
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 2, Issue 9, September 2013

Copyright to IJARCCE www.ijarcce.com 3450

BASIC: Brief Analytical Survey on

Metamorphic Code

Shiv Kumar Agarwal
1
, Vishal Shrivastava

2

Research Scholar, Department of Computer Science and Engineering,

Arya College of Engineering and Information Technology, Jaipur, Rajasthan, India
1

Professor, Department of Computer Science and Engineering,

Arya College of Engineering and Information Technology, Jaipur, Rajasthan, India
2

Abstract: This paper discusses a variety of obfuscation techniques used by metamorphic malware to change the structure of

new variant. Mutation engine is associated with each metamorphic malware which is responsible to make the changes in the

structure of new variant using variety of obfuscation techniques. In most of the metamorphic malware, the size of mutation

engine remains a little bit small in order to bypass detection. The main objective of malware writers is to make code as

complicate as possible along with modern obfuscation techniques. As per our survey, there is not an efficient algorithm to

deal with these metamorphic codes. The conventional signature based algorithm used by most of antivirus software is even

failed against the metamorphic families.

Keywords: Metamorphic malware, Obfuscation, Polymorphic, Mutation engine.

I. INTRODUCTION

Malware is short for „malicious software‟ and is another

term for „computer viruses‟. A malware is virus software

spread through malicious programs or software known as

malware. Malware is designed to delete, block, modify or

copy data, or disrupt the performance of computers or

computer networks. “Malware” is the general term covering

all the different types of threats to your computer safety. The

term malware includes viruses, worms, trojan horses,

rootkits, spyware, keyloggers and more.

Once malwares enter to the system, they start to find the

vulnerabilities within the operating system then perform

unintended operation in the system. Most of the malwares

basically attack on performance of the system, data integrity

and privacy [1]. They also play the major role in denial of

service attack [1], [2]. These malwares are also capable to

infect other executable files and data. Malwares depending

on their behaviour collect the information about host and

harm the host computer without consent of the owner.

Today, there are some malware families known as

modern malware families, which have the capability to

change the signature of new variant in each generation by

using a variety of code obfuscation techniques.

This paper introduces the obfuscation techniques

commonly used in the polymorphic and metamorphic

malware. For this goal, we firstly overview the history of the

malwares that have been developed to defeat signature based

antivirus scanners. Then, the malware obfuscation

techniques are introduced with examples.

This paper is organized as follows. In section 2, we

describe the polymorphic and metamorphic malwares.

Section 3 explores the obfuscation techniques commonly

used by polymorphic and metamorphic malwares, and then

section 4 discusses the future trends. Finally, we conclude in

section 5.

II. MALWARE TYPES

Malware is a collective term which includes Virus,

Worms, Trojan horse with some other malcodes. The

behaviour of malcodes and detection methods change over

the year. Detection techniques employed by researchers

depend on the behaviour and structure of malwares. In this

work, we are addressing some of the well known malwares

and their behaviour.

A. Viruses

Initially, viruses were developed with the intention to stay

in boot sector and floppy disks. So that whenever any

infected system starts booting, these viruses get activated

and start their execution inside the system. They are required

human interaction to spread out from one computer to

another computer. Today internet is widely used throughout

the world. Therefore, virus writers develop such viruses

http://www.bullguard.com/bullguard-security-center/security-articles/how-does-a-virus-work.aspx
http://www.bullguard.com/bullguard-security-center/security-articles/what-is-a-worm.aspx
http://www.bullguard.com/bullguard-security-center/security-articles/what-is-a-trojan-horse.aspx
http://www.bullguard.com/bullguard-security-center/security-articles/what-is-a-rootkit.aspx
http://www.bullguard.com/bullguard-security-center/antispyware---protecting-your-privacy.aspx
http://www.bullguard.com/bullguard-security-center/security-articles/what-is-a-keylogger.aspx

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 2, Issue 9, September 2013

Copyright to IJARCCE www.ijarcce.com 3451

those are having the capability to take the advantage of

internet for their movement from one place to another place.

Suppose that any external device is infected through the

viruses. When any user uses such external device for the

purpose of storing and retrieving some data or information

from the device then host computer also gets infected due to

malicious nature of viruses [3]. Viruses are also having the

ability to reproduce themselves and infecting other programs

and data.

B. Trojans

Trojan horse is a malicious program by nature. When user

clicks on the link or attachment comes with any email or try

to download some data over the internet which appears as

per the user interest and looks very familiar to the user then

Trojan horse acquire some space inside the user system and

starts its execution without user interaction. Even the user of

that system does not have the knowledge about such

malicious activity which is happening inside his system. The

main purpose of Trojan horse is to get some sensitive

information from the infected system.

C. Worms

Worm is a malicious program, having the ability to

reproduce itself over the network. Worm does not require

any human interaction to perform replication. In other way,

we may also considered it as a macro which may resides in a

Word file and replicate itself in network. This file moves

from one to another place and infect all nodes or systems

appeared in its path.

D. Spyware

Spyware is a malicious program which continuously

monitors the host computer and collects the sensitive

information about the user like pages of user interest on the

web which are more frequently accessed or visited by the

user. Besides that it also collects the sensitive information

about the user such as details of credit card number, email

password, key pressed by user etc.

E. BotNets

BotNet is remotely controlled software such as robots or

bots. They allow an attacker to take the complete control

over the infected machine. Bots are centrally controlled by

the IRC(Internet Relay Chat) protocol. Bots are generally

used to transmit spam/spyware remotely. In general, Bots

are connected through a central hub. In this type of

configuration to manage the various connections over a

single server is very difficult. Therefore, this type of

structure cannot be extent at large level. But in case of

hierarchical structure, it can be extent at high level. Where

Bot master is connected through hundreds of Bots and each

Bot is further connected to many more bots.

F. Logic Bombs

Logic Bomb is not having the capability to reproduce

itself. Once it installed into the system, it waits for some

trigger, incident or any external event like arrival of

particular date and time or creation or deletion of any

information, prior to perform any damage or any malicious

activity.

Signature based detection technique used by these anti-

virus software was very popular and successful until

malware writers started to write the most advanced malware.

There are two categories of malicious software programs

(malware) that have the ability to change their code as they

propagate.

G. Polymorphic malware

Polymorphic malware is a computer program that

reproduces and causes harm to the computer. Polymorphic

viruses are an extension of encrypted viruses where the

decryption key is different with each virus. But the

decrypted virus code is the same in spite of the different

decryption key. Antivirus programs that incorporate code

emulation techniques can detect polymorphic viruses [4].

Polymorphic malware also makes changes to code to avoid

detection. It has two parts, but one part remains the same

with each iteration, which makes the malware a little easier

to identify.

Polymorphic malware generate different variants of itself

while keeping the inherent functionality as same. This is

achieved through polymorphic code. It is a style of code that

mutates keeping the original algorithm the same [5]. The

small section of polymorphic malware code containing the

key generator and Encryption-decryption module is

responsible for morphing the malware and creating variants

that do not have the same signature. The problem of

polymorphic malware is that the decryption block remained

mostly the same in all variants.

H. Metamorphic malware

Metamorphic viruses are more powerful than

polymorphic viruses. Unlike polymorphic viruses, they do

not decrypt to the same virus code. Metamorphic viruses

change the structure of their code without affecting the

functionality. The changed code is recompiled to create a

virus executable that looks different from the original [4].

Such modification is achieved by using several metamorphic

techniques.

Unlike, polymorphic malware, metamorphic malware

contain a morphing engine. This engine is responsible for

obfuscating the whole malware. The body of a metamorphic

malware can be broadly divided into two parts namely

Morphing engine and malicious code. Code structure

entirely different in each variant using obfuscation technique

but same in behaviour and functionality as shown in figure1.

Mutation engine embedded with malicious code responsible

for code obfuscation.

http://searchmidmarketsecurity.techtarget.com/definition/malware
http://searchsecurity.techtarget.com/definition/polymorphic-malware

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 2, Issue 9, September 2013

Copyright to IJARCCE www.ijarcce.com 3452

Figure 1: Different forms of metamorphic malware

III. OBFUSCATION TECHNIQUES

Code obfuscation is used by software vendors to hide their

proprietary code, to increase the difficulty for reverse

engineering the code. Many malware writers take it as

advantage and obfuscate their program using obfuscation

transformations so that the malicious intention could not be

exposed. The obfuscated code performs comparable to the

original program and retains similar functionality [3].

Code obfuscation is a technique used to make code hard

so that nobody can understand the logic adopted behind the

code [1]. Metamorphic malwares use code obfuscation

techniques as opposed to encryption used by polymorphic

viruses. The resulting code after obfuscation has the same

functionality. In order to avoid antivirus scanners, malwares

evolve their body into new generations through the

obfuscation technique. This section introduces the

obfuscation techniques commonly used in the polymorphic

and metamorphic malware.

A. Dead code insertion

Dead-code insertion is a simple technique that adds some

ineffective instructions at some random positions to a

program to change its appearance, but keep its behaviour

same [2] [6] [8]. An example of such instructions is nop

which is generally inserted by the mutation engine for

obfuscating the original code as shown in the table.

However, the signature based antivirus scanners can defeat

this technique simply by just deleting the ineffective
instructions prior to analysis.

The dead code insertion adds code to the program without

changing its functionality. In order to make the detection

more complex, following sequences are also added by

malware writers in the generated variants [9].

• Combination of push reg and pop reg.

• Combination of inc x and dec x instructions.

• Statements like xor reg, reg and mov 0, reg.

B. Register renaming

Register reassignment is another simple technique that

switches registers from generation to generation while

keeping the program code and its behaviour same [6] [8]. As

shown in Table 1, both the codes are having same

functionality but different signature [10]. For example if

register ecx is not used in the entire exist range then it could

be replaced by register eax. This technique uses different

registers for new infections but continues to use the same

virus code. W95/Regswap is a virus that uses the register

usage exchange technique [11].

Table 1: Register renaming technique

Original Code Code after Register

Renaming Obfuscation

MOV EAX, [X]

MOV EBX, [Y]

ADD EAX, EBX

 MOV [X], EAX

MOV ECX, [X]

MOV EAX, [Y]

ADD ECX, EAX

 MOV [X], ECX

Semantic based detection technique is more useful in this

case. Because all generated variants using this type of

obfuscation technique have same semantic. Wildcard

searching is also capable to make this technique useless

which ignores the register changes.

C. Subroutine Reordering

Subroutine reordering obfuscates an original code by

changing the order of its subroutines in a random way

[6].This technique can generate n! different variants, where

n is the number of subroutines. For example, Win32/Ghost

had ten subroutines, leading to 10! = 3628800 different

generations [6]. In this technique, the subroutines are

reordered and branch instructions are used to connect them

to maintain the functionality. The order of subroutines is

different for each infection.

D. Instruction Substitution

In this technique some instructions within the program are

replaced by the instructions, which are having the same

functionality as shown in Table 2. Instruction substitution

evolves an original code by replacing some instructions with

other equivalent ones [8]. Sometimes, programmers can

perform an action in different ways of coding.

 Table 2: Instruction substitution technique

Instruction Equivalent Instruction

mov eax, 18 mov eax 10

add eax 8

mov edx 36 mov edx 48

sub edx 12

mov [ecx+5], add ecx 2

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 2, Issue 9, September 2013

Copyright to IJARCCE www.ijarcce.com 3453

ebx mov [ecx+3], ebx

mov ebx, 4

add ebx, 3

xor ecx, ecx

sub ecx, -7

The instruction substitution transformation replaces some

instruction in the program with the instructions which are

functionally equivalent. This is the most difficult of all

obfuscation class to be de-obfuscated. To handle such type

of detection the malware scanner should maintain a

dictionary of equivalent instructions. Therefore; this is a

great opportunity for the virus programmers to utilize this

possibility in metamorphic engines. Win95/Bistro is a virus

that uses this technique to transform its code [11].

E. Code Transposition

Code transposition reorders the sequence of the

instructions of an original code without having any impact

on its behaviour [7]. There are two methods to achieve this

technique. The first method randomly shuffles the

instructions, and then recovers the original execution order

by inserting the unconditional branches or jumps. In this

technique conditional or unconditional jump (branch)

instruction are inserted in such a way that original

functionality is maintained but structure of control flow is

changed.

This technique modifies the structure of the program in

form of physically reordering of the program codes, while

preserving the execution order or flow of the program

running using conditional jumps or unconditional branches.

It may be done at the level of instructions or modules. The

Win95/Zperm virus is a very good example of this

technique. Clearly, it is not difficult to defeat this method

because the original program can be easily restored by

removing the unconditional branches or jumps.

On the other hand, the second method creates new

generations by choosing and reordering the independent

instructions that have no impact on one another as shown in

Table 3. Because it is a complex problem to find the

independent instructions, this method is hard to implement,

but can make the cost of detection high. With the help of this

method, malware writers create the more sophisticated

variants of existing virus. Thus, all the variants of same

family show same program behaviour but having different

code structure.

Table 3: Code transposition technique

Original Code

Code with Subroutine

Permutation

Function1:

MOV EAX, [X]

Function2:

MOV EBX, [Y]

Function3:

ADD EAX, EBX

MOV [X], EAX

Function2:

MOV EBX, [Y]

Function1:

MOV EAX, [X]

Function3:

ADD EAX, EBX

MOV [X], EAX

F. Code Integration

Code integration is a sophisticated technique used by

metamorphic virus to generate new body structure during

each generation. In this technique, the virus first decompiles

the executable file, divides the code into different fragments,

inserts virus code, and compiles the entire code again to

generate new executable code. This makes it hard to detect

the virus, and even more difficult to repair the executable

[10], [11]. This obfuscation technique is introduced by the

Win95/Zmist malware. As one of the most sophisticated

obfuscation techniques, code integration can make detection

and recovery so difficult.

IV. FUTURE TRENDS

As shown in the advanced malwares such as Zmist, the

malware obfuscation technologies have become

sophisticated and complex. Clearly, such a tendency is

expected to be retained based on the growth of the hardware

and software technologies. Also, they will be revised to be

suit for the popular infrastructures such as web and

smartphone. In this section, we describe the future trends in

the malware obfuscation techniques. As per our observation,

we required an algorithm with the combination of both static

and dynamic analysis in order to deal with these obfuscated

malware.

V. CONCLUSION

In this paper, we briefly surveyed the malware

obfuscation techniques such as dead-code insertion, register

reassignment, subroutine reordering, instruction substitution,

code transposition and code integration, which have been

mainly used by polymorphic and metamorphic malwares to

evade antivirus scanners. As a future trend, these

obfuscation techniques will be more sophisticated and

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 2, Issue 9, September 2013

Copyright to IJARCCE www.ijarcce.com 3454

complex while being combined with one another. Especially,

to handle these obfuscation techniques, we required an

algorithm with the combination of both static and dynamic

analysis.

ACKNOWLEDGMENT

This research work has been carried out with the support

of R&D cell, Department of computer science and

engineering, Arya college of engineering and I. T., Jaipur.

We thank to all researchers in field of metamorphic malware

to get motivated and encouraged to do further work in this

field.

REFERENCES

[1] Ilsun You and Kangbin Yim, Malware obfuscation techniques: A brief

survey, In Broadband, Wireless Computing, Communication and

Applications.
[2] A. Balakrishnan and C. Schulze, Code Obfuscation Literature Survey,

http://pages.cs.wisc.edu/~arinib/writeup.pdf, 2005.
[3] P. Vinod, V. Laxmi, M.S. Gaur, GVSS. Phani Kumar, Metamorphic

virus detections through static code analysis, URL http://amrita.edu/cyber-

workshop/proceedings/icscf09_submission_54.pdf.
[4] W. Wong, Analysis and detection of metamorphic computer viruses

http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

[5] Polymorphic Code, http://en.wikipedia.org/wiki/Polymorphic_code
[6] W. Wong and M. Stamp, Hunting for Metamorphic Engines, Journal

 Computer Virology, vol. 2, no. 3, pp. 211-229, Dec. 2006.

[7] M. Christodorescu and S. Jha, Static Analysis of Executables to
Detect Malicious Patterns, Proceedings of the 12th conference on

USENIX Security Symposium, Vol. 1, pp. 169-186, Aug. 2003.

[8] E. Konstantinou, Metamorphic Virus: Analysis and Detection,

RHUL-MA-2008-02, Technical Report of University of London, Jan.

2008. http://www.rhul.ac.uk/mathematics/techreports

[9] Aditya Govindaraju. Exhaustive statistical analysis for detection of
metamorphic malware, Master's thesis, 2010. URL

http://scholarworks.sjsu.edu/etd_projects/66.

[10] Szor P., & Ferrie, P. (2005). Hunting For Metamorphic.
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.

pdf

[11] P. Szor. The Art of Computer Virus Research and Defense, Addison-
 Wesley Professional, 2005.

http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf
http://en.wikipedia.org/wiki/Polymorphic_code
http://www.rhul.ac.uk/mathematics/techreports
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

