
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5596

Use of Changing Wave-Front Angles Approach

for Tiled Iteration Space Scheduling of

Three-Level Nested Loops

AliReza Hajieskandar
1
, Shahriar Lotfi

2
, Simin Ghahramanian

3

Department of Electrical and Computer Engineering, Islamic Azad University, Bonab, Iran

Department of Computer Science, University of Tabriz, Tabriz, Iran

Sama Technical and Vocational Training College, Islamic Azad University, Bonab, Iran

Abstract: The shortage of run time is a determinant factor in executing programs. One of the popular methods in this

literature is the parallel execution of programs. The need for high computational speed and power in a majority of

scientific applications fuels the incentives for gaining the computational power of several processors to raise the

execution speed of programs. Furthermore, the presence of sequential programs, once very costly generated, provokes

the engagement of tools known as "super-compilers" for automatic conversion of sequential codes into parallel codes.

In most of computational programs nested loops for which a great amount of time is needed are used. The computations

inside loops which have no interdependence can be partly executed in parallel by the engagement of several processors.

One of the conversion stages of sequential nested loops into parallel ones is to schedule the tiled iteration space.

Regarding the fact that, so far the block and cyclic approaches have been introduced, in this paper the wave-front

approach and wave-angle changes have been incorporated in the block and cyclic approaches in order to reduce the

execution time of three-level nested loops.

Keywords: Nested Loops, Iteration Tiled Space, Scheduling, Wave Fronts and Wave-Angle Change.

I. INTRODUCTION

Time is one of important factors in programs. Decreasing

the execution time is one of crucial goals in program

execution. To decrease the execution time many different

approaches have been suggested. One important method is

the parallel execution of programs. In most programs

repeated loops may be observed. These loops run some

parts of the program's internal instructions frequently and

as a consequence the spent time for running them is

noticeable. This issue becomes more important especially

when the repeat loops are nested. If we could run some

parts of the computations inside loops which have no

interdependence; i.e. the execution of each part is

independent of the others; in parallel by using several

processors then the execution speed will be improved.

Therefore need for high computational speed and power in

a majority of scientific applications fuels the incentives for

gaining the computational power of several processors to

raise the execution speed of programs. Furthermore, the

presence of sequential programs, once very costly

generated, provokes the engagement of tools known as

"super-compilers" for automatic conversion of sequential

codes into parallel codes. Super compilers can detect the

hidden parallelism in programs and next convert a

sequential program into a parallel one. So the

parallelization of nested loops is a key challenge in

shortening the computer program run-time [15]. The

conversion of nested loops into parallel ones is

accomplished through the following orderly stages: In

stage I, as two instructions can run in parallel only when

there is no data dependency between them, the data

dependencies in nested loops will be analysed and

extracted accordingly. Data dependencies originate from

the arrays used inside loops .Therefore if the instruction S

executes before the instruction T and generates some data

that the instruction T will use it certainly, T is called a data

dependent or shortly a dependent on S. In stage II, in order

to achieve better parallelization, to decrease inter-

processor connections and hence to optimally distribute

the dependent iterations of nested loops for being executed

in processors, iteration space is tiled. A set of loop

iterations running in one processor is called a tile. In stage

III, based on the shape and size of produced tiles a desired

parallel code is generated for the iteration space of stage

II. Finally in the stage IV the tiled space of the former

stage is scheduled by using the wave-front approach. In

fact, the tiles are assigned to the processors in a way that

the time needed for executing all of them is minimized

accordingly. In other words termination time for the last

tile of final wave is shortened as much as possible.

In this paper, the tiled iteration space for three-level

nested loops is scheduled over a multi-processor system

by shifting the wave-angle as in the block and cyclic

scheduling approaches.

The remainder of this paper is organized as follows: In

section two we address to the tiled space scheduling. In

section three we review the basic concepts of the problem

in question. Section four explains former related works in

the context, and section five describes our proposed

approach. Six and seven sections focus on the assessment

of experiments and conclusions as well as a guideline for

future works respectively.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5597

II. THE PROBLEM

The main purpose behind this is to allocate tiles to the

existing processors of a multi-processor system so that the

overall execution time of all tiles is minimized.

To schedule loops the processors are interconnected

according to a given topology. Data exchange could be

performed only between two connected processors in

message format and respecting the algorithm‘s governing

rules. The execution time of instructions is computed

by adding the execution time of each processor to the

dispatch time of each message. In three dimensional

spaces the interconnection topology of processors is cubic

so each processor is connected to the other processors in

the three axes of vertical, horizontal and depth. The

commands are divided among processors; the way, start

time and end time of executing them over each processor,

the transposition of each instruction relative to others and

the method of data exchange among processors are

specified and the processors will execute the assigned

commands to them. In the rest, in order to clarify the

problem two examples from nested loops are shown as

follows:

Example1:

Suppose the number of processors is 3 and the loop

dimensions in the three axes of vertical, horizontal and

depth is 2. In the following figure two solutions obtained

after the execution of the scheduling algorithm are shown.

Fig. 1. Two typical scheduling for example 1

Example 2:

Consider the below nested loop:

For i:= 0 To 9 Do

 For j:= 0 To 5 Do
 For k:= 0 To 9 Do

 A[i, j, k]:= A[i-1, j, k] + A[i, j-1, k]+A[i, j, k-1];

 EndFor
 EndFor

EndFor

In the above example reference to the array causes internal

data dependency in loop iterations. Therefore, each

iteration [i, j, k] depends on its three neighbours namely
[i-1, j, k], [i, j-1, k] and [i, j, k-1].

In order to decrease communication among processors the

iteration space can be tiled. The purpose of tiling is to

distribute optimally the dependent iterations of nested

loops for being executed only over the processors that

have message transactions. The main challenge in this

literature is the plentiful number of dependencies. For

performing this task the different iterations of loops are

categorized in a tile format. In fact a tile is the set of points

in the iteration space which have highest data dependency

to each other and should be executed over the same

processor. The determination of the tile size and form is an

NP-hard problem [13, 24]. If the iteration space is not tiled

correctly, the inter-processor commutations will be high.

In this problem we want to assign a certain number of

processors to the existing tiles in the tiled space, so the

inputs of our problem are the tiled iteration space and a

certain number of specified processors. In this tiled space,

each tile has two prerequisite tiles as, and it means that in

the related tiled space there is an edge from three

prerequisite tiles toward the corresponding tile. So while

the execution of prerequisite tiles has not been finished

completely, cannot start execution.

For optimum scheduling of tiled space two constraints are

postulated: (1) balanced loads among processors (2) The

least possible cost for inter-processor connections when

scheduling. The nearly identical figures of tiles (tiles are

created incompletely in borders) and the execution of each

tile in one processor satisfies the first constraint. In order

to reduce inter-processor connecting cost, the tiles with

higher communication cost should be assigned to the same

processors so that with the zero connection time, the time

needed for executing tiles minimizes [11].

We denote the cost of communication and message

sending between the current tile and the prerequisite ones

with Vcomm. Since each tile connects to two tiles of

different dimensions, so we use two parameters as

Vcomm(1) ,Vcomm(2) and Vcomm(3). Vcomm(1) stands

for the communication volume of with the neighbouring

tile in respect for the first dimension while Vcomm(2)

stands for the communication volume of with the

neighbouring tile for the second dimension and

Vcomm(3) stands for the communication volume of with

the neighbouring tile for the third dimension. As long as

and its neighbouring tiles are executed over different

processors we have to tolerate the existing costs as the

problem input but for the case of identical processors , the

communication cost will be zero. Regarding the fact that

processors are fully-connected in style; i.e. each processor

is directly connected to other processors, the connection

cost among all processors is identical.

The execution cost of each tile in an individual processor,

Vcomp, for all tiles is identical and is as input of problem.

So the termination time of tile is computed through the

following equation:

)3()(

),2()(

),1()(

)(

comm
S

comm
S

comm
S

S

VJtimecompletion

VJtimecompletion

VJtimecompletion

MaxJtimecompletion (1)

The total time duration for executing all current scheduled

tiles, known as "makespan", this parameter that is an

output of problem is given by the following equation:

 sS JJtimecompletionmakespan ,))(max(

Tiled Iteration Space
(2)

III. DATA DEPENDENCY AND THE NESTED LOOPS

ITERATION SPACE TILING, AN OVERVIEW

The first stage in parallelization of nested loops is to

analyse the data dependency problems; two instructions

can be executed simultaneously only if there is no data

dependency between them [11]. Generally speaking the T

instruction is called S - data dependent or shortly S-

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5598

dependent [11] if both of instructions refer to the same

memory location, S instruction is executed before T

instruction, if there is an execution path between the two

instructions and in the time interval between S and T

instructions nothing is recorded in the commonly referred

location.

In order to achieve better parallelization and cache locality

of reference in individual processors and extraction of

great parallelization in multiprocessors the iteration space

of nested loops is tiled. A set of loop iterations which must

run in an individual processor is called a tile. The purpose

from tiling is to reduce communication volume among

processors and consequently to optimally distribute the

dependent nested loops for being executed in the

processors which exchange messages with each other. A

sample tiling method is depicted in the below diagram [4,

11].

Fig. 2. An example of Iteration Space Tiling

IV. RELATED WORKS

As the scheduling of iteration space for nested loop is a

determinant factor in increasing the run speed of

programs, so far w many approaches have been suggested

to deal with this problem. Any of these methods somehow

tries to decrees the run time of repeated loops in a parallel

manner [1, 6, 8, 11, 14-16, 18, 19, 21, 23, 25, 26]. But for

three-level iteration space two approaches of the block and

cyclic scheduling are suggested [13, 14, and 22]. In some

methods, in order to minimize the overall execution time

of iterations, the communication time of processors

overlaps with the time of internal calculations of

processors [3, 8, 23]. Also some other approaches inspired

by the wave-front method, eliminate the need for

communicating of many processors and assign dependent

caches to the same processor [8, 9, 14, 23]. In other

approaches, the critical path for the task graph resulted

from the loop iterations’ space is calculated and in order to

obtain load balancing, other non-critical iterations are

distributed among processors according to their data

dependency [1].

We in the former articles [9] and [10] using the wave-front

method introduced two genetic-based algorithms for

scheduling two level nested loop. One of the methods with

angle shift and the other without it can culminate at the

proper scheduling of the problem in question.

We also achieved optimum results in [11] by shifting the

wave angle in the following four approaches: the

horizontal block, the vertical block, the horizontal cyclic

and the vertical cyclic. They schedule the two-level

iteration space. In this paper we extended this approach for

the three-level space.

Some of these methods [13, 14] try to remove the great

number of interactions among processors and assign

dependent tiles to a single processor by using the block

and cyclic approaches. In the block approaches the tiles

are blocked horizontally or vertically and each block is

assigned only to one processor, in a way that if there be n

rows and m processors n/m blocks will be created

horizontally or vertically and a single processor will be

allocated to one block. Also in the cyclic approaches each

row or column will be assigned to the same processor

alternately and intermittently. So in these cases, inter-

processor communication is decreased which in turn

lowers the overall execution time.

Doritos and et. al. in [7] introduced a low-cost algorithm

which using geometrical calculations generates the

typical schemes consisting of iteration subsets which can

be executed earlier in a certain k-time phase.

Lotfi and Parsa in [20] suggested a new algorithm over the

irregular iteration space in which in order to extract

efficient waves they have granted that all tiles of identical

coordinates are located over one single wave. They

improved the block scheduling and achieved better

outcomes through using this way. In this case the tiles are

taken as parallelepiped with the highest degree of

parallelism, load balance and the lowest level of expense.

And also by using the Genetic algorithm better results

were obtained for parallelepiped tiles compared with

rectangular or square shaped tiles.

V. PROPOSED STRATEGY

The proposed approach of BCAATLLS is based on the

wave-front approach and wave-angle shifts and by shifting

angle in the horizontal Block (BlockH), the Vertical Block

(BlockV), the Horizontal Cyclic (CyclicH), the Vertical

Cyclic (CyclicV) methods trying to better load balancing

between processors and thereby minimizing the makespan

of nested loops’ execution. In fact, a wave consists of tiles

without data dependency which can be executed in

parallel. In two surface spaces, waves are as line, and in

three surface spaces, as page. If waves are drawn over the

iteration loop, they form an angle which its shift

culminates at the minimization of required processors in

number, the optimization of their loading balance and

consequently the optimization of makespan for scheduling.

The difference of proposed algorithm with the suggested

algorithm in our previous paper [11] is that in this paper

due to the three-level nature of loops and consequently the

three-dimension iteration space each wave comes a plane

.As a result the number of existing tiles over one wave

increases to form 5 tile types totally which in the rest we

will address to it after showing the pseudo-code of "How

to compute the execution end time ".

A. The pseudo code for computing the overall execution

time of tiles in a tiled space based on the wave-front

method and inspired by the angle concept

To do this the pseudo code of Figure 3 is used. This

algorithm is based on the wave-front method. The waves

should be executed sequentially. So in this algorithm the

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5599

overall execution time equates he sum of tiles’ execution

times over waves. Presumably, at the wave beginnings

processors are synchronized and between two successive

waves the transmission time of messages are overlapped

possibly. Also for identifying the number of wave in

which the tile SSSS JJJJ 321 ,, is located, the Relation

No.3 is used in which a and b stand for angle coefficients.

(The wave angle is represented by two coefficients of a

and b) These coefficients were taken as 1 in the former

works which account for a 45 degree angle indeed.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑎𝑣𝑒 − 𝑓𝑟𝑜𝑛𝑡 𝑖, 𝑗, 𝑘 = 𝑎 × 𝑖 + 𝑏 × j + c × k (3)

Fig. 3. The pseudo code for computing the overall execution time of tiles in a three level tiled space

As observable, there are five kinds of tiles: 1- tiles located

in the origin of coordinates 2- tiles located alongside the

horizontal axis 3- tiles located alongside the vertical axis

4- tiles located alongside the depth axis and 5-internal

tiles.
As noted before, two constrains should be postulated for

optimum scheduling of tiled space (1) loading balance

among processors and (2) low communication cost among

processors in scheduling time. The results obtained from

the execution of proposed algorithm indicates that shifting

wave angles will lower the number of needed processors

for scheduling the iteration space with implications for

improving the load balance among processors. Therefore

the wave angle shift covers the first constraint. The second

constraint is tacked with as well by using the mentioned

four approaches because these approaches are intrinsically

postulated to lower the inter-processor communication

during the scheduling process.

VI. ASSESSMENT AND PRACTICAL RESULTS

In order to verify the proposed algorithm BCAATLLS and

to contrast its results versus the former algorithms, a

software application is designed and implemented in

Delphi 2010. The engaged algorithms for comparing the

new proposed algorithm include the horizontal Block, the

Vertical Block, the Deep Block, the Horizontal Cyclic, the

Vertical Cyclic and the Deep Cyclic algorithms.

A. Proposed Algorithm assessment

As the proposed algorithm is definitive, so its yielding

solutions are the same for a given problem, so the

proposed algorithm is completely (100%) stable and the

generated solutions are also 100% reliable.

B. The comparison of the proposed algorithm with

former works

In this section, by running implemented program for

proposed algorithm and conducting various tests of mixed

types, the quality of generated solutions by the proposed

algorithm is compared against those of former ones.

Notably, because of page paucity, only some of tests are

shown here. The testing results as well as the related

parameters of each test are tabulated in Table 1.

TABLE I

THE OUTCOME RESULTS FROM IMPLEMENTING THE PROPOSED ALGORITHM AND FORMER ALGORITHMS

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5600

For better comparison, the obtained results of performed tests are depicted in figure 4.

Fig. 4. The comparison of results obtained by running the proposed algorithm and former algorithms

VII. CONCLUSION AND FUTURE WORKS

In this paper, taking the benefits of angle shifts, an

algorithm was proposed which due to its potential in

improving the loading balance among processors and

consequently optimizing of their usage, minimized the

execution time of tiles. As he results show, the proposed

algorithm (BCAALS) yielded better results in 93% of

cases relative to the Block or Cyclic methods.

On the stability and reliability of the proposed algorithm it

just suffices to note that as the proposed algorithm is not

stochastic, its generated solutions are stable and

completely (100%) reliable.

Using random algorithms for solving this problem, the

parallel implementation of random algorithms such as the

Genetic Algorithm and mixing the Genetic Algorithm with

other intelligent searching algorithms such as Learning

Automata.

ACKNOWLEDGMENT

This manuscript is original and is un-published work and

is not be under-consideration for publication elsewhere.

REFERENCES

[1] T. Andronikos, M. Kalathas, F. M. Ciorba, P. Theodoropoulos, and

G. Papakonstantinou, An Efficient Scheduling of Uniform

Dependence Loops, Computing Systems Laboratory, Department of
Electrical and Computer Engineering, National Technical

University of Athens, Zographou Campus, Athens, Greece, pp. 1-

10, 2004.
[2] M. Athanasaki, E. Koukis, and N. Koziris, Scheduling of Tiled

Nested Loops onto a Cluster with a Fixed Number of SMP Nodes,

12th Euromicro Conference on Parallel, Distributed and Network-
Based Processing, IEEE, 2004.

[3] M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, N. Koziris, and P.

Tsanakas, Hyperplane Grouping and Pipelined Schedules: How to
Execute Tiled Loops Fast on Clusters of SMPs, Journal of

Supercomputing, vol. 32, pp. 197-226, 2005.

[4] D. K. Chen and P. C. Yew, An Effective Execution of Non-
Uniform Do Across Loops, pp. 1-6, February 1995.

[5] A. Darte, L. Khachiyan, and Y. Robert, Linear Scheduling Is

Nearly Optimal, pp. 73-81, 1991.
[6] A. Darte, Y. Robert, and F. Vivien, Scheduling and Automatic

Parallelization, 2000.

[7] I. Drositis, T. Andronikos, A. Kokorogiannis, G. Papakonstantinou,

and N. Koziris, Geometric Pattern Prediction and Scheduling of
Uniform Dependence Loops, 2001.

[8] G. Goumas, A. Sotiropoulos, and N. Koziris, Minimizing

Completion Time for Loop Tiling with Computation and
Communication Overlapping, IEEE, pp. 1-10, 2001.

[9] A. Hajieskandar and S. Lotfi, Parallel Loop Scheduling Using an

Evolutionary Algorithm, pp. 314-319, August 2010.
[10] A. Hajieskandar and S. Lotfi, Using an Evolutionary Algorithm for

Scheduling of Two-Level Nested Loops, pp. 100-105, May 2011.

[11] A. Hajieskandar, S. Lotfi, and S.Ghahramanian, Two Level Nested
Loops Tiled Iteration Space Scheduling By Changing Wave-Front

Angles Approach, International Journal of Advanced Research in

Computer and Communication Engineering, vol. 1, Issue 3, pp.
126-133, May 2012.

[12] L. Lamport, The Parallel Execution of Do Loops, Comm. of the

ACM, vol. 37, No. 2, pp. 83-93, February 1974.
[13] S. Lotfi and S. Parsa, Parallel Loop Generation and Scheduling,

Journal of Supercomputing, vol. 50, No. 3 pp. 289-306, 2009.

[14] N. Manjikian and T. S. Abdelrahman, Scheduling of Wavefront
Parallelism on Scalable Shared-Memory Multiprocessors, pp. 1-10,

1996.

[15] D. I. Moldovan and J. Fortes, Partitioning and Mapping Algorithms
into Fixed Size Systolic Arrays, vol. C-35, No. 1, pp. 1-11, 1986.

[16] T. W. O’Neil, Techniques for Optimizing Loop Scheduling, Ph. D.
Thesis, The Graduate School of the University of Notre Dame,

Indiana, 2002.

[17] S. Parsa and S. Lotfi, A New Approach to Parallelization of Serial
Nested Loops Using Genetic Algorithms, Journal of

Supercomputing, vol. 36, No. 1, pp. 83–94, 2006.

[18] S. Parsa and S. Lotfi, A New Genetic Algorithm for Loop Tiling,
Journal of Supercomputing, vol. 37, No. 3, pp. 249–269, 2006.

[19] S. Parsa and S. Lotfi, Code Generation and Scheduling for

Parallelization of Multi-Dimensional Perfectly Nested Loops, pp.
20-22, February 2007.

[20] S. Parsa and S. Lotfi, Wave-Fronts Parallelization and Scheduling,

pp. 382-386, November 18-20, 2007.
[21] D. L. Pean, H. T. Chua, and C. Chen, A Release Combined

Scheduling Scheme for Non-Uniform Dependence Loops, Journal of

Information Science and Engineering, vol. 18, pp. 223-255, 2002.
[22] J. Ramanujam and P. Sadayappan, Tiling Multidimensional

Iteration Spaces for Multicomputers, Journal of Parallel and

Distributed Computing, vol. 16, No. 2, pp. 108-230, 1992.

[23] F. Rastello and Y. Robert, Automatic Partitioning of Parallel Loops

with Parallelepiped-Shaped Tiles, vol. 13, No. 5, pp. 460-470, May

2002.
[24] W. Shang and J. A. B. Fortes, Time Optimal Linear Schedules

for Algorithms with Uniform Dependencies, IEEE Transactions on

Computers, vol. 40, No. 6, pp. 723-742, 1991.
[25] J. Xue, On Tiling as a Loop Transformation, vol. 7, No. 4, pp.

409-424, 1997.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 2, February 2014

Copyright to IJARCCE www.ijarcce.com 5601

[26] C. T. Yang and K. Cheng, An Enhanced Parallel Loop Self-

Scheduling Scheme for Cluster Environments, Journal of
Supercomputing, vol. 34, pp. 315-335, 2005.

BIOGRAPHIES

 AliReza Hajieskandar received the B.Sc.

In Software Engineering from Islamic

Azad University Shabestar Branch, Iran

and the M.Sc. degree in Software

Engineering from Islamic Azad University

Qazvin Branch, Iran. He is preceptor of

Software Engineering at the Islamic Azad

University Bonab Branch. His research interests include

compilers, super-compilers, parallel processing,

evolutionary computing and algorithms.

 Shahriar Lotfi received the B.Sc. in

Software Engineering from the University

of Isfahan, Iran, the M.Sc. degree in

Software Engineering from the University

of Isfahan, Iran, and the Ph.D. degree in

Software Engineering from Iran University

of Science and Technology in Iran. He is Assistant

Professor of Computer Science at the University of Tabriz.

His research interests include compilers, super-compilers,

parallel processing, evolutionary computing and

algorithms.

 Simin Ghahramanian received the B.Sc.

in Software Engineering from Islamic Azad

University shabestar Branch, Iran, and the

M.Sc. degree in computer system

architecture from Islamic Azad University

East Azarbaijan Science and Research

Branch. She is preceptor of Software Engineering at the

Sama Technical and Vocational Training College, Islamic

Azad University, Bonab Branch. His researches interests

include parallel processing, Network Computing and NOC

Testing.

