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Abstract: Cloud storage has gained massive popularity in the IT industry. It has proven to be cost effective and 

reliable. Research has shown that striping of data across multiple cloud vendors is a remedy for providing fault 

tolerance. In case the cloud suffers from a permanent failure it leads to loss of data in the cloud. In this scenario the lost 

data can be repaired or recovered using the other surviving clouds. This multiple cloud-storage system is called a 

Network-Coding based cloud storage system. NC Cloud is a proxy based system which provides fault tolerance and 

provides cost-effective repairs for systems which suffer from permanent single-cloud failure.  The NC Cloud is built on 

top of Functional Minimum Storage Regenerating (FMSR) codes which provide the same fault tolerance as traditional 

erasure codes like RAID 5 and RAID 6 but use less data repair traffic. Therefore, the FMSR codes provide significant 

cost savings in repair over RAID 6 codes but have similar performance during upload and download of data. The 

concept of Network-Coding based cloud storage is gaining mass popularity due to its desirable properties like data 

recovery, cost effectiveness and fault tolerance. 
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I. INTRODUCTION 
 

Cloud computing has been embraced by the IT industry 

which has lead to the rise of network-centric computing. 

The advancement of networking has made it possible to 

concentrate resources in large data centres where the users 

can pay as they consume and store data. One of the major 

challenges of cloud storage is dealing with huge amount of 

data and to securely maintain data in its data centres. It is 

not a feasible solution to store data using a single cloud 

storage provider as it raise a concern of a single point 

failure. To eliminate the risk of single cloud failure the 

data is stored in multiple clouds which improves fault 

tolerance of the cloud storage system [2]. Another 

challenge in the cloud storage is the vendor lock-in. It is 

not possible to store the large amount of data with 

different cloud service providers because it would be very 

expensive as the providers charge the users for outbound 

data. Moving these huge chunks of data can introduce 

significant monetary costs. Therefore it is necessary to 

reliably store data within single cloud service providers 

which makes the service providers focus on data repair 

and recovery.  
 

In the existing systems used in the industry, conventional 

erasure codes (RAID 5) is used to stripe data to improve 

fault tolerance [2],[5]. This technique is suitable for short 

term failures or a foreseeable permanent failure. Clouds 

are susceptible to permanent failures. Our work focuses on 

unexpected permanent cloud failure. It is necessary to 

maintain data redundancy and fault tolerance properties on 

a cloud storage system to activate repair when the cloud 

unexpectedly fails. In the case of a permanent cloud 

failure, a repair operation is launched in which the data is 

retrieved from existing surviving clouds in the same 

network and lost data is reconstructed into the new cloud.  

 
 

It is absolutely essential to reduce data traffic during data 

migration to have lower monetary costs [3]. 

The main goal to implement a NC cloud based storage 

system is to reduce data traffic and monetary costs. To 

achieve this, regenerating codes has been implemented for 

the data to be stored in a distributed storage system 

redundantly. The data is stored across different nodes in 

which each node can be referred as a storage device or a 

cloud storage provider. The NC cloud is built on top of the 

Functional Minimum Storage Regenerating (FMSR) 

codes. When the data repair operation begins, the encoded 

chunks of data are retrieved from the surviving nodes and 

sent to the new node. In the new node the lost data is 

regenerated. The advantage of regenerating codes with the 

same fault-tolerance level as that of the traditional erasure 

codes is that it requires less repair traffic resulting in lesser 

monetary costs. 
 

NC cloud provides a fault tolerant storage system over 

multiple cloud storage providers. NC cloud is a proxy 

based storage system which can interconnect different 

clouds and can also transparently stripe data across 

different clouds. Functional Minimum Storage 

Regenerating (FMSR) codes are implemented along with 

NC Cloud which maintains double fault tolerance and use 

less traffic during repair operations. One important benefit 

is the elimination of performing encoding operations 

within storage nodes during repair. 
 

FMSR codes are stored as encoded data chunks formed by 

the linear combinations of the original data. These codes 

are non-systematic in nature. FMSR codes have been 

implemented for archival applications in various 

organizations. These codes serve the purpose of a long 

term archive for data. FMSR codes design allows us to 
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restore the whole file rather than the parts of the file 

during the recovery operation. This helps the lost file to be 

obtained completely which maintains data integrity. They 

can also provide an alternate solution for a system which 

would help store data using multiple clouds storage, along 

with the properties of fault tolerance and cost-

effectiveness [4]. 
 

In this paper, FMSR codes are discussed and compared 

with the erasure codes like RAID-6 [15]. FMSR codes 

tend to save the repair costs by 25 percent compared to 

RAID-6 codes when four storage nodes are involved. It 

can even save repair costs up to 50 percent as the number 

of storage nodes further increases. On the other hand, 

FMSR codes have the same amount of storage overhead as 

RAID-6 codes and these codes can be deployed in a thin 

cloud setting, very suitable for today‘s cloud storage 

services. Regenerating codes are extensively studied in 

theoretical context [6], [7],[10],[11]. 
 

II. REPAIR OPERATIONS IN A MULTIPLE-

CLOUD STORAGE 
 

Cloud failure is a devastating event which may result in 

the data being lost permanently. If the data is 

unrecoverable then the cloud service providers would 

struggle to maintain their clients. In the case of cloud 

failures, we generally consider two types of failures: 

Permanent failure and Transient failure. 
 

Permanent failure: 

Permanent failure is the type of failure which is long-term. 

The data in the outsourced cloud will eventually be 

unrecoverable permanently. This unavailable data can be 

disastrous for the cloud service providers as well as the 

users. These types of failures are very unlikely to happen, 

but there are some instances which have lead to a 

permanent failure.  

Malicious attacks:  It is absolutely crucial to encrypt the 

data from the client application before the data can be 

stored into the cloud. This is a necessary measure to 

provide client confidentiality and security. It should also 

be noted that when the outsourced data is corrupt, it would 

not be useful at all [12]. 

Disasters in Data Centres: Data centres may suffer from 

unexpected disasters once in a while. There are incidents 

where data centres have been struck by lightning, hit by 

earthquake and suffered from floods. These natural 

disasters may lead to permanent loss of data [12]. 
 

Transient failure: 

Transient failure is a short-term failure in which the cloud 

which is unavailable temporarily would return to service 

and function normally after a short period. In this type of 

failure no outsourced data is lost. Some transient failure 

may last a few minutes and some may last a few days. 

These failures are common and occur regularly, but will 

eventually be recovered [13]. 
 

III. IMPORTANCE OF FMSR CODES 
 

In this paper, the storage system is based on a distributed 

multi-cloud storage where the data to be stored is striped 

over multiple cloud providers [1], [2], [14]. A proxy based 

design is responsible for the interconnection of multiple 

cloud repositories. The design of this storage system is 

shown in Fig 1. The proxy based design is important 

because it acts as an interface between the client and the 

cloud. A repair operation is activated in case the cloud 

experiences a permanent cloud failure.  
 

 
 

Fig1. Normal operation 
 

The repair operation mechanism can be shown in Fig 2. In 

the repair operation, the proxy reads the data pieces that 

are essential for the reconstruction of the new data pieces 

from the other surviving clouds. These data pieces that are 

retrieved from the remaining clouds are stored in the new 

cloud. This repair operation does not involve any sort of 

direct interaction between the clouds that are active. 
 

 
 

Fig2. Repair operation 
 

Level-3 Heading:  A level-3 heading must be indented, in 

Italic and numbered with an Arabic numeral followed by a 

right parenthesis. The level-3 heading must end with a 

colon.  
 

To attain fault tolerance in the storage system, maximum 

distance separable (MDS) codes have been implemented. 

The file of size M is considered which is divided into 

equal chunks of data. These data chunks are referred to as 

native chunks. These native chunks are again linearly 

combined to obtain code chunks. These native codes are 

distributed over n nodes in the case where ( n , k ) MDS 

code is implemented. The total size of the codes would be 

M/k. With the use of FMSR codes, failures of n-k nodes 

can be tolerated. 
 

In Fig 3, a double fault tolerant implementation of FMSR 

codes is considered. The file of size M is divided into four 

native chunks. They are further divided onto eight distinct 

code chunks P1,…,P8. These distinct code chunks are 

formed by linear combinations of the native chunks where 

the size of the code chunks is M/4. In case of a node 
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failure, any two different nodes can be used to recover the 

original native code chunk. In Fig 3, node 1 is assumed to 

have failed. The proxy collects a single code chunk from 

the surviving node. The operation involves a download 

procedure of three code chunks of the size M/4. Then the 

proxy performs an operation where two code chunks P1‘ 

and P2‘ are regenerated from the different linear 

combinations of the code chunks. The P1‗and P2‘ 

regenerated are stored in a new node by the proxy. In 

FMSR the code size is considered as 2M, and the repair 

traffic is 0.75M. The key feature of FMSR codes is that it 

does not perform encoding during repair [1]. 
 

 
 

Fig3. FMSR codes 
 

The file of size M is divided into 2(n-2) native chunks to 

generalize double-fault-tolerant FMSR codes for n storage 

nodes. These native chunks are used to generate 2n code 

chunks. Each node stores two code chunks of size M/2(n-

2) each and the total storage size is Mn/(n-2). To perform 

repair operation for a failed node a chunk is downloaded 

from each of the other n-1 nodes, which results in the 

repair traffic of M(n-1)/2(n-2). Considering n is large, 

FMSR codes can save repair traffic by close to 50 percent 

[1], [16]. 
 

IV. IMPLEMENTATION OF FMSR CODES 
 

After describing the importance and the advantages of 

FMSR codes in single cloud storage, the details of 

implementing them in multiple cloud storage is specified 

in this section. The nodes in the cloud repository are 

viewed as a logical storage node. On the basis of the 

property of FMSR codes, the lost chunks do not need to be 

exactly reconstructed. Instead, in each repair operation 

code chunks are regenerated that are not completely 

identical to the originally stored on the node that failed as 

long as the MDS property is satisfied. A two-phase 

checking scheme is proposed here which ensures that code 

chunks on all nodes always satisfy MDS property. There 

are three operations performed on a file using FMSR 

codes: 1. File upload, 2. File download, 3. Repair. 
  

File upload: For a file to be uploaded, it is first divided 

into k(n-k) equal size native chunks which are denoted by 

(Fi)i=1,2,…,k(n–k). these k(n–k) native chunks are then 

encoded into n(n-k) code chunks which are denoted by 

(Pi)i=1,2,…,n(n-k). Each Pi is formed by a linear combination 

of the k(n-k) native chunks. Specifically, we let EM=[αi,j] 

be an [n(n-k) X k(n-k)] encoding matrix for some 

coefficients αi,j (where i=1, . . . ,n(n-k) and j=1, . . . , k(n-

k)) in the Galois field GF(2
8
). The row vector of EM is 

called an encoding coefficient vector (ECV) which 

contains k(n-k) elements. The ECV is used to denote the i
th

 

row vector of EM. Every Pi is calculated by the product of 

ECVi and all the native chunks F1, F2,…,Fk(n-k), where all 

the arithmetic operations are performed over GF(2
8
).  The 

code chunks of the file are then evenly stored in the n 

storage nodes, each having (n-k) chunks. The whole EM is 

stored as a metadata object that is then replicated to all the 

storage nodes. EM can be constructed in a number of ways 

as long as it passes two-phase checking which is 

mentioned below in iterative repairs. The implementation 

details of arithmetic in Galois Field are briefly discussed 

in [8]. 
 

File download:  In the download operation, all the 

corresponding metadata objects that contain the ECVs are 

downloaded initially. Any k of the n storage nodes is 

selected and k(n-k) code chunks from k nodes are 

downloaded. The ECVs of the k(n-k) code chunks can 

from a [k( n - k ) X k( n – k )] square matrix. According to 

the MDS property the inverse of the square matrix must 

exist. The original k(n-k)  native chunks are obtained 

when the inverse square matrix is multiplied with the code 

chunks. In the download operation, FMSR codes are 

treated as standard Reed-Solomon codes and the technique 

of creating an inverse matrix to decode the original data 

has been described in [9]. 
 

Iterative Repairs: A File f is considered for repair of 

FMSR codes in a permanent single-node failure in the 

cloud storage system. A major challenge is to make sure 

that the MDS property holds after iterative repairs given 

that FMSR codes regenerate different chunks in each 

repair. A two-phase checking heuristics is proposed as 

follows: 

It is assumed that the (r-1)
th

 repair is successful and r
th

 

repair (where r>1)  is considered for the operation where a 

single node failure has occurred. First, the new set of 

chunks in all the storage nodes are checked if it satisfies 

the MDS property after the r
th

 repair. All the other new set 

of chunks in the storage nodes are checked if they satisfy 

the MDS property after the (r+1)
 th

 repair, should another 

single permanent node failure occur. This property is 

referred to as the repair MDS (rMDS) property [18]. The 

r
th

 repair is now briefly described in the following steps: 
 

Step 1: Downloading the encoding matrix from an existing 

node (Surviving node). 

 The encoding matrix EM specifies the ECVs for 

constructing all the code chunks by using the linear 

combinations of native chunks. The EVCs are used later 

for two-phase checking. The EM is embedded in a 

metadata object which is replicated, the metadata object 

can be simply be downloaded from one of the surviving 

nodes. 

Step 2: Selecting one ECV from each of the n-1 surviving 

nodes. 

  Each ECV in EM corresponds to a code chunk 

where one ECV is picked from the n-1 surviving nodes. 

These ECVs are referred as ECVi1, ECV i2,…, ECV i(n-1) 

Step 3: Generating a repair matrix. 

An (n-k) X (n-1) repair matrix RM= [ΥI,j] is constructed, 

where each element 
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ΥI,j (where i=1,…,n-k and j=1,…,n-1) is randomly selected 

in GF(2
8
). 

Step 4: Computing the ECVs for the new code chunks 

where a new encoding matrix is reproduced.  

The RM is multiplied with the ECVs selected in Step 2 to 

construct n-k new ECVs, denoted by  

ECV‘ i= Σ
n-1

j=1Υi,j ECVi , for i=1,2,…,n-k. 

A new encoding matrix EM‘ is reproduced which is 

formed by the substitution of ECVs of EM of the failed 

node with the corresponding new ECVs. 

Step 5: Checking whether the newly reproduced EM‘ is 

satisfying both the MDS and the rMDS properties. 

The MDS property is verified intuitively by enumerating 

all (
n
k) subsets of k nodes to check if each of their 

corresponding encoding matrices forms a full rank. The 

rMDS property, any possible node failure is checked 

where one out of n-k chunks can be collected from each of 

the other n-1 surviving nodes and reconstruct the chunk in 

the new node to maintain the MDS property. The number 

of checks performed for the rMDS property is at most n(n-

k)
n-1

 (
n

k). if n is small, then the enumeration complexities 

for both MDS and rMDS properties are manageable. If 

either of the two phases fails, then we return back to the 

step 2 and repeat. Step 1 to Step 5 only deals with ECVs, 

so their overhead does not depend on the chunk size. 

Step 6: Downloading the actual chunk data and 

regenerating the new chunk data. 

If the two-phase checking performed in Step5 is 

successful, the n-1 chunks are downloaded that correspond 

to the selected ECVs in Step 2 from n-1 surviving storage 

nodes to NC Cloud. By using new ECVs computed in the 

step 4 new chunks are regenerated and uploaded from the 

NC Cloud to a new node. 
 

V. ANALYSIS 
 

A It is absolutely essential for checking rMDS property in 

each repair to maintain MDS property after iterative 

repairs. Counter-example is used to demonstrate that 

without rMDS property check, the MDS property would 

be lost in the next repair. A simulation is also used to 

demonstrate that the two-phase checking can sustain much 

iteration of repairs in more general cases. 
 

A Counter-example 

A counter-example is shown in Fig 4, which is used to 

illustrate the necessity of rMDS property. The notations 

used are the same as Fig 3 with n=4 and k=2. It is assumed 

that the code chunks P1,.…,P8 are linearly combined from 

native chunks A,B,C and D. It is not difficult to verify that 

the code chunks P1,.…,P8 satisfy the MDS property, which 

can be further stated that the four chunks from any two 

nodes can be used to reconstruct the native chunks A,B,C 

and D. there is no operation performed to check whether 

the rMDS property is also being satisfied or not. 
 

It is now considered that node 4 has failed. The repair 

operation selects one chunk from each of the Nodes 1, 2 

and 3 according to FMSR codes. These chunks are used to 

regenerate the new code chunks P‘7 which is represented 

in (eq1) and P‘8 is represented in (eq2) which are stored in 

the new node. 

 
 

Fig4. Counter-example, code chunks that satisfy the MDS 

property but not the rMDS property 
 

There are 2
3
=8 possible selections of{X , Y , Z}. One 

possible selection is considered here where the new code 

chunks become 
 

P‘7= Υ1,1 P1+ Υ1,2 P3 +Υ1,3 P5,…(eq1) 

P‘8= Υ2,2 P1+ Υ2,2 P3 +Υ2,3 P5….(eq2) 
 

Where Υi,j (i=1,…,n-k and j=1,…,n-1) are some random 

coefficients used for generating new code chunks. Then 

we have 
 

P‘7= (Υ1,1 + Υ1,3)A + (Υ1,2 + Υ1,3)C, 

P‘8= (Υ2,1 + Υ2,3)A + (Υ2,2 + Υ2,3)C, 
 

According to figure 4, P1=A and P2=C due to which it is 

not possible to reconstruct a native chunk D from P1, P2, 

P‘7 ,P‘8.The MDS property would not be satisfied as nodes 

1 and 4 cannot be used to reconstruct the native chunks 

which would result in a failure of the repair operation. 
 

Simulation 

Simulations are performed to evaluate the overhead of the 

two-phase checking and to justify that checking the rMDS 

property can make sustainable iterative repairs. Initially, 

multiple rounds of node repairs are considered for 

different values of n. In each round of the simulation, a 

random node is picked to fail and then repair operation is 

performed on the failed node. A repair is considered to be 

bad if the Step 2 to Step 5 of the Two-phase checking is 

repeated over a threshold number of times, but no suitable 

encoding matrix has been obtained. A number of rounds of 

repair are carried out and the repair is stopped when a bad 

repair is encountered [1]. 
 

In Figure 5, an example of the simulation is described 

where there is a comparison between repairs where rMDS 

property is checked and repairs where only MDS property 

is checked.  
 

.  
 

Fig5. Comparison between repairs with MDS and rMDS. 
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From this example it is clear that checking rMDS 

properties enables more round of repairs to be sustained 

before a bad repair is encountered. Suppose the threshold 

is set to be 20 loops. Then, we can sustain 500 rounds of 

repair for different values of n by checking rMDS 

property. When we check only MDS property we quickly 

encounter a bad repair in three rounds of repair for n=10. 
 

Reliability analysis 

Reliability is a very desirable property for a storage 

system. We compare the reliability of FMSR codes and 

the traditional RAID-6 codes with respect to different 

failure rates using the mean-time-to-data-loss (MTTDL) 

metric [17]. Mean-time-to-data-loss (MTTDL) is defined 

as the expected time elapsed until the original data become 

unrecoverable. MTTDL is widely adopted reliability 

metric which is only used for comparative study of 

different coding schemes with different repair 

performances. 

The Markov model for double-fault-tolerant codes where 

k= ( n-2 ) is used to solve the MTTDL which is shown in   

Fig 6 .  In the Markov model the state i (where i=0,1,2,3) 

denotes the number of failed nodes in the storage system. 

State 3 signifies that there are more than two failed nodes 

where data is permanently lost. MTTDL is computed as 

the expected time to move from state 0 (where all nodes 

are normal) to state 3. 
 

 
 

Fig 6. Markov model for double fault tolerant codes. 
 

The node failures and repairs are assumed to be 

independent events that follow an exponential distribution 

[19], [21]. Let λ be the node failure rate where 1/λ is the 

expected time to failure of a node. The transition rate from 

state i to state i+1 is (n-i) λ, where i=0, 1, 2. The repair 

rates for single-node and double-node failure is μ1 and μ2 

respectively. S is considered to be the size of the data 

stored in each node where amount of original data stored 

is (n-2) S and B is considered the network capacity 

between the surviving nodes and the proxy.  
 

Initially, repair for a single-node failure is considered. The 

repair traffic for FMSR codes is (n-1)S/2, therefore 

μ1=2B/(n-1)S. The repair traffic for RAID-6 codes is (n-

2)S, hence μ1=B/(n-1)S. Finally, in case of double node 

failure the FMSR codes and the RAID-6 codes reconstruct 

lost data by downloading the amount of original data ((n-

2)S) from remaining k=n-2 surviving nodes where 

μ2=B/(n-2)S. MTTDL is evaluated for specific parameters 

where n=10, k=8 and S=1. The MTTDL for different 

values of λ from 0.1 to 1 (in units per year) is shown in 

FIG7.a when B=1Gbps while FIG 7.b shows the MTTDL 

for different values of B from 0.1 to 1 (in units of Gbps) 

when λ-0.5 per year. Under these circumstances, the 

MTTDL of FMSR codes is 50 to 80 percent longer than 

traditional RAID-6 codes. [1], [15] 

 
 

Fig 7.a. MTTDL vs node failure rate 
 

 
 

Fig 7.b. MTTDL vs node transfer rate 
 

Response Time Analysis 

The response time is calculated for file upload, file 

download and repair. These operations are performed on 

the local cloud storage. The experiment is performed to 

test the response time for File Upload, File download and 

Repair where the value of n=4 and k=2 with varying file 

sizes. There are eight files randomly selected from 1MB to 

500MB as the data set. The response times of all the three 

operations are plotted versus the file size in Fig 8 [20].  

 

Fig8. Response time analysis for File downloads 
 

The path of the chosen repository is set to a non-existent 

location in order to stimulate a node failure in repair. The 

Experiment is performed for each operation where the 

different file sizes are considered and the time taken for 

response is noted. After performing these experiments and 

comparing the response time with RAID-6, it is 

abundantly clear that the .RAID-6 codes have less 

response time than FMSR codes during File upload and 

File download regardless of n and k. On the other hand, 

FMSR codes have slightly less response time than RAID-6 

during repair operations [1]. This is mainly due to the fact 

that FMSR codes download lesser data in file repair which 
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is explained briefly below. 

For example, a file of size 500 MB is considered where 

n=4 and k=2. While uploading the file of size 500 MB 

RAID-6 codes takes 1.53 seconds to encode while FMSR 

codes takes 5.48 seconds. When downloading a 500 MB 

size file, FMSR codes takes 2.71 seconds to decode while 

RAID-6 does not take any time to decode as the native 

chunks are available. These differences increase with n 

and k. The main advantage of FMSR codes is observed 

during repair operations. The FMSR codes have slightly 

less response time compared to RAID-6. This is attained 

because FMSR codes download less data during repair.For 

repairing a 500-MB file with n=4 and k=2, FMSR codes 

spend 4.02 seconds in download, while the native chunk 

repair of RAID-6 codes spends 5.04 s. 

FMSR codes generally have slightly longer response time 

compared to RAID-6 which may raise the argument that 

RAID-6 is a more feasible solution for achieving repair in 

Cloud storages. In the case of a local cloud, this difference 

in response time might favor RAID-6, but in a commercial 

cloud the FMSR codes have a clear advantage.[1],[2],[6].  

The encoding/decoding overhead which occurs in FMSR 

codes can be easily masked with network fluctuations in 

the internet. This advantage of FMSR codes in a 

commercial cloud is achieved by lesser repair traffic 

during the repair operations. FMSR codes implementation 

eliminates the encoding requirement of nodes, while 

maintaining the recovery performance of Minimum 

Storage Regenerating codes. Since, the NC-Cloud storage 

system‘s main aim is to provide a fault tolerant system 

which performs repairs during permanent node failures, 

FMSR codes are implemented to achieve a reliable and 

efficient storage system. 
 

VI. CONCLUSION AND FUTURE WORK 
 

The NC Cloud is a proxy-based, multiple-cloud storage 

system that practically addresses the reliability of today‘s 

cloud backup storage. NC Cloud not only provides fault 

tolerance in storage, but also allows cost-effective repair 

when a cloud permanently fails. NC Cloud implements a 

practical version of the FMSR codes, which regenerates 

new parity chunks during repair subject to the required 

degree of data redundancy. FMSR code implementation 

eliminates the encoding requirement of storage nodes (or 

cloud) during repair, while ensuring that the new set of 

stored chunks after each round of repair preserves the 

required fault tolerance. Our NC Cloud prototype shows 

the effectiveness of FMSR codes in the cloud backup 

usage, in terms of monetary costs and response times. This 

provides a very good scope for future because of the 

system‘s efficiency, reliability and its ability to recover 

from permanent single cloud failures. 
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