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Abstract: The main aim of this paper is to characterization of targets using polarization properties of a target. Radar Cross 

Section is used to measure the characteristics of the targets. The response of the radar target is profoundly influenced by the 

operating frequency, the target orientation relative to the radar system, and the radar waveform and processing. RCS as a 

scalar number which is a function of Polarization of incident and received waves. The measurement of the polarization is 

called polarimetry. In-depth study of radar cross section in terms of transmitted and received polarizations in an attempt to 

better understand the potential of polarimetric radar. In order to know the characteristics of the target it is very essential to 

know the polarization properties of that particular target which depends upon scattering nature of the target. Polarization 

properties of a target can be obtained using polarization scattering matrix (PSM). The polarization scattering matrix, is a 

generalization of the concept of radar cross section, and includes amplitude, phase, and polarization. In this paper the 

polarization matrix of various geometrical shapes can be derived.  For radar target recognition (RTR), a method using 

properties of the polarization scattering matrix (PPSM) can be developed. A sphere and dipole have been considered to 

calculate the polarization matrix and polarization properties. The determinant, Trace of Power, Depolation and Eigen 

polarization angle are analyzed. 
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I. INTRODUCTION 

The word RADAR is an acronym for the words Radio 

Detection and Ranging, i.e. finding and positioning a target 

and determining the distance (range) between the target and 

the radar by using radio frequency. The basic principle 

behind the radar is simple: transmitter sends out a very short 

duration pulse at a high power level. The pulse strikes an 

object (or a target) and energy will be reflected (known as 

radar returns or echoes) back to the radar receiver. 

Radar determines the distance (range) to the target by 

measuring the travel time of the radar pulse to get the target 

and to come back and then divides that time in two. For 

extracting the target information from the echo, the signal 

must be of sufficient magnitude
 [1]

. The radar equation is 

used to predict the echo power to assist in making the 

determination of whether or not above mentioned condition 

is met.  These echoes are then processed by the radar 

receiver to extract target information such as range, velocity, 

angular position, and other target identifying characteristics. 

Radar can perform its function at long or short distances and 

it can operate in darkness, haze, fog, rain, and snow. Its 

ability to measure distance with high accuracy and in all 

weather conditions is one of its most important attributes
 [2]

. 

II. RADAR CROSS SECTION 

Now a day‟s characterization of targets using radar is very 

important in Air Traffic Control, Defense, and Stealth etc. 

Radar Cross Section is used to measure the characteristics of 

the targets. The response of the radar target is profoundly  

 

 

influenced by the operating frequency, the target orientation 

relative to the radar system, and the radar waveform and 

processing. RCS as a scalar number which is a function of 

Polarization of incident and received waves. A more 

complete description of the interaction of the incident wave 

and target is given by polarization scattering matrix. Both 

linear and circular polarizations are of interest, and also, a 

combination of the two, wherein circular polarization is 

transmitted, while a two-channel receiver measures 

orthogonal linear polarization components. The 

measurement of the polarization is called 

polarimetry
[9,12,13,14,18]

. 

III. RADAR POLARIMETRY 

Radar Polarimetry is the science of acquiring, processing 

and analyzing the polarization state of an electromagnetic 

field. In-depth study of radar cross section in terms of 

transmitted and received polarizations in an attempt to better 

understand the potential of polarimetric radar. The basis for 

this analysis is the polarization scattering matrix. The 

polarization scattering matrix, is a generalization of the 

concept of radar cross section, and includes amplitude, 

phase, and polarization. The measurement of the elements of 

the polarization scattering matrix is discussed in this paper. 

In this paper the polarization scattering matrices (both for 

linear and circular polarizations), are derived for the simple 

targets the sphere and dipole. It is known that polarization 
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properties depend on the object‟s shape, size, and 

composition, and upon the radar characteristics 
[6]

. 

IV. RCS CALCULATION USING POLARIZATION PROPERTY 

The full polarization radar can receive all the 

electromagnetic backward wave of targets, while the mono-

polarization cannot. For a given set of radar characteristics, 

the scattering matrix of a target permits prediction of radar 

return for any polarization. One example for RTR is that the 

ball which can be the same RCS as a cone object is not 

identified while the polarization radar can be easily 

discovered, because the scattering matrix of ball at any 

azimuth angles and pitch angles is the same, while the 

scattering matrix of a cone target varied with azimuth angles 

and pitch angles. In this paper the polarization matrix of 

various geometrical shapes are derived.  For characterizing 

the radar target recognition, a method using properties of the 

polarization scattering matrix is presented. The properties of 

the polarization scattering matrix: determinant, Trace of 

Power Scattering Matrix, Depolation, Eigen polarization 

angle and Module of Polarization Ellipticity are analyzed. 

These properties are analyzed for different orientation angles 

of the targets in this paper 
[3,4, 5, 8, 10, 11]

 

A. Formulation and Analysis of proposed technique 

Polarization is implicit in this definition of radar cross 

section, and usually, it is assumed that a single polarization 

is employed for both the transmitted and received fields. 

This assumption is not required, however, and radar cross 

sections can be defined for arbitrary polarization of 

transmitted and received fields. An arbitrarily polarized 

plane wave can be expressed as the sum of two plane waves 

having orthogonal, but otherwise general polarizations. 

Following in phasor notation, the transmitted field can be 

expressed as
 [15, 16, 17]

. 
TTT EEE 21 

 
The received fields are 

TTR EaEaE 2121111   

TTR EaEaE 2221212 
 

The matrix [S] , given by 
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For the monostatic radar case, 12=21  and 2112 aa   
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Scattering matrix  
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Let us further suppose that there are two permissible 

polarization states denoted by (1,2), with the two 

polarization states being orthogonal. In general then, i and j 

can take on any combination of values denoted by i,j = 1,2. 

σij is the cross section of the target for the case of received 

polarization of state"i" and transmitted polarization of state 

"j". 
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The quanity (Pri/A) is the power density (power per unit 

area), or the intensity, of reflected signal at the radar, and the 

quanity 
24 R

GPtj


 is the intensity of the radar signal incident 

on the target.  

Although not quite as straight forward, the above 

procedure can be to determine 
R

ijE and 
T

jE for the case of 

a monostatic radar operating in a homogenous, lossy 

medium. The results are expressible as 

2
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  (3) 
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(8) 



ISSN (Print)    : 2319-5940 

ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 3, Issue 1, January 2014 
 

Copyright to IJARCCE                                                              www.ijarcce.com                                                                       5167 

2

1

2

24 









  RtjT

j e
R

GP
aE 


 

Where α represents the attenuation coefficient of the 

medium. 

We wish to emphasize that  
R

ijE and 
T

jE  are not direct 

radar measures, but they can be related to measures of 

received and transmitted power. In addition, by determining 

the phases of the radar signals, the phases of 
R

ijE and 
T

jE  

can also be determined. Thus, when we refer to received and 

transmitted fields we are, strictly speaking, referring to 
R

ijE

and 
T

jE .
[7] 

B. Properties of the polarization scattering matrix 

In the H-V basis, the relationship between the incident and 

reflected fields may be expressed as 

  iS ESE 
                                                                                                        

 

where Es is the reflected field, Ei is the incident field, the 

fields are related by the Sinclair matrix [S] 
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Then the IPPSMs are obtained 
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5) Eigen- polaization Ellipticity 0 
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TABLE I 

PHYSICAL CHARACTERISTICS OF PPSM 

PPSMs Physical characters 

  It means „fat‟ or „thin‟ of target 

P1 It means „small‟ or „big‟ of target 

D 

 

It means the number of scattering 

centers, while 0<D<0.5 as to one 

scattering center, 0.5<D<1 as to two or 

more scattering centers 

φ0 It measures the relative orientation 

between the antenna and the 

axis of the eigen-polarization ellipse 

0 It relates to the symmetry of the target 

 

The physical characteristics of PPSM are presented in the 

table-I 

V. APPLICATIONS 

A. Properties of the polarization scattering matrix 

Let us consider a large sphere at normal incidence made of 

any material. The target matrix of a sphere is always unit 

matrix if its magnitude is normalized to 1.  
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where R = radius of the sphere 

 

B. Dipole 

Assume that a thin wire (diameter << wavelength) or a sharp 

edge of a conducting body is constrained to lie parallel to the
 

x̂ , ŷ  plane and at an angle   with respect to the x̂ , ẑ
plane . The dipole scattering matrix for linear representation 

of polarization is given by 
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Fig.1. Dipole parallel to x̂  and ŷ  
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    The dipole scattering matrix for circular representation of 

polarization is given by 
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VI. RESULTS AND DISCUSSIONS 

Sphere Polarization Properties for linear polarization 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.Variation of determinant with radius   

 

 

 

Fig 3. Variation of trace of power with radius 

 

The determinant and trace of power are shown in figures 

(2 and 3). The determinant and trace of power are constant 

for a sphere at different orientation angles as the shape of the 

sphere remains unchanged from any direction and it is 

always symmetric at any orientation angle. The determinant 

and trace of power are determined for spheres with different 

radii. 

 

 
Figure 4. Depolation for sphere with different radii 

 
Figure 5. Variation of Eigen polarization Ellipticity for 

sphere with different radii 

 

From above Fig 5. the value of depolation is 0 for any 

size of sphere. With this one can say that the scattering 

centre for a sphere is one. Fig 6. shows Variation of Eigen 

polarization Ellipticity for sphere with different radii. It is 

observed that the Eigen polarization Ellipticity is zero for 

sphere of any size. This is because by changing the 

orientation of the sphere its shape cannot be changed. 

 

 
Figure 6. Full polarization amplitudes of a dipole 

 

 Figure 6. shows the full polarization amplitude of a 

dipole.  From this figure we can say that amplitude 

difference of 45dB for co-polarization and amplitudes of 

cross polarizations are equal 

 

 
Figure 7. Variation of trace power P1 with orientation 

angle Ellipticity with orientation angle. 
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Figure 8.Variation of Eigen polarization 

The determinant and trace of power scattering matrix P1 

are invariant with orientation varied in 0
0
 to 30

0
. The eigen 

polarization angle varies from -44
0
 to 44

0
. The eigen 

polarization ellipticity varies from -2 to 2 symmetrically and 

regularly for dipole. 

VII. CONCLUSION 
 

We obained polarization properties of a sphere and dipole 

using polarization scattering matrix (PSM). The determinant, 

Trace of Power Scattering Matrix, Depolarization, Eigen 

polarization angle and Module of Polarization Ellipticity are 

determined which helps in identifying the different objects 

which are having same radar cross section (RCS). For sphere 

depolarization value is zero which indicates that the 

symmetric scattering centre for a sphere is one and 

determinant, Trace of Power Scattering Matrix, Depolation, 

and Module of Polarization Ellipticity are constant because 

the shape of the sphere remains unchanged at any orientation 

angle. For dipole it is observed that the amplitudes of cross-

polarization are equal and the amplitude difference of co-

polarization is about 45dB. The determinant and trace of 

power scattering matrix P1 are invariant with orientation 

varied in 0
0
 to 30

0
. The value of depolation observed is 0.5 

which indicates that the scattering centre for a dipole is one. 

The eigen polarization angle varies from -44
0
 to 44

0
 and the 

eigen polarization ellipticity varies from -2 to 2 

symmetrically and regularly for dipole. This is indicates that 

the dipole is cylindrically symmetrical.   
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