
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4473 319

Design approaches for Obstacle Avoiding

Rectilinear Steiner Minimum Tree: A

comparative study

Mamatha G

 Information Science and Engineering, J.S.S Academy of Technical Education, Bangalore.

Visveswaraiah Technological University, India.

Abstract: With the advances in the field of VLSI design, routing a net the basic function of Global routing and

Detailed routing stages of Physical design are required to be conducted at the earliest. Many efficient algorithms are

proposed to construct the Rectilinear Steiner Minimum Tree (RSMT) which routes the net and can be used in the

estimation of wire-length and timing for Floor-planning and Placement stages of IC-design. RSMT connects the

terminals of a net rectilinearly without considering the presence of obstacles in the routing region, but blockages like

pre-routed nets, macro-cells, IP-blocks and others cannot be ignored as they form the major components of the routing

area. This leads for the construction of an extended RSMT called Obstacle Avoiding Rectilinear Steiner Minimum Tree

(OARSMT), many exact and heuristic algorithms are proposed for the construction of OARSMT based on approaches
like Geo-Steiner, Look-up table, Extended-Hanan grid, Maze routing and Spanning graph. This paper discusses

OARSMT algorithms that belongs to different approaches and makes a comparative study of the features and

performance of OARSMT designs. Making way for the selection of the key features of the existing algorithms and to

improve them in the new designs of OARSMT, to match with the current VLSI technologies.

Keywords: Rectilinear Steiner Tree, Obstacle Avoiding RST, Global Routing, VLSI design.

I. INTRODUCTION

In VLSI design, construction of Rectilinear Steiner

Minimum Tree (RSMT) plays a very important role, as it

is used in Global Routing and Detailed Routing stages of

the Integrated-Circuit Physical design. RSMT is also used

for estimating - wire-length, timing and congestion during
Floor-planning and Placement stages. Many efficient

algorithms and approaches are designed for the

construction of RSMT, but they have not considered

blockages present in the routing region. In the modern IC

designs rectilinear blockages like Macro cells, IP blocks,

pre-routed nets, etc will be always present in the routing

area. Therefore construction of RSMT in the presence of

blockages becomes a more fundamental and practical

problem and it is called as Obstacle Avoiding Rectilinear

Steiner Minimum Tree (OARSMT). OARSMT problem

connects a set of terminal pins using rectilinear edges
avoiding rectilinear obstacles using a set of additional

points called Steiner points on a 2-D plane. Fig.1 shows

an ORSMT. Distance between two points is measured in

Manhattan distance, given by d(p1, p2) = |x1- x2| + |y1-

y2|. In [3] RSMT problem has been proved to be NP-

complete, this implies that OARSMT

Problem cannot be solved in polynomial time and is

expected to have exponential time in worst cases. Many

Exact and Heuristic algorithms are designed to solve

OARSMT; they are discussed under different design

approaches in this paper.

Rest of the paper is organized as follows; Section II
discusses various OARSMT designs under two major

headings like Rectilinear Complete Graph (RCG) and

Non-Rectilinear Complete Graph (NRCG).Section III,

presents a table that summarizes the features and

performance of OARSMT designs. Section IV, concludes

the comparative study.

Fig.1 OARSMT connecting terminals avoiding Rectangular Obstacles.

[19]

II. OARSMT Design approaches

While constructing an OARSMT, the very initial step is to

interconnect terminal pins and corner points of the

obstacles to form a Complete Graph. OARSMT design

approaches differ in the construction of the Complete

Graph. Complete graph can be of two types, Rectilinear

Complete Graph (RCG) and Non-Rectilinear Complete
Graph (NRCG).

1. OARSMT design approaches based on Rectilinear

Complete Graph (RCG)

Hanan grid [1] forms the basis for all types of Rectilinear

Complete Graph whose edges are rectilinear in nature.

Some of the RCGs are Escape graph, Track graph, Virtual

graph, Grid-graph of Maze routing, etc.

1.1 Escape Graph/ Extended Hanan-Grid

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4473 320

It is a strong connection graph constructed by extending

horizontal and vertical lines from terminal pins and

obstacle boundaries as shown in fig.2 (a). Escape graph

has O(n2) vertices in worst case and most of the edges

and vertices are redundant. Escape graph guarantees a

good OARSMT for a multi-terminal net. OARSMT
designs based on Escape graph are discussed below.

Fig.2 Rectilinear Connection Graphs (a) Escape graph (b) Track graph.

[20]

[10] Presents a model that provides both exact

and heuristic solution to route multi-terminal nets. Model

transforms OARST, a Geometric problem into a Graph

problem, whose size is a function of input size rather than

the routing area, unlike Maze routing which optimally

routes two terminal nets , but time and space usage

corresponds to the size of the routing area. Exact

algorithm based on Escape graph routes multi-terminal

nets with three or four terminals, time required for

generating Escape graph is O(max{n,mlogm}) where n is

the number of escape segment intersections, m is the
number of obstacle boundary segments. For nets with five

or more terminals, K-Steinerization algorithm

heuristically computes Obstacle Avoiding Steiner trees by

replacing MST with K adjacent terminals with an optimal

Steiner sub-tree. OARST problem is solved by G3S and

G4S. Batching technique speeds up Steinerization

heuristics. Worst case Steiner ratio (ratio of length of

MST to length of optimal Steiner tree) of OARST is 2.

Analysis and experiments show that algorithms work well

in both theory and practice.

[17] Propose a two step Escape graph based

O(mn) heuristic for multi-terminal tree construction.
Step1 constructs a RSMT without considering the

obstacles. Step2 with four processes transforms the

primary tree into RSMTO. Edges of the primary tree

overlapping with obstacles is removed, rectilinear short

paths reconnect the edge vertices by going around the

obstacles. Post processing improves the solution quality

by removing cycles and U-shape paths. On an average

5.31%, redundant paths are generated. Algorithm has

good wire-length and runtime is within 1sec for all cases.

1.2 Track Graph

Track graph is a variant of Escape graph, where
rectilinear lines extend from terminals and Extreme edges

of obstacles as shown in fig. 2(b). The number of vertices

and edges in a track graph is O(e2), where e is the number

of extreme edges of all obstacles. Track graph is not a

strong connection graph, as optimal solution cannot be

found in some cases. OARSMT design based on Track

graph and ACO is discussed below.

An OARSMan[20] is a Track graph based non

deterministic heuristic. Search space of Track graph is

reduced by T-reduction method. ACO is used to

interconnect the terminals on the track graph optimally,

by placing ant on each terminal, a greedy metric Obstacle-

Penalty distance estimate the distance between two

terminals in the presence of obstacle. An OARSMan is

better than FORst and gives good length performance for
small scale cases.

1.3 Geo-Steiner approach

GeoSteiner package finds optimal solution for RSMT

problem and is used as measuring Standard against which

proposed methods are compared to determine how far-off

they are from optimum. RSMTs are unions of Full Steiner

Trees (FSTs) in which every pin-terminal is a leaf. FST

forms the basis for Geo-Steiner framework; it considers

subsets of pins at a time. FST generation and FST

concatenation are two major steps of framework. FST

generation step uses algorithm proposed in [14] to grow
FSTs, which applies several optimality conditions to

eliminate some FSTs that cannot be part of any RSMTs.

Running time of this step, is quadratic and 4n FSTs are

generated on average for random instances. [12] proposed

that FST concatenation step is equivalent to MST problem

on a Hyper-graph with the vertex set V of pins and

subsets spanned by FSTs as hyper-edges; this can be

formulated as an Integer Linear Program (ILP) and solved

using Branch-and-cut search.

OARSMT designs based on Geo-Steiner framework, with

suitable modifications done on two phases is discussed

below.
[13] Presents an Obstacle-Avoiding Euclidean

Steiner tree (OAEST) problem, the first exact algorithm.

It uses a two phase framework, Generation and

Concatenation of FSTs. FST Generation uses Equilateral

point generation strategy, all possible FSTs are generated

for Subsets of terminals, and shortest one is retained.

Several tests are applied to prune away FSTs that cannot

be in any optimal solution. Surviving FSTs are

concatenated to obtain trees spanning all terminals. FST

Concatenation is formulated as a Steiner Minimum Tree

Problem of a Hyper-Graph (SPHG) with terminals and
obstacle corners as vertices and Hyper-edges are equal to

the length of corresponding FSTs. ILP solves the MST

problem in Hyper-graphs. Results show that, moderate

instances with up to 150 terminals are solved optimally

within few hours of CPU-time.

[33] Extended Geo-Steiner approach to allow

rectilinear blockages in routing area. FSTs are generated

after four Virtual pins (at corners of blockage) are added

to terminal set. Proofs on the structure and topologies of

FST in [2] are extended to allow blockages as shown in

fig.3. Potentially useful FSTs are generated by following

methods of [14], FSTs to be part of the OARSMT pass
the necessary conditions like, bottleneck Steiner distance,

empty-diamond property ,empty corner rectangle property

defined in[14]. In FST concatenation step, ILP select and

concatenate subset of FSTs to construct an optimal

OARSMT. Algorithm handles hundreds of pins with

multiple blockages, generating an optimal solution in a

reasonable amount of time. Results show that running

time of the algorithm is combination of the FSTs

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4473 321

generation time and the time for solving ILP, which

dominates the running time.

Fig.3 Structures of FSTs among obstacles. (a) Type I (b) Type II (c)

Type III (d) Type IV structure. [41]

[37] Developed a two phase approach based on

GeoSteiner. Four virtual terminals were added to each
rectangular obstacle this makes structures of FSTs with

obstacles same as FSTs without obstacles. This provides

theoretical support for using GeoSteiner approach to

generate OARSMTs. In FST generation phase, Pruning

process reduces the number of virtual terminals by

constructing a Reduced-Escape graph and reduces the

number of FSTs. FSTs with exactly two terminals are

constructed according to lemmas proposed by [16] and

[4]. New IP formulation for the concatenation of FSTs

with blockages is proposed and solved by branch-and-cut

search, which includes Separation algorithm to adapt to

the presence of virtual terminals, framework‟s lower
bounds are provided by LP relaxation. Approach handles

100s of terminals and obstacles, generating optimal

solution.

ObSteiner[41] an exact two phase algorithm,

solves OARSMT problem among complex obstacles

using Geometric approach. Optimal solutions are

constructed by the concatenation of FSTs by the extended

Geo-Steiner approach in the presence of obstacles. To

simplify the structure of FSTs, Single Virtual terminal is

added on Essential edge of each obstacle. Virtual graph is

constructed from terminals, virtual points and boundaries
of obstacles. It is a strong and smaller connection graph

compared to Escape graph. OARSMT can be partitioned

into a set of FSTs by splitting at terminals or virtual

points with degree more than one. In the FST generation

phase Pruning procedure with four tests are performed to

eliminate FSTs that cannot be part of an optimal

OARSMT. Survived FSTs are concatenated through ILP.

ObSteiner adopts the Incremental construction approach

to check for obstacles that overlap with the solution, the

procedure repeats until no more obstacles overlap with

final OARSMT. Instances with 100s of terminals and

obstacles are solved optimally.

1.4 Maze Routing/Lee’s algorithm

Maze-running one of the Shortest Path (SP) algorithms is
characterized by target-directed grid propagation. Lee‟s

algorithm an instance of Maze routing applies Dijkstra‟s

breadth first shortest path search on uniform grid-graph.

Its drawback is that it requires O(mn) memory and time

for a grid of m x n and each node requires O(log L) bits,

where L is the length of shortest path from source to

target. Node labeling is the main operation of Maze-

routing. Nodes of grid G are labeled from source until

target node is labeled and then a path is extracted between

them with node labels, as shown in fig.4. Maze routing

optimally routes two-pin nets, its run time and space is

proportional to the size of routing area rather than the

actual problem size.

Fig.4 Node labeling/Wave propagation in Maze routing. [40]

OARSMT designs based on Maze Routing with suitable
modifications are discussed below.

[11] Provides a framework for a class of algorithms that

solve Shortest Path related problems like one-to-one, one-

to-many and MST problem in the presence of Obstacles.

A sparse strong connection graph forms the search space

and its searched portion is constructed incrementally on-

the fly using A* heuristic search. Algorithms time and

space depends on actual search behavior and as it does not

construct the entire connection graph explicitly, this fact

reduces the cost of VLSI design. One-to-many SPs and

MST problem takes O((e+n+N)log(e+n)) time and

O(e+n+N) space where e, is number of sides of obstacles;
n is number of points in S and N the total number of

visited grid nodes.

[27] Propose a heuristic based on Maze routing that can

handle- multi-pin nets, large scale cases and complex

obstacles producing quality solution for run time and

memory. Unlike the sequential traditional Maze routing,

this method stores multiple paths between pins and then a

MST method constructs final route globally. Propagation

is made on a Simplified Hanan grid, heap data structure is

used to implement maze routing step, post-processing

further reduces wire-length. Results show that, on average
an OARSMT with 2.01% less wirelength is generated and

there is an improvement of 27.04% in wirelength

compared with lower bound of optimal solution and

shorter run time is achieved than [26].

[34] Presented a Modified Lee algorithm called as

Weighted Lee algorithm that uses Extended Hanan grid to

compute sub-optimal RSMTs and A new approach for

reduction of the Routing area. Original Lee algorithm was

applied to routing area of Unit-grids, Paper applies Lee

algorithm to grids of varying lengths called as Weighted

Hanan grid which solves situations of Concave boundary.

Extended Hanan grid transforms the routing problem into
a Graph problem, and the Weighted Hanan grid

transforms the Computing scale from Routing area into

the Input Size of terminals and obstacles. Minimum

Convex Polygon MCP(V) of terminal set is designed to

restrict Routing areas and to get rid of some parts of

Hanan grid. Weighted Lee algorithm has three phases:

labeling of vertices called as Filling or Wave propagation

phase, Retrace phase and Updating phase. Algorithm

runtime is O(n2(n+m)2log (n+m)) , where n is number of

terminals, m is number of vertices of obstacles and

boundary.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4473 322

1.5 Path-based framework

OARSMT problem solutions can be found by generating

Critical paths without constructing the initial Routing

graph which consumes large time and space. Path-based

framework has global view of obstacles and provides

potential ways to increase the overlapping between
different paths.

Fig.5 Critical paths connecting terminals and corners of obstacles. [31]

[31] Proposed a O(nlogn) four phase Path-based

algorithm, which generates O(n) Critical paths, that

guarantees the existence of desirable solution. First two

phases generate an Obstacle Avoiding Steiner Tree

(OAST) using critical paths without constructing a
routing graph or generating invalid solution as shown in

fig.5. Critical paths are generated by bridging edges

between adjacent Shortest Path Map regions which takes

the information from Multi-source Shortest Path trees

constructed based on wave-front method. A greedy

method constructs OAST out of critical paths and

attempts to increase the overlap between paths to improve

solution quality. Slant edge transformations and dynamic

local refinements construct the final OARSMT.

1.6 Steiner point based framework

If OARSMT designs does not focus on the generation and
usage of good Steiner point candidates OARSMT

problem will become an Obstacle Avoiding Rectilinear

Minimum Spanning Tree (OARMST) problem, which can

be solved in polynomial time. Steiner point -based

framework gives more importance for the usage of Steiner

points, which causes the NP-completeness of the

OARSMT problem. This framework devices method to

generate Steiner point candidates efficiently. Framework

can be extended to the practical generalizations of

Multilayer OARSMT problem and Obstacle-Avoiding

Preferred Direction Steiner tree (OAPD-ST) problem.
[32] Presents a four step algorithm based on Steiner-point

based framework, which focuses more on the usage of

Steiner points while handling obstacles. In step1, Routing

graph- Obstacle-avoiding Voronoi graph (OAVG) is

constructed out of Steiner point candidates, pin-vertices

and obstacle corners, with only O(n) vertices and edges.

Desirable Steiner point candidates are generated by the

new concept of Steiner point Locations instead of line

segment intersection methods (viz. Hanan grid, Escape

graph). In step2, Based on Prim‟s concept, Steiner point

selection method first sets the farthest pin-vertex as

source and selects good Steiner points, Shortest Path
Region (SPR), a subdivisions of plane forms the basis of

Steiner point selection and it extends Dijkstra‟s algorithm

to propagate vertices to find the current closest pin-vertex.

In step3, Initial OARST is constructed from OAVG in

O(nlogn) time by integrating MTST algorithm of [30] and

path-overlapping scheme of [31]. In step4, Refinement

scheme is applied on OARST to reduce the redundant

segments in O(nlogn) time. Algorithm achieves best

practical performance in both wire-length and run time,

on average a speedup of 26.67 times is got and for the

largest benchmark it takes only 1.565sec.

[39] Extended the Steiner-point based framework of [32].
Step1 constructed A routing graph called Geodesic

Voronoi graph in O(nlogn) time and O(n) space, routing

graph had multi-source Short Path Maps, the L-shaped

Shortest Path Region of vertices located the Steiner point

candidates. In step2, MTST constructed the OARSMT in

O(nlogn) time. Final step used Liu‟s refinement method

[31] to reduce wirelength. Time complexity of algorithm

is O(mnlogn) in worst case and O(nlogmlogn) in average

case, where m is the number of pin-vertices and n is the

input size.

1.7 Plane Sweep technique
An xy-path monotone in both x and y direction with y-

direction–preferred or x-direction–preferred can be used

to find the Shortest Path (SP) between two points

avoiding horizontal and vertical blockages in L1 metric.

RSP-RB [5] uses Plane-Sweep technique instead of Graph

theoretic approach. Algorithm finds a SP between two

points (source, target) avoiding rectangular barriers and

the path is monotone in either x or y-direction. Time

complexity is O (nlogn) where n, is number of barriers. A

query form of the problem is also solved, given a source

point and n- number of barriers, the shortest distance to

query point avoiding barriers is found in O(t + log n)
time, where t is the number of rectilinear turns in the path.

2. OARSMT design approaches based on Non-

Rectilinear Complete Graph (NRCG)

Non-linear data structure, Graph G (V, E) forms the basis

of NRCG. Here G is an undirected graph, the vertex set V

is a Unoin of terminal pins and corner-points of obstacles

and edge set E has edges formed by connecting terminal

to terminal or terminal to obstacle corner points. Spanning

Graph based approach has two variations – Sequential

approach and Connected Graph approach

Sequential approach is a construction by correction
method; it consists of two steps, step1, constructs MST

without considering Obstacles. Step2, Transforms MST

into a RSMT by substituting overlapping edges with

edges around the obstacles. Industry uses this approach

because of its simplicity. Drawbacks are, step1 does not

have a global view of obstacles and paths so step2

removes overlaps locally, quality of solution and wire

length is limited.

Connected Graph based approach first constructs a

Connection graph from terminals and corner points of

blockages as shown in fig. 6 which guarantees the

presence of at least one OARSMT embedded in the graph.
A Graph searching technique is then applied to find an

optimal OARSMT. This approach has global view of both

pins and obstacles and describes their geometrical

relationship with few edges. Efficiency of the approach

depends on size of the graph. OARSMT designs based on

Spanning Graph and efficient Search techniques namely,

Sweep-line algorithm, Ant Colony Optimization,

Delaunay Triangulation and Look-up table; for improving

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4473 323

the performance of the designs at the early stages are

discussed below.

Fig.6 Complete Spanning graph interconnecting terminal pins and corner

points of obstacles. [21]

2.1 Sweep-line Algorithm

Sweep-line algorithm [21] constructs a Spanning graph

for vertex set V union of terminals and corner-points of

blockages in O(nlogn) time. Algorithm makes only four

passes over the search regions, shown in fig.7, each pass

make edge connection in two regions simultaneously.

Basic operation of algorithm is to maintain an active set

of vertices in each pass.

Fig.7 Search regions of (a) Rectangular blockage (b) Terminal pin. [21]

RSMTRB [21] is a six step heuristic, it proposes an
efficient and effective Connection graph called Spanning

graph that contains only O(n) vertices and edges,

Spanning graph construction is done by a O(nlogn)

Sweep-line algorithm followed by the rectilinearization of

the MST to get the final RSMT with Rectilinear

Blockages. Results show that RSMTRB has reduction of

12.081% wire-length compared to sequential approach

with an increased runtime by only 48.44% on average.

[28] Proposed a four step heuristic based on

Obstacle Avoiding Spanning graph (OASG). First, a

OASG with O(nlgn) edges is constructed using Sweep-
line algorithm of [21] but with more “essential edges”.

Second, step to constructs OAST is as follows, Dijkstra‟s

algorithm is used for shortest path computation between

edges of OASG, then Prim‟s algorithm constructs an

initial OAST, then a local refinement is applied to remove

unwanted cycles of OASG and to improve performance.

Third, an OARST is constructed by transforming slant

edges to rectilinear edges by applying some rules. Finally,

OARSMT is constructed by U-shaped pattern refinement

and the removal of overlapping edges and redundant

vertices. Algorithm has Empirical run time of O(n1.46),
theoretical time complexity at worst case as O(n3) and

random case as O(n2lgn). The average wire-length

improvement over [21] in OASG construction is about

3.69% and the overall improvement is about 5.79%. For

large cases algorithm takes only 0.83s and achieves

4.46% improvements over [21].

EBOARST [30] is a four step algorithm. firstly, a sparse

OASG is constructed in O(nlogn) time by a Sweep line

algorithm which makes only a 45 degree sweep on the

Quadrant partition of the plane, a balanced binary search

tree data structure stores the active edges. Secondly,

MTST is constructed by selecting edges from OASG and

a shortest path terminal forest is obtained, then an

extended Dijkstra–Kruskal algorithm solves MTST
problem in O(nlogn) time. Thirdly, an OARST is

constructed from MTST by an Edge-based heuristic in

batched-mode and it also handles the global and local

Steiner tree refinement. Finally, on the rectilinearized

OARST further optimization is done by a local refinement

technique called Segment translation. Time Complexity

of EBOARST is O(nlogn) and it achieves 16.56 times

speedup on average.

2.2 Ant Colony Optimization (ACO)

ACO method takes its idea from Ant colonies, which

exhibits cooperative and social behavior. Ants
communicate by secretion of Pheromone on the path.

ACO achieves complex computations through multiple

iterations; in each iteration one or more ants move leaving

behind pheromone trail which evaporates at a constant

rate. Tabu-list of ant has the record of visited vertices,

when ant A meets ant B, A dies off giving its list to B.

Designs for OARSMT which uses ACO, places ants on

terminals [20] or on roots of sub-trees [25], which need to

be interconnected. Ant m will choose to move on the

Edge (vi, vj) which has a higher Pheromone Trail

intensity and Desirability given by,

FORst [19] is a three step heuristic, Partitioning of

terminals, Hyper graph construction, OARSMT

construction for each sub-graphs by ACO-RSMT or

Greedy FST-RSMT then detouring to connect all sub-

graphs. FORst can handle both small and large scale cases

with good performance.
Fast and Stable algorithm [25] is a four step heuristic, it

constructs MSTs for the partitioned terminals, discards

the edges overlapping with obstacles thus forming a Set

of Sub-Trees (SST), Merges SSTs optimally using ACO

by placing ants on roots of each sub-trees, a greedy

method Rectilinearizes the tree edges and Refinement

removes redundant edges to improve wire length. Results

show that runtime is small for large cases and better than

FORst, An OARSman, CDCtree.

2.3 Delaunay Triangulation

A Delaunay triangulation DT (P) for a set P of vertices in

a plane is a triangulation such that no vertex in P is inside
the Circum-circle of any triangle in DT (P) as shown in

fig.8. In λ- Geometry, λ = 2, 3, 4, and ∞ it corresponds to

Manhattan architecture, Y-architecture, X-architecture

and Euclidean geometry. Academia and Industry are

giving importance to λ- Geometry Routing (λ = 3, 4), as

the total wire-length and crosstalk can be reduced

drastically compared to Manhattan architecture (λ=2) thus

improving the IC performance.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4473 324

Fig.8 DT of terminals and corner points of rectangular Obstacles. [24]

λ- OAT [24] presents an O(nlogn) heuristic for λ-

OARSMT construction in λ-geometry plane (λ=2), based

on Obstacle-Avoiding Constrained Delaunay triangulation
a fully connected tree is constructed which is then

embedded into λ-OASMT by Zonal combination method

(which unifies geometries). Compared with An-

OARSMan [20] and FORst [19], λ-OAT speedsup to 30-

Kx with quality solution.

 2.4 Look-up table based approach

Lookup tables with predefined or pre-computed values

have always made job easier and faster. FLUTE [29]

constructs RSMT very quickly and accurately based on

pre-computed lookup table. Runtime of FLUTE is

O(nlogn) for a net of degree n. Degree-n nets can be

partitioned into n! groups according to the relative
positions of their pins. To find optimal RSMT for a low

degree net, compute the wire-lengths corresponding to the

POWVs for the group the net belongs to and then return a

minimum wire-length POST associated with that POWV.

POWV (Potentially Optimal Wire-length Vectors)

corresponds to a linear combination of distances between

adjacent pins. Few pre-computed POWVs of each group

are stored in a table. Associated with each POWV, one

corresponding Steiner tree is stored called as Potentially

Optimal Steiner Tree (POST).

FOARS [36] is a Look-up table based five step
heuristic, follows top-down approach and partitions the

pins into subsets. OASG construction based on Octant

partition of vertices guides the partitioning and captures

the proximity of pins and corners of obstacles. Obstacle

Penalized Minimum Spanning Tree (OPMT) is

constructed by applying extended Dijkstra‟s and

Kruskal‟s algorithm on OASG, in the case of major

detour between vertices, an edge is penalized for the

obstacle in its path in the form of weight on that edge. On

the partitioned OPMT, Obstacle-Aware FLUTE

constructs Obstacle Aware Steiner Tree (OAST) on the

small degree nets satisfying Threshold value.
Rectilinearization and Refinement generates OARSMT

with an improved wire-length. OA-FLUTE uses OBTree

data structure to accelerate the overlap checking with

obstacles, this reduces runtime of FOARS by 59%.

FOARS has better performance than [28] by 2.3% and

[30] by 2.7%. FOARS runtime is slower compared with

[31], [32].

3. Special cases of OARSMT design

Efforts were made to design OARSMT with Electrical

and Electronic features and Genetic Algorithmic

simulation. Designs showed good performance in
comparison with the peer algorithmic designs, but their

design complexity increases with increasing number of

terminals and obstacles in the routing areas of ICs.

3.1 Circuit based approach
CDCTree [22] is a four step heuristic based on Current

Driven Circuit model, circuit takes the topology of Escape

graph, edges being replaced with resistors and terminals
by current source. Algorithm makes use of Coulomb‟s

law (repulsion of like charges), DC analysis is performed

for current distribution on the circuit and edges with

minimum current are selected to construct OARSMT with

shorter wirelength. For test cases with 50 terminals

CDCTree achieves shorter wirelength than An-

OARSMan.

3.2 Circuit simulation based approach

cktSteiner[23] uses RC-network to model a Routing

graph, here terminals are input-ports with unit impulse

current source and hanan nodes are output-ports. Global
Routing Graph (GRG) formally a unit tile hanan grid is

mapped into RC mesh; edges are modeled as unit

resistors, vertex of GRG is connected to ground via a unit

capacitor and unit resistor in parallel. Impulse current are

applied at terminals, a hanan node becomes a Steiner

point if its voltage response reaches peak value at the

earliest. In an iterative process, one or block of Steiner

points can be added to build RSMT this give rise to two

algorithms 1-cktsteiner, B-cktsteiner respectively.

cktSteiner applies to both RSMT and OARSMT with a

slight runtime difference. Circuit simulation is done on

MATLAB; compared with An-OARSMan, 1-cktSteiner
reduces 6.12% of wire-length for large test cases; B-

cktSteiner gets average speedup of 352X with similar

wire-length.

3.3 Genetic algorithm (GA)

Genetic algorithms give optimized solutions to problems

based on natural concept of birth, inheritance, genetic-

codes, chromosomes, mutation, etc.

[18] presents a Genetic Algorithm (GA) and compared its

performance with a Greedy Heuristic.GA encodes

candidate RSTs in terms of their underlying Spanning tree

edges, each augmented with a Steiner point. A spanning
tree of n points has n-1 edges which are taken as the

length of a Chromosome. A Chromosome is a list of

triples: two vertices describe a spanning tree edge and a

Steiner point for the edge. Chromosome‟s fitness is the

length of the RST it represents. GA operators like –

Crossover and Mutation are constrained to generate only

valid RSTs whose vertical and horizontal segments do not

intersect obstacle. GA operator Crossover generates one

offspring from two parents. GA operator Mutation

modifies a single parent chromosome; it removes a

random edge pair from the parent, and then selects a new

edge pair and Steiner point at random to reconnect the
tree. A variation of Kruskal‟s algorithm generates random

RST for the GA‟s initial population. Greedy heuristic for

RST with obstacles imitates Kruskal‟s algorithm. Results

shows that GA consistently generated shorter RST than

the Greedy heuristic for tests on 45 instances of up to 469

pins and 325 obstacles.

 3.4 Parallel techniques

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4473 325

Many algorithms proposed to solve the OARSMT

problem are Sequential, rather than Parallel. Multi-core

processors and Computer systems are widely available

and inexpensive. Developing parallel algorithms allows

the exploitation of the computational power of Shared-

memory multi-core systems or Array processors (group of
processing elements).Considerable speed-up can be

achieved while executing the parallel program which uses

threads and OpenMP functions.

[9] Proposed, parallel techniques for computing

rectilinear shortest paths avoiding obstacles.

CREWPRAM model processors computed shortest paths

in O(log2n) time for all the three cases. Case1, when

source and destination pins are on the boundary of convex

obstacle polygon, then the model requires O (n2/ log2 n)

processors. Case2, when source is an obstacle vertex and

destination is a vertex pin, then the model requires O (n2/
log n) processors, and case3, if both source and

destination are obstacle vertices model takes O (n2)

processors. Noticed that Single processor obtains the path

length between query points in a constant time, while O

(n/log n) processors retrieve the shortest path in

logarithmic time. If the query points are arbitrary, then

single processor takes O(logn) time. Parallel technique

use Staircase separators or convex paths for fast

computations.

[40] Proposed a parallel algorithm for constructing
OARSMT on a gridded xy-plane based on Watanabe‟s

Steiner tree construction algorithm [7] suitable for use on

a shared-memory multi-core system. Algorithm is based

on Maze routing and a two phase repetitive double front-

wave expansion. Algorithm uses two parallelized

procedures, which efficiently reduces the program

execution time, namely PARALLEL-CONNECT() used

to connect a Steiner point with other points within a

region and PARALLEL-CLEANUP() a process of

resetting distance numbers of grid points in maze routing.

Algorithm is implemented in C++ with the use of
OpenMP functions. Program achieves 23% speed-up on

average while running on a multi-core workstation and

generates very short wires.

III. Comparison of OARSMT design approaches

Table gives the comparison of key features and performance parameters like runtime and wire-length estimations of

different OARSMT designs.

Algorithm and its Underlying

concepts

Performance and Time

complexity

Salient features of OARSMT designs

[10] Exact algorithm. Multi-terminal
net, Escape graph, Greedy k-

Steinerization

Escape graph generation in
O(max {n, m log m }), G3S

heuristic time complexity is O(k2n),
G4S is O(k3n2). Worst case Steiner
ratio is 2

Transforms geometric problem into graph problem of input
size. Optimally routes multi-terminal net by exact and

heuristically by GkS method. Batching technique speeds up
Steinerization heuristics.

FORst [19] -Partitioning of terminals,
Hyper graph of terminals and FSTs,
ACO and Greedy FST for routing
subtrees, Detour technique

max (O(n3),O(n2 e log (e))) n is
number of terminals; e is number of
edges of obstacles.

Handles large scale cases and concave polygonal obstacles
with a short running time.
Two routing algorithms ACO-RSMT and GFST-RSMT
works well on small and large scale cases. Their cooperation
is a trade-off between CPU-time and solution quality.

An OARSMan [20]
-Track Graph, ACO search heuristics,
greedy OP-distance metric

Optimal solution for instances less
than 7 terminals. cases with 100
terminals take 30sec.

Handles complex obstacles. Track graph has reduced search
space. Good length performance for small cases.

CDCTree[22] -Current Driven Circuit,
Escape graph, Coulomb‟s law,
Kirchoff‟s law

Major time is spent in solving linear
equations.

Efficient for routing nets with less than 50 terminals and
Not suitable for Large cases. Practical for Routing
applications.

λ-OAT [24] -Obstacle-Avoiding
Constrained Delaunay triangulation;
Zonal Combination

O(nlogn), n is sum of terminals and
corner points of obstacles.

Global search by λ-OAT provide better solution for Large
cases than FORst and Speeds up to 30Kx.
Longer wire-length for Small cases with few obstacles as
edge sharing is limited.

Fast and Stable algorithm [25] -
Partitioning of terminals, Set of Sub-
Trees, ACO, Rectilinearization and
Refinement.

runtime is small for large cases,
compared to λ-OAT algorithm takes
4.2 sec and 54.37% less wire-length

Greedy Rectilinearization shares edges; Refinement
improves wire-length by eliminating U-shape paths. Good
solution quality makes it suitable for routing process. But
for large cases Spanning graph loses information.

[27] -Multi-pin variant of Maze
routing, maze propagation uses
simplified Hanan grid, maze routing
step uses Heap data structure.

Improved wirelength and running
time than basic Maze routing

 Handles multi-pin net, complex obstacles, large scale cases
taking less runtime and storage disproves the drawbacks of
traditional Maze routing. Post-processing improves
wirelength but Large cases increases Maze searching space.

[28] -Obstacle Avoiding Spanning
graph with “essential edges”,

Dijkstra‟s & Prim‟s algorithm, local &
U-shape pattern refinement.

OASG has O(nlgn) edges. Empirical
run time is O(n 1.46). Theoretical

time complexity is O(n3) in worst
case, O(n2lgn) in random case.

 “essential” edges in OASG guarantees to find an optimal
OARSMT for two-pin and higher-pin nets;

OASG with less number of edges ensures efficient
searching and processing; local and U-shaped pattern
Refinement schemes- reduce total wire-length.

EBOARST[30] -Edge-based
heuristics, Sweep line algorithm,
Quadrant partition of plane, terminal
forest, extended Dijkstra–Kruskal,

O(nlogn) Algorithm achieves 16.56
time speedup and only 0.46% longer
on average. OASG and MTST are
O(nlogn)

45degree sweep by Sweep line algorithm.
Edge-based heuristic enables both local and global
refinements so small length Steiner trees is generated.
Segment translation refinement enhances the quality of

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4473 326

Edge substitution. OARST

[31] Path-based algorithm. -Critical
paths, Shortest Path Maps, Multi-

Source SPs, Wave-front method

O(n) critical paths in O(n log n)
O(nlogn) algorithm achieves best

speedup and 1.1% longer on average

Critical paths guarantee the existence of optimal solutions.
Overlapping of paths and refinement schemes improves

solution quality.

[32] [39] Steiner point based
framework. -Voronoi graph, Shortest
Path Region (SPR), Steiner point
location method.

 OAVG of O(n) vertices and edges
in O(nlogn) time. Best solution
quality in Θ(nlogn) empirical time.

Steiner point location method generates desirable Steiner
point candidates that cause NP-completeness of OARSMT
problem. OAVG integrates the effectiveness and the
efficiency of routing graphs.

[34] Weighted Lee algorithm. -Lee
algorithm, extended Hanan grid,

Minimum Convex Polygon (MCP).

MCP(V) in O(nlogn), algorithm
runtime is O (n2(n+m)2 log (n+m)),

n terminals, m is number of vertices
of obstacles & boundary.

Routing area is a Weighted Hanan grid.
MCP(V) restricts routing area. Maze/Lee algorithm

considers boundary components. Large cases increase
complexities.

FOARS [36] Fast Look-up table,
Octant partition, Sweep-line algorithm,
Dijkstra‟s, Kruskal‟s algorithms,
Obstacle aware-FLUTE, OBTree data
structure.

OASG has O(n) edges; FOARS has
similar wirelength as [27][31] [32].
FOARS runtime is 84% faster than
[30] on average and 46 times and
123 times faster than [27], [28].

OARSMT follow obstacle boundary on necessity and
avoids congestion while routing large nets. At top-level
OASG guide partitioning. FLUTE is recursively called for
local optimization of OAST. Refinement reduces wire-
length by 1 to 2%. Obstacle Aware-FLUTE is less effective
for high degree nets and dense obstacle region.

[37] Geo-Steiner approach.
FST generation and FST
Concatenation, four Virtual points,
Reduced Escape graph, ILP
formulation.

For large cases, FST concatenation
phase dominates the total run time.
On average, 29.3% reduction of
FSTs achieved by pruning process
in 1.7s

for small cases -running time of FST generation is
Comparable to FST concatenation phase.
Pruning process is effective for small nets. Lower bound by
LP relaxation is very tight and Separation procedure
efficiently finds ILP violated constraints.

[40] Parallel algorithm. Maze routing,
Double front-wave expansion, Shared-

memory multi-core system, OpenMP

On average 23% speed-up achieved
when parallel program executed

using four threads on Multi-core

Parallel algorithm exploits the computational power of
shared-memory multi-core systems. Minimizes total wire

length. Does not use Refinement techniques

ObSteiner [41] Exact algorithm. -
Geosteiner approach, Essential edge
with one virtual point, Virtual graph,
Pruning procedure, Incremental
approach, ILP formulation.

Total run time is dependent on the
number of obstacles, more obstacles
lead to more iterations of algorithm.
Instances with less than 500
Obstacles were solved in minutes.

Handles complex obstacles. Pruning procedure eliminates
useless FSTs leading to significant improvement in total run
time. ILP constraints on FST and virtual point minimize the
total wire length. For small benchmarks, the benefit of using
Pruning procedure and Incremental approach is limited

IV. CONCLUSION

Paper discusses OARSMT design approaches and makes

a comparative study of the features, wire-length and

runtime performance of OARSMT algorithms. Some of

the interesting findings of the study are,

OARSMan[20],[25]based on ACO show good time and

wire-length performance for small scale cases, similarly

FORst[19],λ-OAT[24] for large scale cases.

ObSteiner[41] and FOARS[36] based on the extensions of

popular RSMT methods Geo-Steiner and FLUTE gives

quality solutions and handles large cases. [27] gave a
multi-terminal variant of Maze routing which has good

space and time responses. [31] Path-based algorithm, a

unique method that avoids construction of routing graph

by directly generating critical paths. Steiner point

selection based algorithm [32] gives more importance for

the generation of the Steiner point candidates while

handling obstacles. Exact algorithms [38] [41] based on

Geo-Steiner handles complex obstacles without dissecting

them and provide quality solutions. Parallel algorithms

[40] are proposed to solve OARSMT problems at higher

speed on Multi-core parallel systems. As there is
continuous advancement in the VLSI technology, there is

a need for the best performing OARSMT design; this can

be achieved by suitably integrating or improving the key

features of the existing algorithms or designs.

REFERENCES
[1] M. Hanan, “On Steiner‟s problem with rectilinear distance,” SIAM

J. Appl.Math., vol. 14, no. 2, pp. 255–265, Mar. 1966.

[2] F. K. Hwang, “On Steiner minimal trees with rectilinear distance,”

SIAM J. Appl. Math., vol. 30, no. 1, pp. 104–114, Jan. 1976.

[3] M. R. Garey and D. S. Johnson, “The rectilinear Steiner tree

problem is NP-complete,” SIAM J. Appl. Math., vol. 32, no. 4, Jun.

1977.

[4] A. C. C. Yao, “On constructing minimum spanning trees in k

dimensional spaces and related problems,” SIAM J. Comput., vol.

11, no. 4, pp. 721–736, 1982.

[5] P. J. Rezende, D. T. Lee, and Y.F. Wu, “Rectilinear shortest paths

with rectangular barriers,” in Proc. Second Annual Conf Computat.

Geom., pp. 204-13, ACM, 1985.

[6] Y.F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong,

“Rectilinear shortest paths and minimum spanning trees in the

presence of rectilinear obstacles,” ZEEE Trans. Comput., vol. „2-

36, pp. 321-31, 1987.

[7] Takumi Watanabe, Hitoshi Kitazawa, and Yoshi Sugiyama, “A

Parallel Adaptable Routing Algorithm and Its Implementation on a

Two-Dimensional Array Processor,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 6,

no. 2, pp. 241-250, 1987.

[8] J. S. B. Mitchell, “An optimal algorithm for shortest rectilinear

paths among obstacles in the plane,” in Abstracts First Canadian

Conf. Computational Geometry, 1989, p. 22.

[9] Mikhail J.Atallah,D. Z.Chen,“Parallel Rectilinear Shortest Paths

with Rectangular Obstacles”, ACM 1990

[10] J. Ganley and J. P. Cohoon,“ Routing a Multi-Terminal Critical

Net: Steiner Tree Construction in the Presence of Obstacles”, Intl.

Symp. On Circuits and Systems, Vol. 1, pages 113-116, 1994.

[11] S.Q.Zheng, J.S.Lim, and S.S.Iyengar, “Finding obstacle-avoiding

shortest paths using implicit connection graphs”, IEEE Trans on

CAD, 1996, 15(1): pp. 103-110.

[12] D.M. Warme, “A New Exact Algorithm for Rectilinear Steiner

Minimal Trees”, Technical Report, System Simulation Solutions,

Inc., Alexandria, VA 22314, USA, 1997.

[13] M.Zachariasen and P.Winter, “Obstacle-avoiding Euclidean

Steiner trees in the plane: an exact algorithm”, Extended abstract

presented at Workshop, ALENEX, 1999.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4473 327

[14] M. Zachariasen, “Rectilinear Full Steiner Tree Generation”,

Networks, Vol.33, pp.125-143, 1999.

[15] D W.Warme, P.Winter, Zachariasen,“Geosteiner 3.1 package.”

2000

[16] U. F¨oßmeier and M. Kaufmann, “On exact solutions for the

rectilinear Steiner tree problem part I: Theoretical results,”

Algorithmica, vol. 26, no. 1, pp. 68–99, 2000.

[17] Y.Yang, Q.Zhu, T.Jing, X.L.Hong, and Y.Wang, ”Rectilinear

Steiner Minimal Tree among Obstacles”, in Proc. of IEEE

ASICON, Beijing, China, 2003: pp. 348-351.

[18] Rita M. Hare, Bryant A. Julstrom, “A Spanning-Tree-Based

Genetic Algorithm for some Instances of the Rectilinear Steiner

problem with Obstacles”, ACM 2003

[19] Y. Hu, Z. Feng, T. Jing, X. L. Hong, Y. Yang, G. Yu, X. D. Hu,

and G. Y. Yan, “FORst: A 3-Step heuristic for obstacle-avoiding

rectilinear Steiner minimal tree construction,” J. Inf. Comput. Sci.,

vol. 1, no. 3, pp. 107–116, Dec. 2004.

[20] Y. Hu, T. Jing, X. L. Hong, Z. Feng, X. D. Hu, and G. Y. Yan,

“An-OARSMan: Obstacle-avoiding routing tree construction with

good length performance,” in Proc. ASP-DAC, 2005, pp. 7–12.

[21] Z. Shen, C. Chu, and Y. Li, “Efficient rectilinear Steiner tree

construction with rectilinear blockages,” in Proc. Int. Conf.

Comput. Des., 2005, pp. 38–44.

[22] Y. Shi, T. Jing, L. He, and Z. Feng, “CDCTree: novel obstacle-

avoiding routing tree construction based on current driven circuit

model”, Proc. ASP-DAC, pp. 630-635, 2006.

[23] Yiyu Shi, Paul Mesa, Hao Yu and Lei He, ”Circuit Simulation

Based Obstacle-Aware Steiner Routing”, DAC 2006.

[24] Tom Tong Jing, Zhe Feng, Yu Hu, Xianlong L. Hong, Xiaodong

D. Hu, and Guiying Y. Yan, “λ-OAT: λ-Geometry Obstacle-

Avoiding Tree Construction With O(n log n) Complexity”,

 IEEE Transactions On Computer-Aided Design Of Integrated Circuits

and Systems, Vol. 26, No. 11, November 2007.

[25] P.C. Wu and J.R. Gao and T.C. Wang, “A Fast and Stable

Algorithm for Obstacle-avoiding Rectilinear Steiner Minimal Tree

Construction”, Proceedings ASP-DAC, pp.262-267, 2007.

[26] C.W. Lin and S.Y. Chen and C.F. Li and Y.W. Chang and C.L.

Yang, “Efficient Obstacle-avoiding Rectilinear Steiner Tree

Construction”, Proceedings ISPD, 2007.

[27] L. Li and E. F. Y. Young, “Obstacle-avoiding rectilinear Steiner

tree construction,” in Proc. Int. Conf. Comput.-Aided Design.,

2008.

[28] C.W. Lin, S.Y.Chen, C.F. Li, Y.W. Chang and

C.L.Yang,“Obstacle-avoiding rectilinear Steiner Tree construction

based on spanning graphs,”IEEE Trans.CAD,Vol.27,No.4, pp.643–

653, 2008

[29] C. Chu and Y.C. Wong, “FLUTE: Fast lookup table based

rectilinear Steiner minimal tree algorithm for VLSI design,” IEEE

Trans. CADesign Integr. Circuits Syst., vol. 27, no.1, pp.70–83,

Jan. 2008.

[30] J. Y. Long, H. Zhou, and S. O. Memik, “EBOARST: An efficient

edge based obstacle-avoiding rectilinear Steiner tree construction

algorithm”, IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 27, no. 12, pp. 2169–2182, Dec. 2008.

[31] C.H. Liu, S.Y. Yuan, S.Y. Kuo, and Y.H. Chou, “An O (n log n)

path based obstacle-avoiding algorithm for rectilinear Steiner tree

construction,” in Proc. DAC, 2009, pp. 314–319.

[32] C.H. Liu, S.Y. Yuan, S.Y. Kuo, and J.H. Weng, “Obstacle-

avoiding rectilinear Steiner tree construction based on Steiner point

selection,” in Proc. ICCAD, 2009, pp. 26–32.

[33] L. Li, Z. Qian, and E. F. Y. Young, “Generation of optimal

obstacle avoiding rectilinear Steiner minimum tree,” in Proc.

ICCAD, 2009

[34] Xueliang Li and Yang Luo,”Weighted Lee Algorithm on

Rectilinear Steiner Tree with Obstacles and Boundary”, IEEE

2009.

[35] T. Huang and Evangeline F. Y. Young, “Obstacle-avoiding

Rectilinear Steiner Minimum Tree Construction: An Optimal

Approach,” in Proc. Int. Conf. CAD., pp. 610–613, 2010.

[36] Gaurav Ajwani, Chris Chu, and Mak Wai-Kei, “FOARS: FLUTE

Based Obstacle-Avoiding Rectilinear Steiner Tree Construction,”

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 30, no. 2, pp. 194-204, Feb 2011.

[37] T. Huang, L. Li, and Evangeline F. Y. Young, “On the

construction of optimal obstacle-avoiding rectilinear Steiner

minimum trees,” IEEE Trans. On Comput.-Aided Des. Integr.

Circuits Syst., vol. 30, no. 5, pp. 718–731, 2011.

[38] T. Huang and Evangeline F. Y. Young, “An Exact Algorithm for

the Construction of Rectilinear Steiner Minimum Trees Among

Complex Obstacles,” in Proc. Design Automation Conf., pp. 164–

169, 2011.

[39] Chih-Hung Liu, Sy-Yen Kuo, D. T. Lee, Chun-Syun Lin, Jung-

Hung Weng, and Shih-Yi Yuan ,”Obstacle-Avoiding Rectilinear

Steiner Tree Construction: A Steiner-Point-Based Algorithm”,

IEEE Transactions On CAD Of Integrated Circuits and Systems,

July 2012.

[40] Cheng-Yuan Chang and I-Lun Tseng, “A Parallel Algorithm for

Constructing Obstacle-Avoiding Rectilinear Steiner Minimal Trees

on Multi-Core Systems”, International Conference PDPTA, 2012.

[41] Tao Huang and Evangeline F. Y. Young, “ObSteiner: An Exact

Algorithm for the Construction of Rectilinear Steiner Minimum

Trees in the Presence of Complex Rectilinear Obstacles”, IEEE

Transactions On Computer-Aided Design Of Integrated Circuits

and Systems. Vol. 32, No. 6. June 2013.

BIOGRAPHY

Mamatha.G is presently working as

Asst. Prof. in the Dept. of ISE, JSSATE,
Bangalore. She obtained her B.E (CSE)

from Bangalore University, M.Tech

(CNE) from VTU, Belgaum and

pursuing her PhD (CSE) under VTU.

She has 15yrs of academic experience.

She is a member of CSI, LM-ISTE. Her interests include

Designing algorithms for routing nets in VLSI physical

design, Algorithm implementation using Reconfigurable

Logic, UNIX system programming and Automata Theory.

