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Abstract: This paper introduces a comparative study of implementing simple ACO and ACO using neural network 

concept for multicast routing in a network.ACO optimizes the path by which ants search for their food by laying a 

chemical substance named pheromone. Ants on the graph move from a node to other node depending on the 

corresponding probabilities function, and update the pheromone locally and globally on graph when every iteration is 

finished. The complexity study, iteration wise shows that merging ACS with neural networks provides features of well 

performance of cost, fast convergence and stable delay to reach optimal solution as compared to simple ACO. 
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I. INTRODUCTION 

Ant colony algorithm determines optimal solution by 

simulating the process of ants looking for food. The ants 

collectively behaviour reflects an information of positive 

feedback phenomenon [2]. This optimization technique 

does not rely on mathematical description of the specific 

issues, but has strong global optimization feature, high 
performance and flexibility. Three main aspects to 

determine ACS are: 

A. State Transition Rule:    
Ants prefer to move to nodes which are connected by short 

edges with a high amount of pheromone [1, 8]. It can be 

done by using following rule: 

 

PIk (r,s) =         ז(r,s).[η(r,s)]β , if s єJk(r) 

 β [η(r,u)](r,u)זּ  ∑                            
                           uεJk(r)   

                              

                                0                  otherwise .........(1) 

 

B. Local pheromone updating  rule 
 

While building a solution , ants visit edges and change 
their pheromone level by applying this rule: 

 (2)................................ (r,s)ז∆.ρ+(r,s)ז.(1-ρ)(r,s)ז           

where 0<ρ<1 is a pheromone evaporation parameter, 

and ∆ז(r,s)=0ז where ז is pheromone. 

(r,s)-edge where ant build their path depositing 

pheromone. We here assume ρ as 0.5. 
 

C.  Global pheromone updating rule 

 

Once all ants have build their tours, pheromone is updated 

on all edges by using the following rule: 

 

         

 (3).....................(r,s)ז∆*α+(r,s)ז* (1-α)(r,s)ז        

where 0<α<1 is pheromone decay parameter and we 

assume α=0.2 

 

Where ∆ז(r,s)=         1/Lgb  if (r,s) є global best tour 
          

                                0    otherwise ..............................(4) 

 

where Lgb is length of globally best tour. 

Though, ACS has various applications but certain 

problems are also encountered while implementing it to 

multicast routing [4]. 

 

 The 4 C factors: 

 

     Convergence time – more 

     Convergence speed – less 
     Complexity - more 

     Cost - more 

Because of these above problems faced with ACS 

implementation we tried to overcome these problems to 

some extent, improving the solution by adding the features 

of neural network [7]. 

II. LITERATURE REVIEW 

Using simple ACO approach, an algorithm MACA[6]  was 

developed ,convergence rate was slower and also there 

was problem of stagnation. New ACA with orientation 

factor accelerated the convergence speed, and enabled the 
ant to get rid of blindness but the problem of stagnation 

still remained. In ACO for multicast routing [7],the 

performance of the algorithm developed would improve 

with decrease of evaporation rate of pheromone but at the 

same time the speed of the algorithm is lowered ,the edges 
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which have been used by the ants will lower to zero with 

adaptive change in the value of pheromone trail. Marco 

Dorigo in his paper[2] also focused on the pheromone 

processing i.e, pheromone control, pheromone-heuristic 
control and privileged pheromone laying it also introduced 

the effect of various network parameter to mitigate 

stagnation to a certain extent[5].Neural Network approach 

came into picture, as Evolutionary Neural 

network[6],which is combination of evolutionary 

algorithm and traditional neural network. A comparative 

analysis was done based on traditional NN based on 

genetic algorithm and evolutionary NN based on 

evolutionary programming [9]. However, computation 

precision and efficiency can be enhanced even more. 

Random neural network approach provides an empirical 
comparison and finds that the heuristics which are 

modified using NN yield significantly better results [3]. In 

our algorithm, both the approaches for optimization are 

combined to develop an algorithm which reduces the 

complexity and speeds up the convergence rate to reach an 

optimal solution [6, 10]. 
 

III. DESCRIPTION OF THE NETWORK 

 
Fig. 1: Sample network 

„r‟,‟v‟and „s‟ are the source node respectively. 

„u‟ and „t‟ are the destination nodes. 

The cost and pheromone intensity of the paths are: 

Cost: (r,v)=(r,u) = 2 

Pheromone intensity : 4 

Cost:(r,u)=(r,t) = 6 

Pheromone intensity : 1.4 

Cost:(v,u)=(v,s)=(u,t)=(s,t) =4 

Pheromone intensity: 2 

Cost:(v,t)=(s,u) = 5 

Pheromone intensity: 1.6 

IV. IMPLEMENTING SIMPLE ACS IN A DIRECTED GRAPH 

The final solution can be tabulated as follows: 

TABLE I 

For the said network: 

Taking „r‟ as the source node, „u‟ as destination node. The 

optimal solution is reached after 4 iterations with 

minimum path length 6. Taking „v‟ as the source node ,‟u‟ 

as the destination node . The optimal solution is reached 
after (n-1) iterations with minimum path length 4. Taking 

„s‟ as the source node ,‟u‟ as the destination node. The 

optimal solution is reached after (n-1) iterations with 

minimum path length 4. 

V. IMPLEMENTATION OF ACS USING NEURAL 

NETWORK CONCEPT 

The delta rule is an algorithm for taking a particular set of 

weights and a particular vector, and yielding weight 

changes that would take the neural net on the path to 

minimal error [7].We use this property, considering 

synaptic weights as cost or pheromone trail laid in the path 
of traversal to reach final destination with optimal cost of 

routing [9]. 

 VI. IMPROVED NEURAL HEURISTIC FOR MULTICAST 

ROUTING 

Mapping Approach: 

 A single neuron is used to represent each vertex. 

 The synaptic weights are represented by the cost 

of edges of the network [7]. 

 For each neuron i ,the firing rate of neuron is 

given 

by r i = Σ j ( w ij + + w ij - ) 

 The probability that neuron i is excited is given 

by 

qi = λi+ / ri + λi- 

where ri=firing rate of neuron 

wij=synaptic weights of neurons 

VII.  ALGORITHM 

ACS Implementation 

 State transition rule 

 Local pheromone update rule 

 Global pheromone update rule 

 
NN Implementation 

 Finding firing rate and probability of excitation of 

neuron from a node to another node 

 Combining both approaches 

 ACS state transition 

 ACS Local Update 

 ACS Global Update of the optimal (shortest) path 

 Neural Global Update of the optimal(shortest) 

path 

 Final solution obtained in less iteration reducing 

complexity of the algorithm 

VI. IMPLEMENTATION 

Parameters Considered For Calculating Average Cost of 

an Undirected Network: 

 Bandwidth 

 Distance 

 Delay 

 Hop Count 

 Packet Loss 

Source Destination Final path 

R U 6(3)/7(2) 

R T 6(4)/10(3) 

V U 4(6)/9(2) 

V T 8(4)/10(6),13(2) 

S U 5(3) 

S T 4(9)/9(3) 
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Taking „r‟ as the source ,‟u‟ as the destination : 

The optimal solution is reached in single iteration with 

minimum path length of 6. 

Taking „v‟ as the source ,‟u‟ as the destination : 
The optimal solution is reached after 3 iterations with 

minimum path length of 4. 

Taking „s‟ as the source ,‟u‟ as the destination : 

The optimal solution is reached after 3 iterations with 

minimum path length of 4. 

TABLE II 

Complexity study 

Complexity Simple ACS  ACS with 
NEURAL 
Approach 

Worst Case 

 

0(n-1) 

 

0(log n) 

 

Average Case 
 

0(n(log n)) 
 

0(log n) 
 

Best Case 
 

0(1) 
 

0(1) 
 

VII. RESULT 

 
Fig. 2 Convergence rate without NN implementaion 

 

 
Fig. 3 Convergence rate with NN implementation 

VII.  CONCLUSION 

The aim of our thesis is accomplished by designing a 

model for our desired objective, analysing it, 

implementing it in various scenario considering all 

constraints possible-cost, delay, bandwidth etc and trying 

to generalize (implementation) through coding, testing 

manually the concept developed on various networks 
thoroughly and building the final optimal solution .Apart 

from what is done, dynamic and parallel implementation 

can be further concentrated on ,for even better results( 

with features like faster convergence ,less complexity, 

cost-effective, more dynamic).The various applications of 

the model developed can be in various areas like in Traffic 

management ,scheduling problems etc.  
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