
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5824 133

An Efficient Sliding Window Based Micro

Cluster Over Data Streams

Nancy Mary
1
, A.Venugopal

2

M.Phil Scholar, Department of Computer Science, Sree Narayana Guru College, Coimbatore, India1

 Assistant Professor, Department of Computer Science, Sree Narayana Guru College, Coimbatore, India 2

Abstract: Time series data streams are common due to the increasing usage of wireless sensor networks. Such data are

often accompanied with uncertainty due to the limitations of data collection equipment. Outlier detection on uncertain

static data is a challenging research problem in data mining. Moreover, the continuous arrival of data makes it more

challenging. In this paper propose continuous outlier detection is a special class of steam data mining. Typically, stream

data mining algorithms assume that each object is inspected at most once. However, in continuous outlier detection

need to be capable of reporting, at each time point, the outliers among all the objects in the current sliding window. The

propose a sliding window approach of outlier detection, which makes use of the results obtained from the previous state

set to efficiently detect outliers in the current state set. These methods are verified using both real data and synthetic

data. The results show that they are able to reduce the required storage and running time.

Keywords: Intrusion Detection Systems, Sliding window, MCOD, Event window.

I. INTRODUCTION

Outlier detection is a fundamental problem in data mining.

It has applications in many domains including credit card

fraud detection, network intrusion detection, environment

monitoring, medical sciences, etc. Mining outliers is

considered an important task in many applications like

fraud detection, plagiarism, computer network

management, event detection (e.g., in sensor networks), to
name a few. In simple terms, an object is considered an

outlier, if it deviates from the “typical case” significantly.

“An outlier is an observation in a data set which appears to

be inconsistent with the remainder of that set of data”. The

process of outlier detection may be seen as the

complement of clustering, in the sense that clustering tries

to form groups of objects whereas outlier detection tries to

spot objects that do not participate in a group.

Outlier detection algorithms can be applied to data of

arbitrary dimensionality and also in general metric spaces.

The only input needed (apart from its specific parameters)

is a distance function to compute pair-wise distances. This

means that it is not necessary to work with a multi-

dimensional data set. Other data sets may be used as well

(e.g., time series, graphs, DNA sequences) as long as a

meaningful distance measure has been defined. Although

the metric properties are well appreciated, the distance

function used need not satisfy triangular inequality.
However, this property is important for indexing purposes,

and therefore we will make the silent assumption that the

distance function used is a metric function. In many

applications dealing with uncertain data streams, the

generated data volume is huge, making it practically

impossible to keep all acquired data in memory.

Moreover, in most situations, only recent data is of interest

and therefore, a sliding window is used in this proposed

system. By using a sliding window, the most recent range

of measurements is kept in a buffer. Each time we add a

new element to the sliding window, and the oldest element

in the window should be deleted. Each of the items in the

buffer is named active element.

In this paper, we present efficient algorithms for the

continuous and real-time monitoring of outliers on

uncertain data streams over sliding windows. In summary,

the major contributions of this work are as follows:

A new algorithm Micro Continuous Uncertain Outlier

Detection (MCOD) is designed for outlier detection on

uncertain data streams. The algorithm is able to quickly

determine the nature of an uncertain element by
probabilistic pruning, to further improve the efficiency.

II. RELATED WORKS

Outlier detection has been studied in the literature, both in

the context of multi-dimensional data sets [7] and in the

more general case of metric spaces [8]. Usually, the

proximity among objects is used to decide if an object is

an outlier or not. However, specialized techniques may

also be applied (e.g., projections in the case of multi-

dimensional data). Apart from the fact that outliers are

important in many applications, their discovery allows the
data set to be “cleaned” to apply a particular model.

A. Clustering-Based Approaches

They always conduct clustering-based techniques on the

samples of data to characterize the local data behavior. In

general, the sub-clusters contain significantly less data

points than other clusters, are considered as outliers. For

example, clustering techniques has been used to find

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5824 134

anomaly in the intrusion detection domain. In the work of,

the clustering techniques iterative detect outliers to

multidimensional data analysis in subspace. Since

clustering based approaches are unsupervised without

requiring any labeled training data, the performance of
unsupervised outlier detection is limited.

B. Density-Based Approaches

One of the representatives of this type of approaches are

local outlier factor (LOF) and variants. Based on the local

density of each data instance, the LOF determines the

degree of outlierness, which provides suspicious ranking

scores for all samples. The most important property of the

LOF is the ability to estimate local data structure via

density estimation. The advantage of these approaches is

that they do not need to make any assumption for the
generative distribution of the data. However, these

approaches incur a high computational complexity in the

testing phase, since they have to calculate the distance

between each test instance and all the other instances to

compute nearest neighbors.

C. Learning based Approach

First, the work called uncertain-SVDD (U-SVDD) here,

addresses the outlier detection only using normal data

without taking the outlier/negative examples into account.

Second, U-SVDD only calculates the degree of

membership of an example towards the normal example
and takes single membership into learning phase.

However, the work in this existing addresses the problem

of outlier detection with a few labeled negative examples,

and takes data with imperfect labels into account. Based

on the problem, we put forward single likelihood model

and bi-likelihood model to assign likelihood values to each

examples based on their local behaviors.

III. PROBLEM DEFINITION

In contrast to all approaches above, focus on high
dimensional as well as low-dimensional data and use

reverse nearest neighbors only through the distribution of

k-occurrences, taking into account the inherent

relationship between dimensionality, neighborhood size

and reverse neighbors that was not observed in previous

outlier-detection work.

A. Problem Statement

Sliding window semantics can be either time-based or

count-based. In time-based window scenarios, the window

size W and the Slide are both time intervals. Each window

has a starting time Tstart and an ending time Tend = Tstart +
W. The window slide is triggered periodically by the

system time (wall clock time), causing Tstart and Tend to

increase by Slide. Each window contains a set P of n

objects. In general, n varies between sliding windows

reflecting the differences in arrival rates. The non-expired

objects are those whose arrival Time p.arr Tstart . An

object expires after x slides, where p.exp is

the expiration time point of p. Count based windows can

be deemed as a special case of time-based ones, where the

window size W is measured in data objects, n is fixed for

all slides, and a slide occurs after the arrival of a certain

number of objects. The proposed methods are applicable
to both types of windows.

IV. PROPOSED APPROACH

In data stream applications, data volumes are huge,

meaning that it is not possible to keep all data memory

resident. Instead, a sliding window is used, keeping a

percentage of the data set in memory. The data objects

maintained by the sliding window are termed active

objects. When an object leaves the window we say that the

object expires, and it is deleted from the set of active
objects. There are two basic types of sliding windows: (i)

the count-based window which always maintains the n

most recent objects and (ii) the time-based window which

maintains all objects arrived the last t time instances. In

both cases, the expiration time of each seen object is

known. The challenge is to design efficient algorithms for

outlier monitoring, considering the expiration time of

objects. Another important factor of stream-based

algorithms is the memory space required for auxiliary

information. Storage consumption must be kept low,

enabling the possible enlargement of the sliding window,

to accommodate more objects.

A. Synthetic Data Generation

In the field of mathematical modeling, a radial basis

function network is an artificial neural network that uses

radial basis functions as activation functions. The output

of the network is a linear combination of radial basis

functions of the inputs and neuron parameters. Radial

basis function networks have many uses, including

function approximation, time series prediction,

classification, and system control.

The number of neurons in the hidden layer, is the center

vector for neuron, and is the weight of neuron in the

linear output neuron. Functions that depend only on the
distance from a center vector are radially symmetric about

that vector, hence the name radial basis function. In the

basic form all inputs are connected to each hidden neuron.

The norm is typically taken to be the Euclidean distance

(although the Mahalanobis distance appears to perform

better in general) and the radial basis function is

commonly taken to be Gaussian.

The Gaussian basis functions are local to the center vector

in the sense that changing parameters of one neuron has

only a small effect for input values that are far away from

the center of that neuron. Given certain mild conditions on

the shape of the activation function, RBF networks are

universal approximates on a compact subset. This means

that an RBF network with enough hidden neurons can

approximate any continuous function with arbitrary
precision.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5824 135

B. Distance Based Model

The proposed system design efficient algorithms for

continuous monitoring of distance-based outliers, in

sliding windows over data streams, aiming at the

elimination of the limitations of previously proposed
algorithms. The primary concerns are efficiency

improvement and storage consumption reduction. The

proposed algorithms are based on an event-based

framework that takes advantage of the expiration time of

objects to avoid unnecessary computations.

Distance-Based Outlier: Let S be a set of objects, obj an

object of S, k a positive integer, and R a positive real

number. Then, obj is a distance-based outlier (or, simply,

an outlier) if less than k objects in S lie within distance R

from obj.
Data Stream Outlier Query: Given a data stream DS, a

window size W, and parameters R and k, the Data Stream

Outlier Query is: return the distance based outliers in the

current window.

C. Event Based Approach

The system interested in tracking the outliers in a set of

objects of a stream defined by a sliding window. In

particular, a set of outliers is maintained subject to arrivals

of new objects from the stream and departures of existing

objects due to the restricted window size (either restricted

with respect to time or with respect to number of objects).
The arrival and departure of objects has the effect of a

continuously evolving set of outliers.

An event is the process of checking whether an inlier

becomes an outlier due to departure of objects from the

window. The expiration time of the objects is known

whether we talk about time-based windows (in this case a

new object p has expiration time now + d W Slide e) or for

count-based windows (in this case p expires after a

predefined number of new objects have arrived). Thus, the

time stamp of an event depends on the expiration time of

objects. This forces a total order on the events which can
be organized in an event queue. An event queue is a data

structure that supports efficiently the following operations:

 Findmin: returns the event with the most recent time

stamp (the most recent event).

 Extractmin: invokes a call to findmin and deletes this

event from the event queue.

 Increasetime(p, t): increases the time stamp of the

event associated to object p by t. It is assumed that we

are provided with a pointer to p and there is no need to

search for it.

 Insert(p, t): inserts an event for object p into the queue

with time stamp t.

The event-based method for outliers employs an event

queue to efficiently schedule the necessary checks that
have to be made when objects depart. Thus, in the event

queue there are only stored inliers since only these can be

affected by the departure of an object. Arrival of new

objects results in potential updates of the keys of some

objects in the event queue. Additionally, existing outliers

are checked as to whether they have become inliers and

thus they should be inserted in the event queue.

D. Sliding window
The outliers in a set of objects of a stream defined by a

sliding window. In particular, a set of outliers is

maintained subject to arrivals of new objects from the

stream and departures of existing objects due to the

restricted window size (either restricted with respect to

time or with respect to number of objects). The arrival and

departure of objects has the effect of a continuously

evolving set of outliers. At only certain discrete moments,

however, this set may change and an inlier becomes an

outlier or vice-versa. Between these discrete moments, the

set of outliers remains as is. The idea is to focus on the
temporal and geometric relations between objects to

guarantee the correctness of the set of outliers for a period

of time.

The effect of arrivals of objects is to turn existing outliers

into inliers. On the other hand, the potential affect of

departures is to turn inliers into outliers. However, the

exact time of the departure of each object is pre-specified

(due to the sliding window) and thus we can plan in the

future the exact moments in which one needs to check

whether an inlier has turned into outlier.

E. Continuous outlier detection

Propose a methodology to mitigate this. Our methodology

is based on the concept of evolving micro-clusters that

correspond to regions containing inliers exclusively. The

resulting algorithm is denoted as MCOD (Micro

Continuous Outlier Detection). In a more complex

scenario, multiple users could be interested in the distance-

based outliers over a data stream. However, each user

comprehends the notion of outlier differently by varying

values of R and k. Each pair of R and k determines a query

q of distance-based outlier detection. Therefore D(q.R,
q.k) denotes the outliers of query q from the set of all

queries Q. In this section, we study the continuous

evaluation of multiple queries. For simplicity, we discuss

separately the case in which k varies and R remains

constant and vice-versa. At the end, we combine trivially

both methods into one so that both parameters can vary.

The algorithms are similar to the ones discussed in the

previous section (both variations). Here we only report the

changes. We continuously evaluate the query with the

maximum value of parameter k, as described in the

previous section. When an object departs, if the

examination of an object p, at p.ev time instance, reports p
as outlier we check the other queries in Q whether p is also

outlier in them. In particular, for each query q, if n°p +

n+p < q.k, then p is outlier in q.

Queries are examined with decreasing order of k, and this

procedure is terminated as soon as we reach a query for

which p is inlier. Moreover, when a new object arrives, if

object p 2 D(R, q.kmax) and its counter n+p is increased,

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5824 136

we check all the queries for a possible move of p from

outlier set to inlier set. Notice that p is not necessarily

outlier in all queries. For each query q, if p 2 D(R, q.k) and

n°p + n+p Π q.k then p should be removed from D(R, q.k).

The queries are examined again in decreasing order of k
and the procedure is stopped when we reach a query in

which p is not outlier. Proceed now with the examination

of the case of fixed k and varying R. In this case, two sets

for each object p are maintained, the sets Pp and Sp (recall

that we only stored the size of Sp) along with their

distances from p, by taking into account the maximum

distance Rmax = max{qi.R} (0 Σ i Σ |Q|). When R varies it

is necessary to maintain Sp since the neighbors of an

object depend on the radius of the query.

This may lead to high memory requirements, since in the
worst case the number of neighbors can reach the number

of active objects n. In the sequel, we study a more efficient

scheme in terms of memory requirements. Assuming the

maximum distance Rmax, if n+p > k we can maintain the

k neighbors with the smaller distances from p. This is

because neighbors with larger distances will not be used in

any query. Therefore the size of Sp is limited to k objects.

The key idea is the observation that all the preceding

neighbors of p, which may have an impact on whether p is

outlier or not, belong to the answer of the k ° 1-skyband

query in the expiration time - distance space. A k0-

skyband query reports all the objects that are dominated by
at most k0 other objects. Therefore 0-skyband equals to

the skyline query. In our case, the maximization of the

expiration time and the minimization of the distance

determine the domination relationship between objects,

i.e., an object dominates another object if it has greater

expiration time and smaller distance from p. The rationale

of this observation is that at each time instance, the k

nearest objects to p belong to the (k ° 1)- sky band of the

preceding neighbors. The main rationale behind our

approach is to drastically reduce the number of objects that

are considered during the range queries when these are
performed. The detailed steps of the modified algorithm

after each window slide are as follows:

Step 1: The expired objects are purged after having

updated the counters mcn of corresponding micro-clusters

(if any), accordingly. Subsequently, steps 2 and 3 are

performed for each new data object p; new objects are

processed in the order of their arrival.

Step 2: For each p, we detect (i) the micro-cluster, the

center of which is closest to that object, and (ii) all micro-

clusters, the centers of which are within a 32 R range.

Conflicts (i.e., when there are two centers with equal
distance) are resolved arbitrarily. Note that we can employ

a specific structure to store the micro-cluster centers, such

as an M-tree, to perform this task efficiently.

Step 3: If the distance from the closest center is not

greater than R/2, then: (3a-i) the new object is assigned to

the corresponding micro cluster and the value of p.mc is

updated; (3a-ii) the size of the corresponding micro-cluster

is increased by one; (3a-iii) let MCi be the micro-cluster

where the new object is inserted. We evaluate the distance

between the new object and all objects in PD that contain

MCi in their Rmc lists, to check (i) whether the number of

succeeding neighbors of the latter should be increased and

(ii) whether any previous reported outliers have become
inliers; Otherwise, i.e., if the distance from the closest

center is greater than R/2, no assignment takes place and

the following process is applied: (3b-i) For the new object

p that has not been assigned to a micro-cluster, we perform

a range query taking into account only (i) the objects in

PD and (ii) the objects in the microclusters for which the

distance from their centers is not greater than 32 R (the

relevant micro-clusters have been detected in Step 2). (3b-

ii) If the number of neighbors from the PD set within R/2

distance exceeds μk, μ Π 12, then a new micro-cluster is

created, with the new object as its center. All the
corresponding objects are moved from PD to Imc. All

objects still in PD that are less than 32 R apart update their

Rmc lists with the identifier of the new micro-cluster. (3b-

iii) Otherwise, the event-based algorithm described in the

previous sections (i.e., creation of the list of the expiration

times of the neighbors of the new object and update of the

number of succeeding neighbors) is applied. The objects in

p.Rmc are the cluster identifiers for which the distance

from their centers is not greater than 32 R.

Step 4: If the size of a micro-cluster shrinks below k + 1,

then this micro-cluster is dissolved, and its former objects

are treated in a way similar to that described in Step 3b.At
the end of these steps, additional outliers are reported with

the help of the event queue, which in MCOD, does not

include any object p 2 Imc. The main advantage compared

to the algorithms in the previous sections is that the

number of distance computations is reduced significantly.

V. EXPERIMENTAL RESULTS

We have conducted a series of experiments to evaluate the

performance of the proposed algorithms. Here compare

algorithms STROM, DBS and MCOD against the
algorithm, which is termed sliding window. Which

requires k and R to be fixed, since its functionality is

covered by MCOD algorithm. All methods have been

implemented in java with weka and the experiments have

been conducted on a Pentium@3.0GHz Win7 machine

with 4GB of RAM.

A. Performance Comparisons

The performance of outlier detection algorithms can be

evaluated based on two error rates: detection rate and false

alarm rate. Detection rate gives information about the

number of correctly identified outliers, while the false
alarm rate reports the number of outliers misclassified as

normal data records. The detection rate and the false alarm

are computed as follows: Detection rate = TP/TP + FN,

False alarm rate =FP/FP + TN. sThe precision and recall

measures were employed. The precision represents the

fraction of objects reported by the algorithm as outliers

that are true outliers. The recall represents the fraction of

true outliers correctly identified by the algorithm.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5824 137

TABLE I OUTLIER DETECTION ACCURACY WITH

DIFFERENT ALGORITHM

Dataset STROM DBS MCOD

airlines 0:17 0:25 0:47

Cov type Norm 0:19 0:35 0:71

kddcup99 0:20 0:36 0:69

Reuters 0:26 0:51 0:94

Fig 1. Outlier Detection accuracy

i) CPU Times

First, we study the performance of the methods for varying

values of W in the range [10K; 1000K]. Depicts the

results. For Slide = 1, the memory requirements for

Abstract- C are very high. More specifically, Abstract-C

stores W¢(W¡1) 2 counters, which corresponds to 74GB

for W = 200K and 465GB for W = 500, assuming integers

need 4 bytes. Because of that, in Figure 1, Slide = 1 only
for STROM, LOF, SVDD and MCOD, while we choose

Slide = 0:001W for Abstract- C. Despite that favorable

configuration, Abstract-C performs significantly worse

than our algorithms in terms of running time.

TABLE II CPU TIME VS DIFFERENT ALGORITHMS

Window Size (K) STROM DBS MCOD

10 10 0.7 0.1

100 11 0.74 0.3

200 12.5 0.8 0.4

300 12.8 1 0.8

400 13 1.3 1

500 13.5 1.45 1.1

Fig 2.CPU Time for outlier detection

ii) Outliers (% W)

The memory requirements, the number of distance

computations and other qualitative measurements. Sliding

windows have been used, whereas time-based ones are

supported, without significant changes in the results. The
default values for the parameters (unless explicitly

specified otherwise) are: W = n = 200K, jQj = 1, i.e., there

is a single query, k = 10 and the parameter R is set in a

way that the number of outliers jDj = (0:01 0:001) n. Since

we want to investigate the most demanding form of

continuous queries, we set Slide = 1. All measurements

correspond to 1000 slides, i.e., 1000 insertions/deletions in

P.

TABLE III (%) OUTLIER VS DIFFERENT

ALGORITHMS

outliers (% W) STROM DBS MCOD

0.1 0.8 1 2

0.5 1 1.2 2.5

1 4 3.4 4.5

1.5 5 3.6 5.3

2 8 5.3 6.65

2.5 9 6.3 8.4

3 10 7.8 9.8

Fig3.Percentage of outlier detection

iii) Memory consumption

The memory consumption of the two real data sets for the
experiment. The consumed memory corresponds to the

memory needed to store the information for each active

object (i.e., preceding and succeeding neighbors), the heap

size used for the events prioritization, the outliers of all the

queries and the micro-cluster information for KNN. As

can be seen, the required amount of memory is only a

small fraction of the total memory available in modern

machines, even for the COD method.

TABLE IV MEMORY USAGE VS DIFFERENT

ALGORITHM

W STROM DBS MCOD

10,000 0.48 4.29 0.27

20,000 9.60 111.85 4.94

30,000 14.47 194.28 11.04

00:00

00:14

00:28

00:43

00:57

01:12

STROM DBS MCOD

Outlier

Detection

Accuracy

Algorithmsairlines Cov type Norm

kddcup99 Reuters

0

2

4

6

8

10

12

14

STROM DBS MCOD

CUP Time(m/s)

10 100 200 300 400 500

0

2

4

6

8

10

STROM DBS MCOD

Outlier

(%)

0.1 0.5 1 1.5 2 2.5 3

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5824 138

40,000 19.32 280.37 15.40

50,000 24.23 377.51 20.23

Fig 4 Memory usage vs different algorithm

VI. CONCLUSION AND FUTURE WORK

Anomaly detection is an important data mining task

aiming at the selection of some interesting objects, called

outliers that show significantly different characteristics

than the rest of the data set. In this project the problem of

continuous outlier detection over data streams, by using
sliding windows. More specifically, MCOD algorithms are

design, aiming at efficient outlier monitoring with reduced

storage requirements. This method do not make any

assumptions regarding the nature of the data, excepts from

the fact that objects are assumed to live in a metric space.

As it is shown in the performance evaluation results, based

on real-life and synthetic data sets, the proposed

techniques are by factors more efficient than previously

proposed algorithms. An interesting direction for future

work is the design of randomized algorithms for detection,

aiming at significant improvement of efficiency by
sacrificing the accuracy of results.

REFERENCES

[1] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for

mining outliers from large data sets,” in SIGMOD Conference,

2000, pp. 427–438.

[2] E. Knorr and R. Ng, “Algorithms for mining distance-based outliers

in large data sets,” in VLDB Conference, 1998.

[3] E. Knorr, R. Ng, and V. Tucakov, “Distance-based outliers:

algorithms and applications,” The VLDB Journal, vol. 8, no. 3-4,

pp. 237–253, 2000.

[4] D. Yang, E. Rundensteiner, and M. Ward, “Neighbor-based pattern

detection for windows over streaming data,” in EDBT, 2009, pp.

529–540.

[5] Y. Zhu and D. Shasha, “Statstream: statistical monitoring of

thousands of data streams in real time,” in VLDB Conference,

2002, pp. 358–369.

[6] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access

method for similarity search in metric spaces,” in VLDB

Conference, 1997, pp. 426–435.

[7] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering

over an evolving data stream with noise,” in SDM, 2006.

[8] Aggarwal C C. On density based transforms for uncertain data

mining. In Proc. the 23rd International Conference on Data

Engineering, April 2007, pp.866-875.

[9] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, “LOF:

Identifying density-based local outliers,” in Proc. ACM SIGMOD

Int. Conf. Manage. Data, New York, NY, USA, 2000, pp. 93–104.

[10] S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and T. Kanamori,

“Statistical outlier detection using direct density ratio estimation,”

Knowl. Inform. Syst., vol. 26, no. 2, pp. 309–336, 2011.

[11] C. C. Aggarwal and P. S. Yu, “A survey of uncertain data

algorithms and applications,” IEEE Trans. Knowl. Data Eng., vol.

21, no. 5, pp. 609–623, May 2009.

[12] Y. Shi and L. Zhang, “COID: A cluster-outlier iterative detection

approach to multi-dimensional data analysis,” Knowl. Inform.

Syst., vol. 28, no. 3, pp. 709–733, 2011.

0

100

200

300

400

STROM DBS MCOD

Memory

(MB)

10000 20000 30000

40000 50000

