
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5445 176

Smart Crawler: A Two-Stage Crawler for

Efficiently Harvesting Deep-Web Interfaces

Melisa Vidiera
1
, Janhavi V

2

PG Scholar, Dept of Computer Science and Engineering, Vidyavardhaka College of Engineering, Mysuru, India
1

Associate Professor, Dept of Computer Science and Engg, Vidyavardhaka College of Engineering, Mysuru, India
 2

Abstract: Due to extensive usage of Internet, substantial amount of data has extended widely over web, which serve

access to particular data or to fetch more relevant data. It would be challenging to the search engine to provide quick

results that is most relevant to the users. To search the relevant data and to reduce amount of time in fetching data, here

propose the “Smart Crawler”. This returns most relevant data from the popular and most specific websites. It uses

multiple search engines that processes the query provided by the user, cluster the results collected in a single platform

and performs two stage crawling on data and URLs. In which in-site map generation is done to obtain relevant site with

techniques such as reverse searching and page ranking.

Keywords: Deep Web, two stage crawler, ranking, in-site exploring, adaptive learning.

I. INTRODUCTION

Internet is an indivisible and essential part of our day to

day life. Internet is mainly used to communication and to

get answers for most of the question arises in our daily

life. World Wide Web is information space which contains

resources and documents that has particular URL. Many

search engines are available to extract contents of web and

to provide the answers for all types of queries; the popular

ones are Google, Yahoo, MSN.

The data that are most relevant to the users, often present

in Deep Web. Deep web is also known as dark web and it

is concealed web that consist innumerable pages that can

be accessed by public, but their IP addresses will be

hidden. They cannot be discovered in a single search

attempt and it is tough to identify who are people behind

that web sites. These contain database information namely

catalogues and the reference that are not indexed by any

search engine. Most of the search engines fail to exact the

data from the deep web. They tend to concentrate in

returning much number of results rather in returning

accurate and most relevant result to the users that is very

much expected. As the size space of web increases, the

valuable information cannot be indexed and accessed by

the search engines. Based on a study done at University of

California, Berkeley, at 2003, it is estimated that overall

deep web is of 91,850 terabytes of size and the surface

web is only about 167 terabytes. Deep web is about 96%

of all the content on the Internet, which is mostly 550

times larger than surface web. To overcome this problem

there is a need of efficient harvesting of deep web which

explore quickly and return accurate results to the users. It

is challenging for search engines to discover and explore

the database of deep web as they are not registered with

any search engines.

II. EXISTING SYSTEM

Traditional Crawler browses the World Wide Web and

obtains data from indexing. It copies all the pages that

have been visited by the crawler which can be processed

later by the search engines. The existing system is a

manual or semi automated system.

Disadvantages of traditional crawler are, the crawler

consumes large amount of data which leads in high traffic

and crawling these large size of data waste time. Users are

constrained by the limits in bandwidth and processing

which leads crawler not to visit deep web and it can omit

the websites that has appropriate data.

III. RELATED WORKS

Luciano Barbosa and Juliana Freire. [1] This paper

describes new adaptation crawling techniques that locate

the entry points to deep web source efficiently. Hidden

web resources are distributed sparsely which make it

difficult to locate. This problem can be overcome by

focusing on the keyword which is provided by the users

that how many times the keyword has been repeated in

deep web sites. In the new methodology described in this

paper, crawling learns the pattern of appropriate link

automatically and then as crawling process progresses,

crawler adapt their focus which reduces manual

intervention for setup and tuning.

Dr. Jill Ellsworth [2]. This paper focuses problems

encountered in deep web. In traditional search engines the

contents of deep web is not obtained in the single search

result. Search engine fails to access dynamic contents of

the deep web pages. Hence deep internet is also known as

invisible or hidden internet. Deep web pages have lot of

important data and are publicly available but it is not

registered to most of search engines. IP addresses are not

known to the search engines hence we can’t know the

people behind deep websites and hence there exists

authentication issues.

Raju Balakrishnan and Subbbarao Kambhampati[3].This

paper focus on the challenge in extracting information

from deep web. Main challenge of deep web is to choose

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5445 177

the relevant data that users expect to obtain as result from

the search engine. Enormous amount of useful data are

hidden in deep web pages which are not indexed by search

engine. Two main issues arise here are, deficiency of

crawler to understand whether the information of deep

web is trustworthy or not. The second issue is the

relevancy of data obtained in contemplates to the

importance of results or not. Choosing reliable and

relevant data as an answer to the query is very critical

issue. The relevancy assessment is primarily bases on

similarity of the data fetched to the data that is appropriate

to the users.

Cheng Sheng, Nan Zhang, Yufei Tao and Xin Jin[4]. This

paper proposes the ace algorithm for progression of hidden

information in deep web. This algorithm specified in the

paper extract all the tuples from hidden pages. The

implemented algorithm is economical which means that

the system perform the process with the lesser usage of

queries. This implies to worst case too.

M. Burner[5].This paper focuses on the range of web. The

system specified uses multiple crawler to crawl 100

million URLs. Each crawler takes seed URL as an input

and then uses asynchronous input output instructions to

fetch pages from the queue. This fetching of pages is done

in parallel manner. The main problem faced during

fetching data is changing DNS record, this can be

overcome my archiving history of hostnames and their

associated IPs.

Olston and M. Najork [6]. Google crawler is based on C++

and python. This has five crawling components that run in

various processes to download the pages. Each crawler

uses asynchronous input output instructions to fetch data

from about 300 web servers. This fetching process is done

parallel. Google crawler also adopted indexing method.

Allan Heydon and Marc Najork [7]. The crawler proposed

in this paper was developed with high scalability and

extensibility. This is based on java. When the first version

of crawler is developed it was non-distributive in nature.

In the latter versions, distributed mechanism was included

in crawler. In distributive mechanism URL space is split

up over the crawler with respect to the host name. This

method avoids bottleneck in centralized server of URL.

Jenny Edwards, Kevin S. McCurley[8].In 2001 a modular

and distributed crawler was presented by IBM. This

crawler was written in C++. This crawler incorporated

three components namely, Multithreaded crawling

process, Duplicated context and Central controlled

process. Central control process is responsible for overall

operations of the system and it assigns work to other

modules present in the system. The crawler uses MPI to

facilitate the communication between processes. This

mechanism was utilized in a cluster that had 48 crawling

machines.

H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov [9].

IRLbot web crawler is a single process web crawler. This

was able to scale to extremely huge web contents without

undergoing degradation. It crawls over two months and

download 6.4 billion of web pages.

IV. PROPOSED SYSTEM

Smart Crawler is two stage crawler that efficiently harvest

deep web. Seed web sites are given as input to crawler. At

the first stage crawler determines the most relevant data

according to the keyword given by the users. At second

stage in-site exploration is done that divulge searchable

forms from the sites.

Once the search is made, the relevant URL is stored in the

site database. Site locating is done by reverse searching

technique, which search for the data second time but this

time in reverse manner. This is used to obtain maximum

amount of appropriate data. Reverse search is triggered

when there are less results than that of threshold specified.

To achieve more coverage of web, in-site searching is

done in the directories. In the in-site exploring stage,

crawler crawls through the pages and finds the hyperlinks

present in the pages and add it to the database yet it limits

visits to the large number of the sites. This uses Stop Early

mechanism and Balanced Link Tree. Stop Early method

stops the crawler from visiting to non appropriate

websites. Here, simple breadth first method is used that is

not efficient. It results in incomplete directory visits and

omits highly relevant links. Links are often unevenly

distributed across web, this results in biasing on some

directories. This problem is overcome by merging trees or

directories.

Ranking is done in two phases. First Link Ranker

prioritizes links so that the crawler can locate pages that

are searchable. The high relevance score is given to those

sites which is most similar to that of searchable form

pages. At the next phase crawling is focused using Form

Classifier that filters irrelevant forms and non-searchable

forms from the database.

Site ranking and Link ranking is done using two features

that are, Site similarity and Site Frequency. Site similarity

measures the similarity of the topic between new site

which is encountered by the crawler and deep web sites

which are known to crawler. Site frequency is the

frequency of the site which appears in other sites that

depicts the popularity of the site.

The additional features make Crawling yet better includes,

Site Crawling, Accessibility Crawling using site map

generation and Security Testing using Web Authentication

Crawling. Stress Crawling is executed to evaluate a

system, or component at or beyond the limits of its

specified requirements. It is used to evaluate system

responses at activity peaks that can exceed systems

limitations, and to verify if the system crashes or it is able

to recover from such conditions. Stress testing differs from

performance and load testing because the system is

executed on or beyond its breaking points, while

performance and load testing simulate regular user

activity. Failures found by stress testing are mainly due to

faults in the running environment.

Web site map generation is done using accessibility

crawling test, that can be considered as a particular type of

usability testing whose aim is to verify that access to the

content of the application is allowed even in presence of

reduced hardware/ software configurations on the client

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5445 178

side of the application (such as browser configurations

disabling graphical visualization, or scripting execution),

or of users with physical disabilities (such as blind

people). In the case of Web applications, accessibility

rules such as the one provided by the Web Content

Accessibility Guidelines have been established, so that

accessibility testing will have to verify the compliance to

such rules. The application is the main responsible for

accessibility, even if some accessibility failures may be

due to the configuration of the running environment (e.g.,

browsers where the execution of scripts is disabled).

Security testing is done using web authentication crawling.

The objective of security testing is to verify the

effectiveness of the overall Web system defences against

undesired access of unauthorized users, as well as their

capability to preserve system resources from improper

uses, and to grant the access to authorized users to

authorized services and resources. System vulnerabilities

affecting the security may be contained in the application

code, or in any of the different hardware, software,

middle-ware components of the systems. Both the running

environment and the application can be responsible for

security failures. In the case of Web applications,

heterogeneous implementation and execution technolo-

gies, together with the very large number of possible users,

and the possibility of accessing them from anywhere may

make Web applications more vulnerable than traditional

ones and security testing more difficult be accomplished.

V. ENHANCED ARCHITECTURE

User request web server and expect to obtain the relevant

data, user request by providing keyword and request for

site map generation, stress crawling, rank of the

authenticated website. In the other end, web server

receives the user request and crawl all the related data with

respect to the keyword provided by the user. Web server in

turn request world wide web and the database, and finds

site stress and web resource that is authenticated and

returns the relevant data to the user along with the web site

map.

Fig. 1 architecture of enhanced crawling system

VI. CONCLUSION

This paper proposes better approach to exact the most

appropriate data in the deep web sites in an efficient

manner. Smart Crawler achieves wide coverage of deep

web and returning the accurate results to the users without

visiting unnecessary sites and consumes less time which

overcomes the cons of the traditional crawler. Smart

Crawler reversely performs site-based locating for deep

web for centre pages. To achieve correct results it uses

ranking mechanism. In-site exploration stage uses

adaption of Link ranking and eliminates bias towards

specific trees using link tree. The future work includes

improving in accuracy of the classifier that uses mix pre-

query and post-query approaches.

REFERENCES

[1] An Adaptive Crawler for Locating Hidden-Web Entry Point,

Luciano Barbosa and Juliana Freire.

[2] Understanding the Deep Web, Dr. Jill Ellsworth.
[3] Relevance and Trust Assessment for Deep Web Sources Based on

Inter-Source Agreement, Raju Balakrishnan and Subbbarao

Kambhampati.
[4] Optimal Algorithms for locomotion a Hidden info within the Web,

Cheng Sheng, Nan Zhang, Yufei Tao and Xin Jin.

[5] M. Burner, “Crawling towards Eternity: Building an Archive of the
World Wide Web,” Web Techniques Magazine

[6] Olston and M. Najork, “Web Crawling”, Foundations and Trends in

Information Retrieval.
[7] Allan Heydon and Marc Najork. Mercator: A scalable, extensible

web crawler. World Wide Web Conference

[8] Jenny Edwards, Kevin S. McCurley, and John A. Tomlin. An

adaptive model for optimizing performance of an incremental web

crawler. In Proceedings of the Tenth Conference on World Wide
Web

[9] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov, “IRLbot:

Scaling to 6 billion pages and beyond,”
[10] A.A. Andrews, J. OVutt, R.T. Alexander, Testing Web applications

by modeling with FSMs. Software Systems and Modeling,

Springer-Verlag Ed., 2005, 4(2).
[11] A. Bangio, S. Ceri, P. Fraternali, Web modeling language

(WebML): a modeling language for designing Web sites, in:

Proceedings of the Ninth International Conference on the WWW
(WWW9).

[12] R.V.Binder, Testing Object-Oriented Systems-Models, Patterns,

and Tools, Addison-Wesley, Boston, MA, USA, 1999.
[13] J. Conallen, Building Web Applications with UML, Addison-

Wesley Publishing Company, Reading, MA, 2000.

