. The quality of a

process can be assessed by some external audits but they usually are heavyweight and costly processes. To measure the

quality and follow the improvements in a process a lightweight assessment method is desired. This paper reports results

from a study, which aims to organize, analyze and make sense out of the dispersed field of agile software development

methods. The comparative analysis is performed using the method’s life-cycle coverage, project management support, type

of practical guidance, fitness-for-use and empirical evidence as the analytical lenses. This paper mainly aims at Software

Process Improvement (SPI) paradigm from the perspective of both Reference Process Models and the experience Factory

(EF) infrastructures.

Keywords: Process Assessment, Agile, QIP, GQM, SPI

I. INTRODUCTION

The crucial part in developing software is that it does what

the user or customer wants. This is also the most challenging

part. Before any code can be written, a specification needs to

be documented to lay out the tasks at hand. It is equally

important to verify that software (or a piece of it) does what

was specified. In his paper, Brooks[1] highlights four

important properties in software projects that make them

difficult to manage; complexity, conformity, changeability,

and invisibility. These unwanted properties are still today the

core issues that make software projects fail. Today’s

software systems are enormously complex. Nobody can

fully understand every detail of a modern software system .

Because we have to trust closed source modules and

interfaces written by other members of the team, the

importance of correct specifications is even more

emphasized. All this adds up to a very large number of

logical states which make unwanted behavior of the software

likely. Software changes all the time. It is more common to

integrate reused code into new use domains than to rewrite a

system from scratch. The system requirements may also

change over time: support for new operating systems is

needed, the system needs to be scaled up to handle more

users, the system needs work with new peripherals etc. The

most notable difficulty of software development is probably

the fact that software is invisible. It is much easier for

humans to understand the structure of a building or even of

an electric circuit. A software development process is a set

of tasks or activities imposed in a given order on the

development of the software product. There are several

models that describe such software development processes.

The process models help stakeholders to understand the

current state of the project, to speak a common language and

help ensure stable, capable, and mature processes.

In this four common software development models were

introduced. Start with the traditional development models:

the Waterfall Model and the Spiral Model. Then, iterative

development methods were introduced: the Rational Unified

Process and agile process models (eXtreme Programming

and Scrum). These more recent models attempt to solve

some of the problems of the traditional models but are no

"silver bullets" on their own. Software Process Engineering

activities are sets of best practices for development process

models. When a process model is combined with a process

engineering model, it gives tools to measure and compare

the maturity of development processes between companies

or projects. A CMMI or ISO model is not a process by itself,

but allows the project to implement a model that best suits

the needs of the project or company standards. In this first a

set of widely used software development process models

focusing more on them through the Software Process

Improvement (SPI) perspective has been presented. Two

approaches to the SPI paradigm are described in this; the

approaches are termed Process Reference Models and

Experience Factory. This will be the background for the

process assessment method of agile processes that will

combine the reference model approach and software metrics.

The work done in this is an introduction to this kind of

assessment of agile processes. Further research is needed to

refine and develop the model and the assessment.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2907

II. SOFTWARE PROCESS MODELS

The Traditional software development models introduces in

this are: Waterfall Model and Spiral Model. Then, the

iterative models described are Rational Unified Process and

agile process models (eXtreme Programming and Scrum).

Agile methods are a family of development techniques

designed to deliver products on time, on budget, with high

quality and customer satisfaction.

A. Waterfall model

The waterfall model is the most straightforward approach to

tackle ad hoc development. The waterfall model was first

presented by Winston W. Royce [3] although he never used

the term "waterfall model". Later Royce proposed a final

version of a software development model, the spiral model.

At first glance, this model is attractive. It is definitely an

improvement over ad hoc development. The waterfall model

splits complex tasks into smaller, easily manageable sub-

projects that deliver an outcome that can be inspected. The

product of the previous step needs to be inspected and

verified and each step must be flawless. Unfortunately, this

model is too naive. In practice steps overlap each other:

during the design phase, problems of specification are

identified, during the implementation phase problems of

design are identified and thus the waterfall model is not as

streamlined as one would wish.

B. Spiral model

The problems of the waterfall model have been known for a

long time, especially in long, expensive and highrisk

projects. As late as in 1988 Barry Boehm explained why the

so called spiral development model would be a superior to

the Waterfall model [8]. This paper addresses the risks

involved in the development process and the changes

intrinsic to software development. These concerns are not

very well covered by the waterfall process model

2.3 Iterative development

Iterative development methods are developed in response to

the weaknesses of the classic waterfall model. The spiral

model is an early example of an iterative development

model. Today the spiral model has been refined further and

its basic principles are currently essential parts of the

Rational Unified Process (RUP)[9], Extreme

Programming[15] and generally the agile software

development frameworks. Historically iterative development

may also mean incremental development. But to avoid

confusion these two terms were merged into practical use

in the mid-1990s. The authors of the Unified Process

(UP)[10] and the RUP[9] selected the term "iterative

development" to generally mean any combination of

incremental and iterative development.

C. Rational Unified Process

The Rational Unified Process (RUP)[9] is an iterative

software development process framework and, at the same

time a software process product developed by Rational

Software, a division of IBM since 2003. RUP is based on the

spiral model by Barry Boehm[8] but is highly modified from

the original model. RUP further evolves and defines the

principles for iterative development and use of prototypes. It

embeds object-oriented techniques and uses the UML as the

principal notation for the several models that are built during

the development.

The software lifecycle is broken down into subcycles, each

subcycle working on a new generation of the product. RUP

divides each development cycle into four consecutive

phases: inception phase, elaboration phase, construction

phase and transition phase.

D. Agile Methods

Extreme Programming, Scrum, Dynamic Systems

Development Method (DSDM), Adaptive Software

Development, Crystal, Feature Driven Development and

Pragmatic Programming are some of the process models

implementing agile development principles. In this paper we

will cover the two most frequently used models - eXtreme

Programming (XP) and Scrum.

Extreme Programming

eXtreme Programming (XP) is probably the best known

agile software development methodology. It was introduced

in 1999 by Kent Beck [15] as an answer to problems faced

by the long development cycles in traditional development.

XP emphasizes the facts that systems have vague user

requirements, and acknowledges that rapid changes are

inevitable. These starting points matched well with the

current time of software development where short

development cycles, introduction of new technology and

emphasized focus on speed-tomarket were considered

competitive business factors as a result of the rise of the

Internet and the "dot-com boom". The ideas behind XP are

not that "extreme" or new. Rather, XP takes traditional

development practices "to the extreme", for example by

writing all unit test cases before any code is implemented. It

also takes to the extreme the fact that the end customer

wants working

Fig 1: System Representation of XP

software over documentation. In XP, the amount of

documentation is limited to what is absolutely necessary; for

example, all implementation documentation should be

automatically generated from the code and its comments.

The code should be the documentation itself, because

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2908

eventually when someone has to make changes to the code,

it is more important to know what the actual code does over

what a possible outdated document says. Coding standards

and shared code ownership aid in this matter.

Scrum

Scrum1 is an agile software project management method in

contrast to XP which is an agile software development

method. It was introduced by Ken Schwaber in 1996 [16].

Scrum will not define in what way the software is

developed, what documents are to be produced or how

requirements are defined or gathered. Rather, Scrum is a

guide on how an agile implementation team should be

managed. Schwaber [16] observes that Scrum is probably

most successful when it is used for prototyping new

technology or for implementing a completely new system

with a number of uncertainties. Obviously, Scrum and XP

work very well together. As any agile approach, Scrum

notices that the development phase is under constant

pressure of change and involves several environmental and

technical variables (e.g., requirements, time frame, resources

and technology) that are likely to change during the process.

Scrum goes as far as calling the development environment as

being a set of "chaotic circumstances".

Fig 2: Scrum Model

III. SOFTWARE PROCESS MODELS

A software process model is an abstraction of a software

process, which, in turn, is an abstraction of a set of real-life

activities. Because of the abstracted, or simplified, nature of

software process models, the activities have to be

customized and optimized to the actual development

environment (business goals, work methods, system

requirements, resources etc.).

In this the methodology for improving implemented

software development process models were discussed, i.e.,

Software Process Improvement (SPI). SPI is the activity

where an implemented software development process is

being improved to either meet a reference model or a set of

business goals external to the development process. These

two approaches have a common goal: to make the

implemented software development process better for the

organization, but they look at it from two different

perspectives. Software metrics are closely related to SPI,

since they provide a measure of the process improvement

and guide to the actions necessary with regard to the goal of

the SPI. Next step is to apply the GQM model in a

lightweight project assessment method used in Small firms

for internal audits. The assessment method is used in

conjunction with SPI to characterize and improve the agility

of processes.

A. Software Process Engineering Activities

The reference models that describe a static set of activities

related to process engineering are 1. SW-CMM 1.1 2.

Trillium 3.0 model 3. ISO 12207 process standard 4.

Bootstrap 3.0 model 5. 15504 process reference model The

models have not been presented in any particular order. As

these models describe the activities of software engineering

in general, not just Software Process Engineering activities.

SW-CMM 1.1

The key process areas (KPA's) in the SW-CMM 1.1 are not

functional processes as such but rather characteristics in the

overall software development process (Kinnula 1995, 51).

However, by studying the activities in the KPA's one can

discern process-like entities. The KPA's that relate to process

engineering in the SW-CMM 1.1 are: Organisational Process

Focus (OPF), Organisation Process Definition (OPD),

Training Program (TP), Integrated Software Management

(ISM), Quantitative Process Management (QPM), Defect

Prevention (DP), Technology Change Management (TCM),

Process Change Management (PCM).

Essentially the OPF is about the entire Software Process

Engineering system within an organisation. The other key

process areas relate to specific activities within the scope of

Software Process Engineering. Process definition work

(OPD) is about creating and managing process assets, ISM is

about refining and deploying those assets, supported by

training (TP). Technology and process change management

(TCM and PCM respectively) cover the activities that aim at

improving the process assets. In addition, through the key

process areas of QPM and DP, one can see the activity of

process management through metrics in general, although

the actual KPA's are about specific processes (project

management processes and processes where defects are

being injected, respectively), those two having been

identified by the model authors as key issues for achieving

process stability and quality.

Trillium Model

Trillium model has devoted the capability area “Process" for

process engineering activities and practices. The four

elements within that capability area address the product

development process -related issues, including its

development, improvement and maintenance. They are:

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2909

Process Definition covers the practices that address the

formalization and coverage of the process. It involves

activities such as definition, development, documentation

and maintaining the processes, and establishing and

maintaining process asset repository. Technology

Management covers the practices that address the

monitoring, assessment and introduction of technology into

the process. It involves activities such as identifying the

need for new technologies, and selection, evaluation,

piloting, acquisition and introduction / implementation of the

new technologies. A technology can be a method, technique

or a tool. Process Improvement and Engineering covers

practices that address process improvement activities. It

involves activities such as process assessments, co-

ordination of process improvement and definition activities,

planning and tracking process improvement projects,

deploying improvements, collecting, recording and

analyzing process data, and quantitative process

management. Measurements covers practices that address

the measurement system and its elements. It involves

activities such as metrics identification, collecting, analyzing

and storing measurement data, communicating process

analysis results, and statistical process control.

ISO 12207

The ISO 12207 standard identifies "Improvement" as one of

the processes in the "Organizational" process class. These

are the basic, top-level activities that are needed to assess,

measure, control and improve the organizational life-cycle

processes. (ISO/IEC 1995). The activities within the

Improvement process are: Process Establishment, Process

Assessment and Process Improvement

As the ISO 15504 process reference model has been aligned

with the ISO 12207, and ISO 15504 being more recent and

more comprehensive as models go, these three processes

will be described in section 2.5, under "ORG.2 Improvement

processes".

Bootstrap
The Bootstrap model v. 3.0 has been structured to

correspond with ISO 15504 v. 2.0 process architecture,

which has been largely carried over to the newer, 1998

version of ISO 15504. Those processes, which can be found

both from Bootstrap and the ISO 15504 model will be

described in section 2.5. Those process engineering -related

processes that can be found only from Bootstrap are

discussed in this chapter. To help the reader to find the

relevant process descriptions, a mapping of names between

the elements in Bootstrap, ISO 15504 v.2.0 and the 1998

version of ISO 15505 has been provided.

The Bootstrap model divides processes into three main

categories: Organization, Methodology and Technology. The

Methodology category is further divided into Life cycle

dependent, Life cycle independent and Process-related

subcategories. Processes that are related to Software Process

Engineering can be found from the Organization category,

Methodology/Process-related –category and Technology

category.

ISO 15504-2 and ISO 15504-5

The ISO 15504 reference model is the latest and arguably

the most comprehensive software process-oriented reference

model currently available for Software Engineering. The

authors of CMM, Trillium, and Bootstrap have all

participated in the definition effort, suggesting that this

model is close to being a superset of all those three. In this

section the focus is on the newer, 1998 version of the ISO

15504, but a brief comparison to the version 2.0 is provided

as well.

The previous version (version 2.0) of the ISO 15504

reference model is quite different compared to the 1998

version, as far as process engineering –related processes are

concerned. The earlier version identifies only two processes

that fall within the scope of SPE. These are (ISO/IEC 1996a,

b).

B. SPI Based on Experience and Business Goals

Software engineering offers a framework called Quality

Improvement Paradigm (QIP) to improve the quality of the

software development process. This paradigm works in

strong cooperation with other paradigm, the

Goal/Question/Metrics Paradigm (GQM), which supports

the establishment of project and business goals and a

mechanism for measuring against those goals. These two

paradigms are usually used inside an infrastructure called

Experience Factory (EF) which defines a set of practices to

create packages of experience collected from past projects

and reuse them in an organization. The three paradigms

(QIP, GQM and EF) provide a unified framework for

software process improvement based on experience and

business goals. Experience Factory

An important asset of any company is the business

knowledge that has accumulated during years of experience.

Higher quality at lower cost is usually achieved by reusing

processes, knowledge and experience from similar projects

that have been successful in the past. In his paper Victor

Basili presents an infrastructure called Experience Factory

(EF) for improving the quality of software processes by

systematically saving and reusing experience from previous

projects. It is important to distinguish the experience factory

infrastructure from process reference models: the former

improves the development process by analyzing business

goals, while the latter assesses the process against a given

predefined process model that needs to be evaluated against

the business needs of an organization. The experience

factory infrastructure defines two distinct organizations: the

development organization and the experience factory. The

experience factory is a logical organization that supports

project development by collecting and analyzing experiences

from previous projects, by acting as a repository for such a

knowledge and by packaging experience into reusable

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2910

knowledge packages. The development organization

represents the R&D part of the main organization, the ones

that actually uses and works by the processes. They also

provide the experience factory with all project and

environment characteristics, development data, resource

usage information, quality records and general feedback

from the performance of the models and tools in use.

C. Quality Improvement Paradigm (QIP)

The basic tool for successful implementation of experience

factory is the methodology called Quality Improvement

Paradigm (QIP). There are several other process

improvement paradigms but since QIP evolved from the

lessons learned in the SEL project at the same time as EF.

The QIP provides two iterative feedback loops.

Fig.3 Quality improvement paradigm feedback loop

The QIP cycle is broken into two closed loop cycles – the

corporate (larger) and the project (smaller) cycle. The

project specific feedback cycle is to provide feedback to the

project during the execution phase in order to prevent and

solve problems, monitor and support the project and to

realign chosen processes with defined goals. The Corporate

feedback cycle provides feedback to the organization after

the completion of the project. The purpose of the Corporate

feedback is to analyze the concordance and discrepancy of

the collected data against previous experiences and models.

This helps to increase the understanding of the concluded

experience and to capture some of that experience, and to

accumulate reusable experience in the form that can be used

by other projects. The Corporate cycle represents how

organization learns. It is divided into following six phases: 1.

Characterize and Understand 2. Set Goals 3. Choose

Processes, methods, techniques and tools 4. Execute the

Processes (run the project cycle) 5. Analyze Results 6.

Package and store experience

The QIP cycle can be used both as a tool to learn more of

already existing packaged experiences, or to create

completely new, packaged experiences. The QIP cycle itself

does not change, but if the goal is to produce a new

experience and package it for future reuse, the fourth phase

(Execute the Processes) requires several iterations. The

reason for this is that the experience should not be packaged

based on one single case, but requires several

experimentations until there is sufficient knowledge of

where it works and what it requires to work. The

Characterize and Understand is the starting phase for the

cycle. The aim is to describe and comprehend the current

project and its environment with respect to available

process/product/ quality models, data, intuition, etc. The

phase also establishes quantifiable baselines based on past

experiences and characterizes their criticality. The second

phase is to Set Goals for successful project performance

(covering both processes and products) and improvement

results. The aim is to be able to get reliable, measurable data

of the improvement and for this reason the goals need to be

quantifiable and defined from a variety of perspectives,

including customer, project and organization viewpoints.

The objective of the third phase is to Choose Processes,

Methods, Techniques and Tools that are appropriate for this

project. The decision is based on the characterization of the

environment and product and on the goals that have been set.

It is important to make sure that the selection is consistent

with the goals set for products and processes, since

otherwise there is little point in doing the measurements

derived from the goals. The fourth phase of the Corporate

cycle is where the selected project(s) Execute the Processes.

From organization point of view, this phase is where the

project cycle runs. The project cycle, which represents how

project learns and guides itself, is divided into three

activities: Process Execution, Analyze Results and Provide

process with feedback.

The fifth phase is to Analyze Results to evaluate the

practices, determine problems, record findings and make

recommendations for future project improvements. The data

is analyzed against the goals and used to achieve better

characterization and understanding of the context, evaluate

and analyze the experiments (improvements), determine

problems, gain more information to be used for better

prediction and control and to motivate future improvements.

The sixth and final phase on the Corporate cycle is to

Package Experiences and to store them in the experience

base for future reuse. It should be noted that if the QIP cycle

is used for improving processes through experimenting with

new procedures, methods or tools, it may require several

cycle iterations and projects before there is sufficient

information for packaging the experiences.

D. Goal/Question/Metric paradigm (GQM)

Feedback is an essential part of any improvement, and

software process improvement does not make any

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2911

exceptions. Software metrics makes up for the feedback

needed for software process improvement. Only with

correctly chosen metrics and valid data can a process be

assessed with regards to its progress and to help us support

project planning in upcoming projects. But more

importantly, metrics helps us to determine the strengths and

weaknesses of the current processes and products (to form a

baseline) and it provides a rationale for adopting and

refining the techniques needed to determine if a process has

improved or not.

All measurements of software process improvement must be

done in a top-down fashion, since there are very many

metrics to measure in a software process and since process

improvement and business goals must determine which ones

are relevant. In his paper Victor Basili describes the

Goals/Question/Metric Paradigm (GQM) as a method for

defining and interpreting operational and measurable

software. In the Experience Factory infrastructure, GQM is

the method for defining the business goals and the data to

measure.

IV. APPROACH FOR PROCESS ASSESSMENT

A need for quantitative process assessment emerged in

Small firms from internal assessments of a part of the

regular internal quality initiatives. The goal of the

assessment approach in to assess the agility of the processes,

but in a lightweight fashion to minimize project overhead

expenses and also to collect quantitative metrics for SPI of

those processes. The process is kept lightweight by

formulating a set of questions with quantitative metrics as

answers. The metrics should be easy to obtain from a

process management tool. The development process is

broken down into three groups with questions in each of

them; project and requirement management, development

and testing. Each question has a point scale that the answers

can be compared against; the overall agility is reflected by

the sum of the points. The metrics in each of the groups give

indications for the SPI initiatives to spot bottlenecks.

The two agile development models, XP and Scrum, were

described as a response to changing customer needs and

requirement prioritizing. They work in short iterations where

the customer needs and working, tested, software is valued

over anything else. SPI is described which introduces

methodologies for improving development models set up by

organizations. The two approaches of SPI are considered;

Process Reference Models and Experience Factory. In the

first, a development process was assessed against a given

reference models that contains best practices for the process,

while the latter uses business goals and metrics to create

experience packages of best practices best suitable for the

given organization (QIP and GQM). After looking at both of

these development models and how to improve them,

Lightweight assessment method for agile processes is

preferable. The goal of this method is to assess the agility of

a process using quantitative metrics and a checklist with

predefined questions that are divided into three project areas

(project and requirement management, development and

testing).

V. CONCLUSION

The assessment method presented in this paper has been

developed to assess a single small agile team with one

project manager, may be one software architect and a few

developers and testers. It is certainly possible to refine the

method by collecting assessment metrics results from several

projects to measure the overall agility of the development in

an organization, but the variability of agile development

processes should be then taken into account since there is no

official method of doing agile development. The presented

assessment method is based on the assumption that the

development process uses Scrum and XP to introduce agility

into development. Probably a different set of questions

should be developed for projects using Crystal Clear or

Agile Unified Process (AUP). Also the same methodology

could be used for assessing different kinds of processes and

a completely different set of questions and points should be

considered for assessing a process based on RUP. Similarly,

it could also be possible to quantify the usability of an user

interface of an application. Then it would be interesting to

examine how to integrate the results of the assessment of

two such different aspects of a software engineering project

into an overall result. The assessment method presented in

this is a good starting point for future research and work.

The demand for lightweight process assessment used

internally by companies as a part of SPI is huge. We have

seen that this method fits well with Experience Factory and

SPI methods, but more work is required to adopt this

assessment method on a corporate level and also to combine

GQM into this method to measure business goals in

cooperation with agile process models

REFERENCES

[1] Brooks Jr., F. P. : No Silver Bullet - Essence and Accidents of Software

Engineering, Computer Magazine, Volume 20 , Issue 4 (April 1987)

[2] International Software Benchmarking Standards Group: Practical
Project Estimation 2nd Edition, http://www.isbsg.org (2005)

[3] Ivar Jacobson, Grady Booch and James Rumbaugh: The Unified

Software Development Process, ISBN-13: 978-0201571691, Addison-
Wesley Professional, February 4, 1999

[4] IBM Rational Process Composer, http://www- 306.ibm.com/software/

awdtools/rmc/features/index.html - checked December 2007.
[5] Eclipse Process Framework Project (EPF), http://www.eclipse.org/epf/

- checked December 2007.

[6] Beck, Kent : Extreme Programming Explained, Addison-Wesley, 2000
[7] Schwaber, Ken : SCRUM Development Process, Advanced

Development Methods, 1996.

[8]ISO9001:2000,http://www.iso.org/iso/iso_catalogue/management_standa
rds.htm, checked March 2008.

 [9] Mutafelija, Boris and Stromberg, Harvey: Mappings of ISO 9001:2000

and CMMI Version 1.1, Software Engineering Institute, July 2003,
http://www.sei.cmu.edu/cmmi/adoption/pdf/iso-mapping.pdf, checked

March 2008

http://www-/
http://www.iso.org/iso/iso_catalogue/management_standards.htm
http://www.iso.org/iso/iso_catalogue/management_standards.htm
http://www.iso.org/iso/iso_catalogue/management_standards.htm

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2912

[10] Software Engineering Institute (SEI): CMMI for Development, Version
1.2, August 2006.

[11] The CMMI website, http://www.sei.cmu.edu/cmmi/ - checked January

2008.
[12] Gerard O’Regan, A Practical Approach to Software Quality, Springer-

Verlag, New York, 2002.

[13] SPICE specification - Part 2 : A model for process management,
Version 1.00, ISO/IEC, July 1995.

[14] IT Infrastructure Library (ITIL), http://www.itil-

officialsite.com/home/home.asp, checked March 2008.
[15] V. Basili, G. Caldiera and D. Rombach: The Experience Factory,

Encyclopedia of Software Engineering. Wiley 1994.

[16] V. Basili, F. McGarry, R. Pajerski, M. Zelkowitz: Lessons learned
from 25 years of process improvement: the rise and fall of the NASA

software engineering laboratory, Proceedings of the 24th International

Conference on Software Engineering, May 19- 25, 2002, Orlando, Florida.

http://www.itil-officialsite.com/home/home.asp
http://www.itil-officialsite.com/home/home.asp

	AEN70
	AEN199

