
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 4919

SOFTWARE QUALITY ASSURANCE USING

TIME STAMP TEMPORAL QUALITY

ASSURANCE ALGORITHM

M.Gowthami
1,
 P. Thenmozhi

2

M.phil (Full Time) Research Scholars, Dept., of Computer Science, Kongu Arts and Science College, Erode, India
1

Assistant Professor, Department Of Computer Science, Kongu Arts and Science College, Erode, India
2

Abstract :Time stamp Temporal Quality Assurance algorithm is also a planning system for manufacturing processes

that helps in analysis the productivity technique. It was developed with four kinds of clients. The clients are

Manufacturer, Agent, Suppliers and Customer. Using this system the manufacturer will know about the performance of

the agents and similarly the agent will know about the performance of the suppliers. Using this system the supplier will

be able to know about the customer performance towards the products. The Software Quality Assurance technique

implemented in this system is “Time stamp Temporal Quality Assurance”. Using the above technique the system can

mine the useful information from the large amount of data stored in the database. The proposed method QA is used to

eliminate the waste provable quality assurance. It increases the accuracy of 68% and it improves average recall of 76%.

Effort needed to find defect inducing changes only the user, who has rights to access, can get the required information.

It provides employees involvement in decision making supplier participation to improve total quality control using

TSTQA software quality assurance algorithm.

Keywords: SQA, Change management, dynamic reconfiguration, QoS assurance process, System evolution.

I.INTRODUCTION

Software system is playing an increasingly important role

in our society. Software systems are growing up in both

size and complexity, developing high quality and reliable

systems is becoming more challenging and more

expensive. Building software products on time, within

budget and with highest quality is the demand in the area

of software quality assurance [1]. Software quality

assurance encompasses the entire software development

process, which includes processes such as requirements

definition, software design, coding, source code control,

code reviews, change management, configuration

management, testing, release management, and product

integration. Software quality assurance is organized into

goals, commitments, abilities, activities, measurements,

and verifications.

There are many techniques used to improve testing

efficiency in software quality assurance. Quality assurance

techniques are divided into 2 types: static and dynamic

testing techniques. Static testing techniques are based on

manual examination (review) and automatic analysis

(static analysis) of the code or other project documentation

without the execution of the code. to obtain the validation

it must also satisfy the requirements identified in the

analysis. The Test Factory verifies the correct

functionality of the software product implemented and

responsiveness to functional and technical specifications.

[7,8]. However, most of existing approaches is often

performed static testing techniques separately from

dynamic testing techniques that often lead to the waste of

effort in software quality assurance. Combining static and

dynamic testing techniques is one of the approaches that

can help tackle this problem [8].

The traditional approach to Quality assurance is at the root

of many problems that business faces today. The high

inventory levels, soaring costs, adverse relationships with

suppliers and quality issues which either stop production

or results in poor products are just a few of the problems

with the current way of Quality assurance.

 During the last two decades, the Quality

assurance environment has become one of the most crucial

elements in establishing the value added contents for the

products and services and hence has become the vital

factor in the dynamic international market. Shortages of

raw material, shorter lead time, high quality, increasing the

variety of products with smaller runs, inflation,

productivity and introduction of a JIT Quality assurance

system etc. prompted the realization of the importance of

Quality assurance Software Quality Assurance helps

ensure the development of high-quality software. Software

Quality Assurance practices are implemented in most

types of software development, regardless of the

underlying software development model being used.

Software Quality Assurance incorporates and implements

software testing methodologies to test software. Rather

than checking for quality after completion, Software

Quality Assurance processes tests for quality in each phase

of development until the software is complete. With

Software Quality Assurance, the software development

process moves into the next phase only once the

current/previous phase complies with the required quality

standards. Software Quality Assurance generally works on

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 4920

one or more industry standards that help in building

software quality guidelines and implementation strategies.

Quality Assurance has gained wide acceptance as an

integral part of any, good Software Development Life

Cycle. An efficient QA organization must be designed so

that it facilitates the activities that are necessary to

measure the characteristics of software quality that are

pertinent to the success of the business. Such activities

may include code inspections, requirements gathering and

system monitoring. The inability to measure quality can

cause a business to lose valuable customers and struggle to

compete in the market place. During the ever changing

market landscape, firms must react to external forces to

ensure that their activity configurations are internally

consistent and appropriate for the current environment of

the firm. This challenge is more acute when the

competitive landscape changes, such that a new set of

high-performing activities are required.

 It has been noted that adaptive firms must

maintain a balance of exploitation and exploration to stay

ahead of the curve in the market place. To accomplish this,

some firms may rely on centralized organizations while

others rely on decentralized. Using the internet as an event

that changed the competitive landscape for many

companies we can illustrate the new activity choices that

became available to companies.

 Similar challenges will be faced by the QA

organization. Again, using the same event as above, we

can illustrate the new activity choices that would become

available to the QA organization. One option could be to

form a QA organization that is dedicated to any business

done via the internet. This option may require developing

new processes, acquiring new skill sets, relocating and

retraining existing personnel or creating a new QA

methodology that supports the more sophisticated

development processes that are often associated with

newer technologies. Furthermore, it may be more

conducive to measuring specific quality metrics that are

more relevant to that particular business such as efficiency

and reliability, which are both included in the quality

model.

 Another option that may become available to the

QA organization can be seen when a firm merges with

another firm due to an acquisition. This is a very common

occurrence as many firms rely on acquisitions to grow

their business and in most cases will require the

integration of multiple systems. This may be best

accomplished by maintaining a centralized QA

organization that applies a rigid and consistent set of

testing standards in order to properly measure these

characteristics. A centralized model is also conducive to

knowledge transfer from the acquired company and allows

for the creation of a consistent set of documents that will

aid the learning process. This enables the measurement of

yet another quality characteristic, that of learn ability.

 Now consider a decentralized group in this same

scenario. Multiple QA teams are now charged with testing

various integration points of numerous applications. This

model poses many measurement challenges for the

acquired firm including:

 Review of documentation and the approval

process may vary from team to team. This may make it

challenging to measure software learn ability.

 Testing artifacts are created with a wide variety

of formats and templates, which may make it difficult to

measure software functionality.

 Multiple teams must be briefed on conformance

and compliance details, which leave measurement open to

interpretation.

 Multiple dependencies are created among test

teams and development teams, which may cause

measurements to be incomplete and fragmented.

 Testing can not start until all prerequisites are in

place, which may extend the time that it takes to gather

key quality metrics.

The Contemporary Quality Assurance professional can

refer to this study as their starting point to understand why

certain applications in their portfolio may be suffering

from certain software deficiencies. The understanding

gained from this research can also be used by Quality

Assurance professionals and corporate managers alike to

suggest areas where subtle changes to existing processes

may make measuring the software quality characteristics

that are critical to their business easier without disrupting

normal operating procedures. More specifically, the

findings from this study can be analyzed to determine if

decentralized and centralized Quality Assurance

organizations elicit certain human behaviors that are

essential for measuring a certain characteristic of software

quality.

 The quality of products is dependent upon that of

the participating constituents. Some of which are

sustainable and effectively controlled while others are not.

The processes which are managed with Quality Assurance

pertain to Software Quality Management. If the

specification does not reflect the true quality requirements,

the product's quality cannot be guaranteed.

 In the previous methodology, the user can able to

store only small amount of data and data retrieval

operation is not much efficient. The previous methodology

is not reliable for complex storage of data. The user cannot

get the required information from the data using the

existing system. The operations on data are not possible by

using the previous methodology.

Also, the previous methodology serves as only storage

medium. It cannot help the user to make knowledge driven

decisions. It does not serve as prediction tool for the user.

The information hidden in the data are not extracted by

using the previous methodology. However the retrieval of

data from the database is not much easier. The existing

system does not answer the business questions. Extracting

information from the database is time consuming and

cumbersome job in the existing system.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 4921

 The problem statement addressed was: The role,

if any, that organizational structure plays on measuring

software quality. Measuring software quality often

involves activities that require collaborating with multiple

groups within the organization. In some cases, the groups

may be internal to the enterprise, while others may be

external, such as a customer.

Today‟s companies must design QA organizations that

strengthen their presence in the marketplace. This can only

be accomplished by ensuring that each department,

including the QA organization has access to the

information and is able to perform the activities that are

required to measure the characteristics of software quality

that are most relevant to their business. The QA

organization is not immune to this problem and is the

focus of this research.

1.1. Objective

The system was developed for four kinds of clients. The

clients are Manufacturer, Agent, Suppliers, and Customer.

This system is a client-server project in which the user can

request the system for some operation and system will

response for those request by the user. The user can enter

into the system by entering the name, password, and client

level and user code. All the data retrieval operations are

done by using the user code. This system provides access

rights to the user. So only the authorized clients will able

to use this system. This system provides the data base

security by allowing only the authorized clients to view

the data stored in the database. This system serves as the

prediction tool for the user.

Using this system the manufacturer will know about the

performance of his agents and similarly the agent will

know about the performance of his suppliers. Using this

system the supplier will be able to know about the

customer preference towards the products. The users will

able view the details belong to his lowest level user only.

Thus system provides the client security. This system also

maintains the orders and transactions of the user. Software

Quality Assurance is done by using the Time stamp

Temporal Quality Assurance. Using Time stamp Temporal

Quality Assurance method, the user can predict the

behavior of purchase and sales of the product.

 The sales and purchase details of the product are

taken from the appropriate database of the user. Both

classification and prediction are made according to certain

assumptions. For decision trees, the user will give the

certain threshold and the calculations are done based on

the threshold and the result will be shown to the user.

There are a number of objectives for this paper, the first is

to define the principles of software testing, describe the

numerous testing methodologies and how to effectively

conduct this testing on projects in industry. The second

objective is to evaluate what constitutes software quality

and what factors affect this quality and how, when and

where QA can be used in the project life-cycle for

improving product quality. The third objective is to outline

the test and QA effort during a project in a particular

company and to evaluate the adoption of improved

practices during subsequent projects in the same company.

The fourth objective is to develop the improved practices

into a framework for evaluation in other companies.

1.2. Problem Affiliations

 Unlikely conventional development

methodologies software development integrates QA

practices in development activities, rather than practicing

them independently and separately. Sometimes due to

managerial or/and organizational issues, customer or

project requires some standards to be followed [21].

 According to this report one of the important

reasons which makes methodologies incompatible is that

the organizations adopted, were large scale with high level

of management, organizational hierarchy and governance;

where the organizations which adopted TSTQA

methodologies were focusing on small or single team

projects. This case study places a claim “Currently, the

existing just in time project learning techniques seem to

lack means to perceive the organizational. For example,

they do not address the important aspects of systematically

defining, validating, packaging and storing the results of

JIT projects.”[23]. It can be observed that all the aspects,

this claim addressed, are SQA responsibilities. Any kind

of improvements within the organization, project or

development are to achieve higher level of software

products.

1.3. Proposed Solution

TSTQ has the following flavors of influence on our study:

 Claims of higher quality through TSTQA

development (guidelines, survey results, favors and critics)

 Integrated QA activities in TSTQA

methodologies (guidelines, favors and critics)

 Claims of lacking in defined standards in TSTQA

development (critics, surveys)

 Research done to enhance throughput over

TSTQA development projects (research results and

suggestions)

QA must be integrated rather than shifted, here shifting

implies as most of the QA activities in agile projects are

performed by the developer or QA personnel are supposed

to perform as developer. There is no doubt that TSTQ

methodologies came up with higher quality due their

incremental and test-driven nature. Production of higher

quality, and absence of systematic, organized and well

defined procedures and standards, show that there is much

space of improvement in agile SQA activities. Baseline of

our suggested solution is “to redefine SQA activities rather

than shifting”.

II RELATED WORK

2.1. User View

Whereas the transcendental view is ethereal, the user view

is more concrete, grounded in product characteristics that

meet the user's needs. This view of quality evaluates the

product in a task context and can thus be a highly

personalized view. In reliability and performance

modeling, the user view is inherent, since the methods

assess product behavior with respect to operational

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 4922

profiles (that is, to expected functionality and usage

patterns). Product usability is also related to the user view:

in usability laboratories, researchers observe how users

interact with software products. [13]

2.2. Manufacturing View

The Manufacturing view focuses on product quality during

production and after delivery. This view examines whether

or not the product was constructed "right the first time," in

an effort to avoid the costs associated with rework during

development and after delivery. This process focus can

lead to quality assessment that is virtually independent of

the product itself. The manufacturing approach was

adopted by ISO 90013 and the Capability Maturity Model

advocates conformance to process rather than to

specification. There is little evidence that conformance to

process standards guarantees good products. In fact, critics

of this view suggest that process standards guarantee only

uniformity of output and can thus institutionalize the

production of mediocre or bad products. However, this

criticism may be unfair.

2.3. Product View

Whereas the user and manufacturing views examine the

product from without, a product view of quality looks

inside, considering the product's inherent characteristics.

This approach is frequently adopted by software-metrics

advocates, who assume that measuring and controlling

internal product properties (internal quality indicators) will

result in improved external product behavior (quality in

use). Assessing quality by measuring internal properties is

attractive because it offers an objective and context

independent view of quality. However, more research is

needed to confirm that internal quality assures external

quality and to determine which aspects of internal quality

affect the product's use.

2.4. Value-Based View

Different views can be held by different groups involved

in software development. Customers or marketing groups

typically have a user view, researchers a product view, and

the production department a manufacturing view. If the

difference in viewpoints is not made explicit,

misunderstandings about quality created during project

initiation are likely to resurface as (potentially) major

problems during product acceptance.

If the user's view is stated explicitly during requirements

specification, the technical specification that drives the

production process can be derived directly from it as can

product functionality and features. However, problems can

arise when changes to the requirements occur. At this

point, the user's requirement for a useful product may be

in conflict with the manufacturer's goal of minimizing

rework.

The value-based view of quality becomes important.

Equating quality to what the customer is willing to pay for

encourages everyone to consider the trade-offs between

cost and quality. A value-based perception can involve

techniques to manage conflicts when requirements change.

Among them are "design to cost," in which design

possibilities are constrained by available resources and

"requirements scrubbing," in which requirements are

assessed and revised in light of costs and benefits. Product

purchasers take a rather different value-based view. The

internal software measures are irrelevant. Purchasers

compare the product cost with the potential benefits.

2.5. Jit

The Just-In-Time (JIT) is a planning system for

manufacturing processes that helps in achieving high-

volume production using the minimal inventories. The

system eliminates the inventory of raw materials, work in

progress, and finished goods by making them available as

and when required. The items are picked up by the worker

and fed directly into the production process. The finished

goods are produced only at the time they are required for

sale. The implementation of the JIT system requires

complete transformation of methods of designing products

and services, assigning responsibilities to workers, and

organizing work.

JIT system, the finished goods are assembled just before

they are sold, the sub assemblies are made just before the

products are assembled and the components are fabricated

just before the sub-assemblies are made. The work-in-

progress inventory is always kept at a low level, thus

reducing the production lead times. The firms should

achieve and maintain high performance levels in all their

operational areas to facilitate the smooth flow of materials

in the JIT Systems.

The JIT manufacturing system is based on the concept of

continuous improvement, which includes the two mutually

supporting components of people involvement and total

quality control.

People Involvement is a Human Resources Management

component plays a vital role in the implementation of the

JIT manufacturing system. The successful implementation

of a JIT program requires teamwork, discipline, and

supplier involvement.

Total Quality Control is a firm can produce high quality

products only through the combined efforts of all the

departments including the purchase department, quality

control department, and personnel department. The

concept of 'immediate customer' helps the firms to achieve

the required quality levels.

Team Work involves activities like suggestion programs,

and quality circle programs which enable employees to

actively participate. Suggestion programs are conducted to

encourage the employees to their ideas on how to improve

a process. In quality circles, people working in similar

types of operations meet at regular intervals and discuss

ways to improving the quality of their processes.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 4923

In the supplier involvement firms can allow suppliers to

participate in design review and to suggest new designs

and methods for improving product quality or

productivity. JIT firms enter into contracts with their

suppliers instead of inviting competitive bids from a set of

suppliers. The JIT firm can share its production plans and

schedule with its suppliers so that they can plan their

business and capacity requirements. Linear production

schedules relate to the development of production

schedules with uniform workloads. The maintenance of

linear production schedules requires the identification and

elimination of production bottlenecks, a balance in the

production system, and a reduction in set-up time.

A JIT uses the concept of 'immediate customer' where

each worker in the firm considers the next worker who

continues the production process as the customer.

Therefore, it is the responsibility of the worker to ensure

that the product is processed to meet specifications and

quality requirements before passing it on to the next

worker. Only items of acceptable quality are delivered to

the immediate customer. In case a worker delivers a

defective item or an improperly finished item to his/her

immediate customer, the worker who identifies the defect

is authorized to stop the process and take necessary actions

In a JIT Manufacturing system, firms maintain inventory

in the smallest possible lot sizes. This is done to reduce the

cycle inventory, cut lead times, and achieve a uniform

work load. JIT firms should maintain long-term

relationships with their suppliers as they are responsible

for providing the timely delivery of good quality

inventory.

In the JIT system, quality control begins from the source

where the workers are encouraged to maintain the quality

of work. The production process is stopped immediately

when a quality problem is identified and is continued only

after the problem has been sorted out.

JIT system is possible only for minimal stock in the small

organization and is kept for re-working faulty product.

Production is very reliant on suppliers and if stock is not

delivered on time, the whole production schedule can be

delayed. There is no spare finished product available to

meet unexpected orders, because all products are made to

meet actual orders. However, JIT is a very responsive

method of production.

2.6. Timestamp

A timestamp is a sequence of characters or encoded

information identifying when a certain event occurred,

usually giving date and time of day, sometimes accurate to

a small fraction of a second.

III. THE QA ORGANIZATIONAL MODELS

 The key distinction between a centralized and

decentralized QA organization, as with most other

organizations is the general degree to which delegation

exists [17]. In a centralized QA organization, decisions are

made by a single governing body and delegation is

minimized such that subunits have no autonomy or

decision making authority [17]. Consider a centralized QA

organization that may have separate groups dedicated to

the various LOBs; all decisions are still made by the same

governing body. However, in a decentralized QA

organization, the degree of delegation is greater so that

each LOB has the ability to establish its own processes,

standards, and procedures.

Fig1: Centralized QA Organization

 In a centralized QA model, a single QA group

services all JITs in the enterprise. The centralized model is

sometimes referred to as a QA center of excellence and

has to be prepared to address the demand for services

across the enterprise so that QA resources can be

provisioned and allocated to JIT projects as they are

initiated. In a decentralized model, each JIT is serviced by

its own, dedicated QA group. Each QA group may or may

not adhere to the same QA practices and may be governed

by different processes.

IV. SYSTEM METHODOLOGY

4.1 Structure of Time Stamp Temporal Quality

Assurance

 The fundamentals of TSQA deal with a planned

activity to evaluate the development process during its

progress. The plan or architecture must be placed around

the entry to and the output from each stage of the

development effort.

 If location and cause of the software defects or

errors are taken into consideration during the software

development, then there is a starting point for assuring the

quality of each stage. These defects can also be considered

in relation to the factors that affect the software quality.

The classification of the causes of the defects can be

addressed by TSQA.

 TSQA is a continuously evolving entity with an

emphasis on improving. The architecture of TSTQ is

planning the project initiation by creating the QA plan. In

the Management of the Project life-cycle they create

defect removal and defect injection prevention activities.

Investigate Software Quality improvement.

4.1.1 Planning From the Project Initiation and Project

Planning Stage

 Projects that are carried out, in house are more

susceptible to failure than projects which go under the

more formal external contract route. For this reason the

schedule and budget failures are accompanied by lower

than acceptable software quality, this is largely due to a

more casual attitude to meet deadlines. Contract review

can alleviate this by ensuring that the correct measures are

put in place for the project. Following the contract review,

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 4924

the project plans and schedule should be documented. Any

risks that are envisaged at this stage should also be

documented with a probability of occurrence and a

mitigation plan identified should the risk occur.

4.1.2 Management of the Project Life-Cycle Activities

and Components

Software Quality Assurance Defect Removal

 Considering that there are several factors that

affect software quality there are a number of activities that

can be followed to improve the development stages in

terms of software quality. The activities are discussed

below.

 Reviews

 Inspections

 Walk through

 Testing

 Configuration management

An inspection and walkthrough is an improvement over

the desk-checking process (the process of a programmer

reading the own program before testing it). Inspections

and walkthroughs are more effective, again because

people other than the programs author are involved in the

process. These methods generally are effective in finding

from 30 to 70% of the logic-design and coding errors in

typical programs.

 Procedural order and teamwork lie at the heart of

formal design reviews, inspections or walk-through. Each

participant is expected to emphasize his or her area of

expertise. The knowledge that the work item will be

reviewed stimulates the team to work to their upper end of

productivity.

 For different stages of the development process,

there are different defects that get injected into the

software. The rate of defect injection differs for each stage

of development. The QA activities must match the defect

injection rate and type to be effective at their removal.

4.2 Complications with Software and Its Quality

Assurance

The software quality assurance is consists of people‟s

expectation and experiences of the system. People have

own their options on how a product should work, how fast

it responds their commands and so on. Quality Assurance

has its roots in assuring the quality of a manufactured

physical product; this is achieved by inspecting the

product and evaluating its quality near its completion or at

various stages of production. Software however is not as

tangible as products that are more physical. The

“invisible” nature of software adds to the complications of

assessing its quality. “Industrial products are visible,

software products are invisible. Most of the defects in an

industrial product can be detected during the

manufacturing process, however defects in software

products are invisible, as in the fact that parts of a software

package may be absent from the beginning”.

 There are further complications with assessing

software quality; this is attributed to its inherent

complexity. Software systems have grown from

standalone systems on a single server to globally

networked servers spanning multiple countries and

multiple servers. Software may be developed by a team of

people who carry out specific roles; the roles are played

out during different stages of development. The teamwork

driven development life-cycle is open to a multitude of

problems, particularly because of the inter-dependence of

people in the life-cycle.

Poor relationships between individual team members

affect the productivity and creativity of the team. The

experience of the team can also have implications where

experienced members are supporting inexperienced

members. If a project team member departs during the

middle of the life-cycle, the consequences of this departure

can impact on the success of the project.

The software development team is affected by external

factors such as the customer‟s documented requirements

and how detailed and accurate they represent the actual

requirements. The schedule and budget allocated to the

project will also have an effect on the quality of the

software. After a project has been completed and installed

in its target environment, the system must then be

maintained for the duration of its lifespan, the ease with

which these changes are conducted successfully can affect

the quality of the system.

4.3 Time stamp Temporal Quality Assurance (TSTQA)

 The basic hypothesis required in order to make

prediction using this algorithm is that that clients of same

type will show the same behavior. The basic philosophy of

this algorithm is „do as your neighbor do‟. In order to

predict the behavior of the product, start to look at the

behavior of clients using those products and from that

make further prediction for that product. The data are

taken from appropriate databases. The user can view the

result graphically. This algorithm is a purest searching

technique because the data set itself is used for the

reference.

ALGORTHIM: TIMESTAMP TEMPORAL

QUALITY ASSURANCE

Input: T,s

Output: 𝜎

0.𝜎 = ∈

1.𝑛𝑜𝑑𝑒𝑐𝑢𝑟 = root of T

2.𝑛𝑜𝑑𝑒𝑛𝑒𝑥𝑡 = NULL

3. repeat

4. remove tail symbol 𝜎′ from s

5. 𝑛𝑜𝑑𝑒𝑛𝑒𝑥𝑡 = child of 𝑛𝑜𝑑𝑒𝑐𝑢𝑟 with respect to 𝜎′

6. if 𝑛𝑜𝑑𝑒𝑛𝑒𝑥𝑡 exists then

7. 𝑛𝑜𝑑𝑒𝑐𝑢𝑟 = .𝑛𝑜𝑑𝑒𝑛𝑒𝑥𝑡

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 4925

8. else

9. break

10. until (s==∈)

11. 𝜎 = the symbol with the highest conditional

probability in 𝑛𝑜𝑑𝑒𝑐𝑢𝑟

12. return 𝜎

Step 1: collect the estimates

 Assume that a neighbor node is available at time

T

 Item i

 Similarity between same rating patterns S

Step 2: Takes group estimation

 Neighbor = similar users

 Generate a prediction for an item i by analyzing

ratings for i from users in S neighborhood

pred (s,i) = 𝑟 + sim 𝑠, 𝑛 𝑛 𝑐 𝑛𝑒𝑖𝑔 ℎ𝑏𝑜𝑢𝑟𝑠 𝑠 . (𝑟𝑛𝑖 -𝑟𝑛)

 sim 𝑠, 𝑛 𝑛 𝑐 𝑛𝑒𝑖𝑔 ℎ𝑏𝑜𝑢𝑟𝑠 𝑠

Step 3: Item-Based Nearest Neighbor

 Generate predictions based on similarities

between items.

Prediction for a user s and item i us composed of a

weighted sum of the user s ratings for items most similar

to i.

 pred (s,i) = 𝑟 + sim 𝑖, 𝑗 𝑗∈𝑟𝑎𝑡𝑒𝑑𝐼𝑡𝑒𝑚𝑠 𝑠 . 𝑟𝑠𝑖

 sim 𝑖, 𝑗 𝑗∈𝑟𝑎𝑡𝑒𝑑𝐼𝑡𝑒𝑚𝑠 𝑠

Step 4: Reduce domain complexity by mapping the item

space to a smaller number of underlying dimensions.

V. SYSTEM IMPLEMENTATION

 Implementation is the stage of the project when

the theoretical design is turned out into a working system.

Thus it can be considered to be the most critical stage in

achieving a successful new system and in giving to the

user, confidence that the new system will work and be

effective.

 The implementation stage involves careful

planning, investigation of the existing system and it‟s

constraints on implementation, designing of methods to

achieve changeover and evaluation of changeover

methods. Implementation is the process of converting a

new system design into operation. It is the phase that

focuses on user training, site preparation and file

conversion for installing a candidate system. The

important factor that should be considered here is that the

conversion should not disrupt the functioning of the

organization.

 Every developed system must be implemented to

fulfill the mode of development. There are many software

implementation methods. In this system, direct change

over from existing system to computer system is being

carried out. It is the process of converting a new or revised

system designed into a working system. It is the essential

stage in achieving a successful new system, because

usually it involves a lot of upheaval in the user. It must

therefore be carefully planned and controlled to avoid

problems in the implementation process.

5.1 Modules

 Client Module

 Data Input Module

 Client View Module

 Client Authentication Module

 Product Transaction Module

 Database Module

 Time Stamp Temporal Quality Assurance

Algorithm Module

 Graphical Output Module

Most Organizations have large databases that contain a

wealth of potentially accessible information. However, it

is usually very difficult to access this information. The

unbridled growth of data will inevitably lead to a situation

in which it is increasingly difficult to access the desired

information. Hence there is a need to build a system for

efficient storage and retrieval of data that are stored in the

databases.

 However, in order to assess the knowledge

hidden in the database, the data Software Quality

Assurance concepts and techniques should be

implemented in the system. Using Software Quality

Assurance, it is possible to find the optimal segmentation

in the large database. The user will predict various aspects

of the product by using the data Software Quality

Assurance techniques. The main purpose of this system is

to store large amount of data in the database and to

retrieve the data in an efficient way and to serve as a

prediction tool for the user.

 The “Data Software Quality Assurance

Techniques “is a client server project serves as a

prediction tools for various activities of the supply chain

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 4926

management in an industry. Timestamp temporal Quality

Assurance methodology is used. The results of these

algorithms are shown to the user graphically.

 Every company process store large quantities of

highly detailed information about customers, markets,

products and manufacturing. Using data Software Quality

Assurance organizations are able to resolve a diverse

range of business problems and create new opportunities

for themselves.

 Finding the correlation or patterns among dozens

of fields in large database and interpreting the mined

results as a graphical outputs requires parallel database

management and advanced data Software Quality

Assurance tools

 Graphical representation provides on easier way

of understanding the mined results than any other way of

representation.

 There is a situation that more than one client can

order for the product at the same time. Hence the product

stock levels are updated immediately after the delivery of

the product. So the user will able to know the quantity of

the product.

 Database security and client authentication are

used. Only the authorized client can access the database.

Clients are at different levels like manufacturer, agent,

supplier and customer. Restriction of client at one level to

access database through other client levels maintains the

client level security and enhances database security

5.1.1 Client Module
A client module is a network module that supports and

implements the client side of a Network Programming

Interface (NPI).The main objective of this module is to

develop an interface that provides all types of request to

the server. The client module is to give client request to

the server.

5.1.2 Data Input Module

 This module is used to develop interfaces for

providing input data for various processes. Input data are

entered in appropriate screens. They are checked for

validity and stored in appropriate database.

5.1.3 Client View Module

 The purpose of this module is to develop the

client interfaces to view the purchase potential of clients.

This module contains the details about client transaction,

payment, ordering.

5.1.4 Client Authentication Module

 Client Authentication Module reduces costs and

frees up server cycles by eliminating the need to manage

and enforce authentication individually across

applications. The main objective of this module is to

restrict the unauthorized client from accessing the

database.

 5.1.5 Product Transaction Module

 This module performs the operations of product

order checking and the cash transaction of the client. This

module also produces reports regarding the payments of

the various clients under the user. This module is also

responsible to indicate the user about the stocks available

of a particular product. This module has done the

calculation regarding the payments. If the transaction is

credit, then this module is responsible to calculate the

balance amount at all times. When the payment is made,

then this module updates the current balance of the

particular user.

5.1.6 Database Module

This module deals with all types of transactions within

database and maintains large amount of data stored in

database. The transactions like store, update, delete etc.

5.1.7 Time Stamp Temporal Quality Assurance

Algorithm Module

 Software Quality Assurance of information from

the database is done in this module. The algorithms used

in this system are TSTQA Rules. The user can able to

analysis the data in years, months, and days. After entering

the user needs, the system will display the result for the

algorithm in the graphical format. Using the query tool the

user can get the statistics of the particular product.

5.1.8 Graphical Output Module

This module deals with retrieving the required data from

the database and displays the result in the graphical

format. The values for the graph are calculated at the run

time depending upon the needs of the user. The values

stored for the graph are deleted, when the next user request

is made to the system and the graph is displayed with new

computed values.

VI. FINDINGS AND RESULT

6.1 SQA Findings

 The data collected from the surveys on the

quality sub-characteristics suggested that type of QA

organization, centralized or decentralized. The only

exception was the suitability sub-characteristic, which is

part of the functionality characteristic. The results

suggested that a decentralized QA organization has better

to measure software suitability. Therefore, there was only

one instance where there was sufficient evidence not to

accept the null hypothesis. The implication to quality

conscious enterprises is that they have a multitude of

solutions available to them in deciding how to build a QA

organization that is aligned with their overall mission.

6.2 Results

 In this project involve the four kinds of activity

Manufacturing, Agent, Supplier and Customer. In this

level the implement SQA and JIT method data security

only 28%, 38% and communication complexity is 46%,

49% and verifier storage complexity is 26%, 28%. Finally

the level of average in this project reached between

33.33% and 38.33%.

 The focus on data security by implementing

TSTQA method have been improved upto 68% and

communication complexity maintained upto 78% . The

storage verification complexity is 62%. Finally the level of

average in this project to reached 69.3%.

Compare with the SQA the JIT and the TSTQA to

improve in data security, communication complexity,

verification storage complexity and average is having

reached 69% in all level.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 1, January 2014

Copyright to IJARCCE www.ijarcce.com 4927

The table shows the accuracy of different methods JIT,

TSTQ which is generates by using the column analysis

chart. The proposed approach has the better accuracy than

the other.

Comparisons of Different Remote Data Integrity Checking

Schemes

VII. CONCLUSION

 The data from this research suggested that

difficulty in measuring any of the software quality sub-

characteristics is outlined in the software quality model is

essentially the in either a decentralized or centralized QA

organization. The results showed that a decentralized QA

organization would have better TSTQA to measure

software suitability. The software testing was insightful

and of benefit for testing multiple products in different

companies. Testing is difficult and requires detailed test

plans. These plans must tie the testing approach to the

software design and development schedule. This requires

careful consideration of the product and demands that

resources are prepared in advance of testing. The test plan

ideally should be risk based so that it can yield better test

benefits where test execution time is limited. Software

testing is not sufficient in its own right to ensure that a

quality product is realized. There are other quality factors

that have to be considered and planned into the project

lifecycle.

 The QA process consists of a combined

development and testing process, it is more beneficial in

improving the quality of each project phase. With the

emphasis of quality in this process, the experience of the

QA team can strengthen the project team as a whole in the

mindset of Quality Assurance. While the QA process is a

combined effort, if the QA team can report independently

of the development team, it can be more effective than a

dependent team. In addition to an independent QA team,

the inclusion of customers in the QA aspect of the project

can also have a contribution to improved quality and

reduced defects. It is also more effective to have the

customers assess quality during different stages of the

development cycle. The customers themselves may be

included or a body of representatives which can assist with

determining the quality assessment of the software.

 Software quality metrics are required to

track the defects and quality improvements at

each stage of the project lifecycle. Graphs of the

metrics can be used to plot trends over time of

these software quality improvements to assist

with the management of the test execution and

quality initiative.

7.1 Future Work

 This computerized method is a well-

suited application for the real time business

activities. It posses many robust features, still it

can be expanded for additional features. The

Timestamp Temporal Quality algorithm can be

extended to analyze the products selling by

month, year wise.

For further development of this system, any other

data Software Quality Assurance techniques can

be implemented to the organization concern. This

system is capable of incorporated in any

organization, which needs data Software Quality

Assurance operations.

REFERENCES

1. Aaen, L. Mathiassen, “SPI: How to Navigate Improvement Projects”,

John Wiley & Sons, Ltd, 2006.
2. C. Andersson, T. Thelin, P. Runeson, and N. Dzamashvili, An

experimental evaluation of inspection and testing for detection of

design faults, 2003 International Symposium on Source.
3. P. Anderson, The use and limitations of static-analysis tools to

improve software quality, Jun 2008.

4. A.Aggarwal and P.Jalote, Integrating static and dynamic analysis for
detecting vulnerabilities, Jun 2008 (PDNS2008).

5. C. Artho and A. Biere, Combined static and dynamic analysis,

(IPSN2005), April, 2005, pp13–19.
6. E. Baker, M. Fisher, Schulmeyer and Mc-Manus, eds., Prentice Hall,

Upper Saddle River, “Software Quality Program Organization,”

Handbook of Software Quality Assurance, N.J., 1999, pp. 115–145.
7. P. Centonze, R.J. Flynn, and M. Pistoia, Combining static and

dynamic analysis for automatic identification of precise access-

control policies, Jan, 2000.
8. T. Chang, A. Danylyzsn, S. Norimatsu,J. Rivera, D. Shepard, A.

Lattanze, and J. Tomayko, Continuous verification' in mission

critical software development vol. 5, pp. 273-284 vol.5, 1997.
9. S.D. Cha, T.J. Shimeall, and Y.R. Kwon and S.S. So, An empirical

evaluation of six methods to detect faults in software, 2002

10. R.A.Demillo, M.W.McCracken, R.J. Martin, J.F.Passafiume,
Addison-Wesley Software Testing and Evaluation, 1987.

BIOGRAPHY

Scheme

Metric

SQA

JIT

TSTQA

Data Dynamics No

Public audit ability Yes Yes No

Data Security 28% 38% 68%

Communication Complexity 46% 49% 78%

Verifier Storage Complexity 26% 28% 62%

Average 33.33% 38.33% 69.3%

