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Abstract: Support Vector Regression (SVR), a category for Support Vector Machine (SVM) attempts to minimize the 

generalization error bound so as to achieve generalized performance. Regression is that of finding a function which 

approximates mapping from an input domain to the real numbers on the basis of a training sample. Support vector 

regression is the natural extension of large margin kernel methods used for classification to regression analysis. On account 

of steady increase in paper demand, the forecast on demand and supply of pulp wood is considered to improve the socio 

economic development of India. 
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I INTRODUCTION 

Support Vector Machines (SVM) is learning machines 

implementing the structural risk minimization inductive 

principle to obtain good generalization on a limited number 

of learning patterns. The theory has originally been 

developed by Vapnik[1] and his co-workers on a basis of a 

separable bipartition problem at the AT & T Bell 

Laboratories. A version of a SVM for regression has been 

proposed in 1997 by Vapnik, Steven Golowich, and Alex 

Smola [2]. This method is called support vector regression 

(SVR)the model produced by SVR only depends on a subset 

of the training data, because the cost function for building 

the model ignores any training data that is close (within a 

threshold ε) to the model prediction [3]. Support Vector 

Regression (SVR) is the most common application form of 

SVMs. Support vector machines project the data into a 

higher dimensional space and maximize the margins 

between classes or minimize the error margin for regression 

[4]. 

 

II LITERATURE REVIEW 

Support Vector Machines (SVMs) are a popular machine 

learning method for classification, regression, and other 

learning tasks. Basic principle of SVM is that given a set of 

points which need to be classified into two classes, find a 

separating hyperplane which maximises the margin between 

the two classes. This will ensure the better classification of  

 

 
 

the unseen points, i.e. better generalisationSupport vector 

machines (SVM) are used as they reduce the time and 

expertise needed to construct/train price forecasting models. 

Also SVM has lower tune-able parameters with parameter 

values choice being less critical for good forecasting results. 

SVM can optimize its structure (tune its parameter settings) 

on input training data provided. SVM training includes 

solving quadratic optimization as it has only a unique 

solution and does not involve weights random initialization 

as training NN does. So an SVM with the similar parameter 

settings and trained on identical data provides identical 

results. This increases SVM forecast repeatability while 

reducing training runs number needed to locate optimum 

SVM parameter settings [5]. Data non-regularity enables 

SVMs to be used for regression analysis, for example when 

data is not distributed regularly or has a known distribution 

[6]. 

 

III METHODOLOGY 

Support Vector Machines (SVM) is a learning algorithm that 

has the unique ability to provide function estimation. 

Support Vector Regression (SVR), the use of SVMs for 

regression, operates in high-dimensional feature space to 

approximate unknown functions in output space, thereby 

using nonlinear functions to linearly estimate an unknown 

function. For
, [1, ]y i N  

, we have two inequalities 

that bound the output points of the function to be estimated: 
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one for the upper boundary and one for the lower boundary. 

Suppose that we are given a training set: 

 

 

Where 
 and y , [1, ]n

i iX i N   
. 

Support Vector Regression (SVR) is the most common 

application form of SVMs. Support vector machines project 

the data into a higher dimensional space and maximize the 

margins between classes or minimize the error margin for 

regression. Support vector regression [7] is the natural 

extension of large margin kernel methods used for 

classification to regression analysis. The problem of 

regression is that of finding a function which approximates 

mapping from an input domain to the real numbers on the 

basis of a training sample. This refers to the difference 

between the hypothesis output and its training value as the 

residual of the output, an indication of the accuracy of the fit 

at this point. One must decide how to measure the 

importance of this accuracy, as small residuals may be 

inevitable even while we need to avoid in large ones. The 

loss function determines this measure. Each choice of loss 

function will result in a different overall strategy for 

performing regression. 

If Support Vector Regression is to be applied to a real-time 

camera stream, or for estimating several facial features at a 

time, it is not practical. Lee et al. proposes a ε-smooth SVR 

[8] formulation, where they only need to solve a system of 

linear equations iteratively instead of solving a convex 

quadratic program or a linear program, as is the case with a 

conventional ε-SVR. Second, they propose a reduction of the 

kernel, similarly to classification. Those reduced vectors in 

the kernel are however a subset of the training data. A full 

SVR is too time-consuming to use for all image locations, 

and the face space for all poses is too complex to first decide 

with a classifier where the faces are located. Therefore, we 

will adapt the approaches to reduce the complexity for 

classification mentioned above to regression. Both stages, 

the classification and the regression, are adjustable in their 

complexity.Support vector regression performs linear 

regression in the feature space using ε - insensitive loss 

function and, at the same time, tries to reduce model 

complexity by minimizing || w ||2. This can be described by 

introducing (non-negative) slack variables 
*,i i 

  i=1,…n to 

measure the deviation of training samples outside the ε – 

insensitive zone . The SV regression is formulated as

  

Subject to  

   

Algorithm for SVR 

1. Parameters: η, ε, C. 

2. Initialize: α
*
= 0, α = 0. 

3. For i = 1… l 

 

4. If training has converged stop, else repeat step 3.η is a 

learning rate parameter. 

Regression Analysis 

Regression analysis is a statistical tool for the investigation 

of relationships between variables. Usually, the investigator 

seeks to ascertain the causal effect of one variable upon 

another—the effect of a price increase upon demand, for 

example, or the effect of changes in the money supply upon 

the inflation rate. To explore such issues, the investigator 

assembles data on the underlying variables of interest and 

employs regression to estimate the quantitative effect of the 

causal variables upon the variable that they influence. The 

investigator also typically assesses the ―statistical 

significance‖ of the estimated relationships, that is, the 

degree of confidence that the true relationship is close to the 

estimated relationship.Regression is a statistical technique to 

determine the linear relationship between two or more 

variables. Regression is primarily used for prediction and 

causal inference. In its simplest (bivariate) form, regression 

shows the relationship between one independent variable (X) 

and a dependent variable (Y). Regression thus shows us how 

variation in one variable co-occurs with variation in another. 

What regression cannot show is causation; causation is only 

demonstrated analytically, through substantive theory. It is 

important to recognize that regression analysis is 

fundamentally different from ascertaining the correlations 

among different variables. Correlation determines the 

strength of the relationship between variables, while 

regression attempts to describe that relationship between 

these variables in more detail. 
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Regression analysis can be used to identify the line or curve 

which provides the best fit through a set of data points. This 

curve can be useful to identify a trend in the data, whether it 

is linear, parabolic, or of some other form. Regression 

analysis can be performed using different methods. 

Regression analysis is used when two or more variables are 

thought to be systematically connected by a linear 

relationship. In simple regression, we have only two – let us 

designate them x and y – and we suppose that they are 

related by an expression of the form y = b0 + b1 x + e. We’ll 

leave aside for a moment the nature of the variable e and 

focus on the x - y relationship. y = b0 + b1 x is the equation 

of a straight line; b0 is the intercept (or constant) and b1 is 

the x coefficient, which represents the slope of the straight 

line the equation describes. To be concrete, suppose we are 

talking about the relation between air temperature and the 

drying time of paint.   

In the Regression Model, the assumptions are, the relation 

between x and y is given by y = b0 + b1 x + e e is a random 

variable, which may have both positive and negative values, 

so 

 is normally distributed 

E(e) = 0, the standard deviation of e, syx, is constant over 

the whole range of variation of x. This property is called 

―homoscedasticity.‖ Since E(e) = 0, we’re supposing that 

E(y) = b0 + b1x + E(e) = b0 + b1x. Finding the regression 

line: the method of ―ordinary least squares‖ or OLS, begin 

with assumed values for b0 and b1 and suppose that the 

relation between x and y is given by y = b0 + b1x; some b0’s 

and b1’s will give us better fits than others. Let y = a + bxi 

be the value of y estimated by the regression equation when 

x has the value xi; then if yi is actual value, yi - yˆ i is called 

the residual or the error, substituting, let ei = yi - yˆ i = yi - b0 

- b1xi, different b0’s and b1’s will cause each ei to have a 

different value: The residuals along the line marked A are 

larger than those along the line marked B but the sum of 

deviations is always zero. square each residual and define 

the sum of squared errors as å (yi - b0 - b1xi)
2
, x and y are 

data: the variables are b0 and b1, and choosing different 

values of these will change the size of the sum of squares. 

Minimizing the sum of squares with respect to b0 and b1, 

using minimization methods from differential calculus, gives 

unique values for the b’s Resulting formulas are rarely used 

explicitly anymore, but  

  

Regression analysis is used to detect a relation between the 

values of two or more variables, of which at least one is 

subject to random variation, and to test whether such a 

relation, either assumed or calculated, is statistically 

significant. It is a tool for detecting relations between 

hydrologic parameters in different places, between the 

parameters of a hydrologic model, between hydraulic 

parameters and soil parameters, between crop growth and 

water table depth, and so on. 

Regression analysis with MMRE formula (Mean 

Magnitude Relative Error) and MdMRE (Median 

Magnitude Relative Error) 

It is necessary to measure software estimates accuracy for 

evaluation and validation. A common evaluation criteria in 

software engineering [9] is used in this context: 

Magnitude Relative Error (MRE) computes absolute error 

percentage between actual and predicted efforts for reference 

samples. 

i i
i

i

actual estimated
MRE

actual




 

The mean magnitude of relative error, MMRE, is the de 

facto standard evaluation criterion to assess the accuracy of 

software prediction models. MMRE is a summary statistic, 

i.e., a single number, aggregating the fundamental metric 

MRE, a relative residual error. MMRE is used for two kinds 

of assessments (at least). One purpose of MMRE is to select 

between competing prediction models: The model that 

obtains the lowest MMRE is preferred. Another purpose is 

to provide a quantitative measure of the uncertainty of a 

prediction (Where a low MMRE is taken to mean low 

uncertainty or inaccuracy).   MMRE calculates MREs 

average over all reference samples. As MMRE is sensitive to 

an individual outlying prediction, a median of MREs is 

adopted for n samples (MdMRE) when there are many 

observations less sensitive to extreme MRE values. Median 

Magnitude of Relative Error, defined as median over test set 

of(|Predicted Effort – Actual Effort| /Actual Effort). Despite 

the use of MMRE for estimation accuracy, there exists much 

discussion about its efficacy in estimation procedures. 

MMRE has been criticized as being unbalanced in many 

validation circumstances, resulting often in overestimation 

[10]. 

1

1
n

i

i

MMRE MRE
n



 
 

 i

i

MdMRE median MRE
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IV RESULTS AND DISCUSSION 

The study is based on the data collected at the Tamil Nadu 

News print and papers Limited (TNPL) in Karur District, 

Tamil Nadu. Since the demand for paper increases rapidly 

and wood pulp is largely used for making paper, data of the 

demand and supply of pulpwood were collected for over ten 

years for forecasting. 

 

Year Demand (MT) 

 

Supply 

(MT) 

0.9945  

 

0.2778 0.2716 

0.9950 0.2889 0.3221 

 

0.9955 0.2972 0.2790 

 

0.9960 0.3278 0.2734 

 

0.9965 0.3662 0.3621 

 

0.9970 0.3699 0.4670 

 

0.9975 0.4013 0.4944 

 

0.9980 0.8518 0.7099 

 

0.9985 0.8749 0.8782 

 

0.9990 0.9414 0.9247 

   Table 1: sample normalized data of the demand and    

         supply of pulp wood (Metric Tonnes) 

 

The Mean Magnitude Relative Error (MMRE) and Median 

Magnitude Relative Error (MdMRE) are evaluated through 

technique like SVM with RBF kernel . Table 1 provides the 

demand and supply data for TNPL. Table 2 provides results 

of average MMRE and MdMRE for the SVM with Radial 

Basis Function (RBF) technique used.  

Technique Used MMRE MdMRE 

SVM-RBF 0.400824 43.92262 

Table 2 MMRE and MdMRE for SVM - RBF 

V CONCLUSION 

This study uses Mean Magnitude Relative Error (MMRE) 

and Median Magnitude Relative Error (MdMRE) as 

evaluation criteria for forecasting. The forecasting can 

further be improved by using optimization technique. The 

awareness of the demand and supply patterns are a 

supportive mechanism which demanded a systematic 

forecasting system similar to agricultural products. Support 

vector regression is a statistical method for creating 

regression functions of arbitrary type from a set of training 

data. 
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