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Abstract: Time series data streams are common due to the increasing usage of wireless sensor networks. Such data are 

often accompanied with uncertainty due to the limitations of data collection equipment. Outlier detection on uncertain 

static data is a challenging research problem in data mining. Moreover, the continuous arrival of data makes it more 

challenging. In this paper propose continuous outlier detection is a special class of steam data mining. Typically, stream 

data mining algorithms assume that each object is inspected at most once. However, in continuous outlier detection 

need to be capable of reporting, at each time point, the outliers among all the objects in the current sliding window. The 

propose a sliding window approach of outlier detection, which makes use of the results obtained from the previous state 

set to efficiently detect outliers in the current state set. These methods are verified using both real data and synthetic 

data. The results show that they are able to reduce the required storage and running time. 
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I. INTRODUCTION 

 

Outlier detection is a fundamental problem in data mining. 

It has applications in many domains including credit card 

fraud detection, network intrusion detection, environment 

monitoring, medical sciences, etc. Mining outliers is 

considered an important task in many applications like 

fraud detection, plagiarism, computer network 

management, event detection (e.g., in sensor networks), to 
name a few. In simple terms, an object is considered an 

outlier, if it deviates from the “typical case” significantly. 

“An outlier is an observation in a data set which appears to 

be inconsistent with the remainder of that set of data”. The 

process of outlier detection may be seen as the 

complement of clustering, in the sense that clustering tries 

to form groups of objects whereas outlier detection tries to 

spot objects that do not participate in a group. 
 

Outlier detection algorithms can be applied to data of 

arbitrary dimensionality and also in general metric spaces. 

The only input needed (apart from its specific parameters) 

is a distance function to compute pair-wise distances. This 

means that it is not necessary to work with a multi-

dimensional data set. Other data sets may be used as well 

(e.g., time series, graphs, DNA sequences) as long as a 

meaningful distance measure has been defined. Although 

the metric properties are well appreciated, the distance 

function used need not satisfy triangular inequality. 
However, this property is important for indexing purposes, 

and therefore we will make the silent assumption that the 

distance function used is a metric function. In many 

applications dealing with uncertain data streams, the 

generated data volume is huge, making it practically 

impossible to keep all acquired data in memory. 

Moreover, in most situations, only recent data is of interest 

and therefore, a sliding window is used in this proposed  

 

 

system. By using a sliding window, the most recent range 

of measurements is kept in a buffer. Each time we add a 

new element to the sliding window, and the oldest element 

in the window should be deleted. Each of the items in the 

buffer is named active element. 
 

In this paper, we present efficient algorithms for the 

continuous and real-time monitoring of outliers on 

uncertain data streams over sliding windows. In summary, 

the major contributions of this work are as follows: 

A new algorithm Micro Continuous Uncertain Outlier 

Detection (MCOD) is designed for outlier detection on 

uncertain data streams. The algorithm is able to quickly 

determine the nature of an uncertain element by 
probabilistic pruning, to further improve the efficiency. 

 

II. RELATED WORKS 

 

Outlier detection has been studied in the literature, both in 

the context of multi-dimensional data sets [7] and in the 

more general case of metric spaces [8]. Usually, the 

proximity among objects is used to decide if an object is 

an outlier or not. However, specialized techniques may 

also be applied (e.g., projections in the case of multi-

dimensional data). Apart from the fact that outliers are 

important in many applications, their discovery allows the 
data set to be “cleaned” to apply a particular model. 

 

A. Clustering-Based Approaches 

They always conduct clustering-based techniques on the 

samples of data to characterize the local data behavior. In 

general, the sub-clusters contain significantly less data 

points than other clusters, are considered as outliers. For 

example, clustering techniques has been used to find 
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anomaly in the intrusion detection domain. In the work of, 

the clustering techniques iterative detect outliers to 

multidimensional data analysis in subspace. Since 

clustering based approaches are unsupervised without 

requiring any labeled training data, the performance of 
unsupervised outlier detection is limited. 

 

B. Density-Based Approaches 

One of the representatives of this type of approaches are 

local outlier factor (LOF) and variants. Based on the local 

density of each data instance, the LOF determines the 

degree of outlierness, which provides suspicious ranking 

scores for all samples. The most important property of the 

LOF is the ability to estimate local data structure via 

density estimation. The advantage of these approaches is 

that they do not need to make any assumption for the 
generative distribution of the data. However, these 

approaches incur a high computational complexity in the 

testing phase, since they have to calculate the distance 

between each test instance and all the other instances to 

compute nearest neighbors. 

 

C. Learning based Approach 

First, the work called uncertain-SVDD (U-SVDD) here, 

addresses the outlier detection only using normal data 

without taking the outlier/negative examples into account. 

Second, U-SVDD only calculates the degree of 

membership of an example towards the normal example 
and takes single membership into learning phase. 

However, the work in this existing addresses the problem 

of outlier detection with a few labeled negative examples, 

and takes data with imperfect labels into account. Based 

on the problem, we put forward single likelihood model 

and bi-likelihood model to assign likelihood values to each 

examples based on their local behaviors. 

 

III. PROBLEM DEFINITION 

 

In contrast to all approaches above, focus on high 
dimensional as well as low-dimensional data and use 

reverse nearest neighbors only through the distribution of 

k-occurrences, taking into account the inherent 

relationship between dimensionality, neighborhood size 

and reverse neighbors that was not observed in previous 

outlier-detection work. 

 

A. Problem Statement 

Sliding window semantics can be either time-based or 

count-based. In time-based window scenarios, the window 

size W and the Slide are both time intervals. Each window 

has a starting time Tstart and an ending time Tend = Tstart + 
W. The window slide is triggered periodically by the 

system time (wall clock time), causing Tstart and Tend to 

increase by Slide. Each window contains a set P of n 

objects. In general, n varies between sliding windows 

reflecting the differences in arrival rates. The non-expired 

objects are those whose arrival Time p.arr  Tstart . An 

object expires after x slides, where  p.exp is 

the expiration time point of p. Count based windows can 

be deemed as a special case of time-based ones, where the 

window size W is measured in data objects, n is fixed for 

all slides, and a slide occurs after the arrival of a certain 

number of objects. The proposed methods are applicable 
to both types of windows. 

 

IV. PROPOSED APPROACH 

 

In data stream applications, data volumes are huge, 

meaning that it is not possible to keep all data memory 

resident. Instead, a sliding window is used, keeping a 

percentage of the data set in memory. The data objects 

maintained by the sliding window are termed active 

objects. When an object leaves the window we say that the 

object expires, and it is deleted from the set of active 
objects. There are two basic types of sliding windows: (i) 

the count-based window which always maintains the n 

most recent objects and (ii) the time-based window which 

maintains all objects arrived the last t time instances. In 

both cases, the expiration time of each seen object is 

known. The challenge is to design efficient algorithms for 

outlier monitoring, considering the expiration time of 

objects. Another important factor of stream-based 

algorithms is the memory space required for auxiliary 

information. Storage consumption must be kept low, 

enabling the possible enlargement of the sliding window, 

to accommodate more objects. 
 

A. Synthetic Data Generation 

In the field of mathematical modeling, a radial basis 

function network is an artificial neural network that uses 

radial basis functions as activation functions. The output 

of the network is a linear combination of radial basis 

functions of the inputs and neuron parameters. Radial 

basis function networks have many uses, including 

function approximation, time series prediction, 

classification, and system control.  
 

The number of neurons in the hidden layer, is the center 

vector for neuron, and   is the weight of neuron in the 

linear output neuron. Functions that depend only on the 
distance from a center vector are radially symmetric about 

that vector, hence the name radial basis function. In the 

basic form all inputs are connected to each hidden neuron. 

The norm is typically taken to be the Euclidean distance 

(although the Mahalanobis distance appears to perform 

better in general) and the radial basis function is 

commonly taken to be Gaussian.  
 

The Gaussian basis functions are local to the center vector 

in the sense that changing parameters of one neuron has 

only a small effect for input values that are far away from 

the center of that neuron. Given certain mild conditions on 

the shape of the activation function, RBF networks are 

universal approximates on a compact subset. This means 

that an RBF network with enough hidden neurons can 

approximate any continuous function with arbitrary 
precision. 
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B. Distance Based Model 

The proposed system design efficient algorithms for 

continuous monitoring of distance-based outliers, in 

sliding windows over data streams, aiming at the 

elimination of the limitations of previously proposed 
algorithms. The primary concerns are efficiency 

improvement and storage consumption reduction. The 

proposed algorithms are based on an event-based 

framework that takes advantage of the expiration time of 

objects to avoid unnecessary computations. 

 

Distance-Based Outlier: Let S be a set of objects, obj an 

object of S, k a positive integer, and R a positive real 

number. Then, obj is a distance-based outlier (or, simply, 

an outlier) if less than k objects in S lie within distance R 

from obj. 
Data Stream Outlier Query: Given a data stream DS, a 

window size W, and parameters R and k, the Data Stream 

Outlier Query is: return the distance based outliers in the 

current window. 

 

C. Event Based Approach 

The system interested in tracking the outliers in a set of 

objects of a stream defined by a sliding window. In 

particular, a set of outliers is maintained subject to arrivals 

of new objects from the stream and departures of existing 

objects due to the restricted window size (either restricted 

with respect to time or with respect to number of objects). 
The arrival and departure of objects has the effect of a 

continuously evolving set of outliers. 

An event is the process of checking whether an inlier 

becomes an outlier due to departure of objects from the 

window. The expiration time of the objects is known 

whether we talk about time-based windows (in this case a 

new object p has expiration time now + d W Slide e) or for 

count-based windows (in this case p expires after a 

predefined number of new objects have arrived). Thus, the 

time stamp of an event depends on the expiration time of 

objects. This forces a total order on the events which can 
be organized in an event queue. An event queue is a data 

structure that supports efficiently the following operations: 
 

 Findmin: returns the event with the most recent time 

stamp (the most recent event). 

 Extractmin: invokes a call to findmin and deletes this 

event from the event queue. 

 Increasetime(p, t): increases the time stamp of the 

event associated to object p by t. It is assumed that we 

are provided with a pointer to p and there is no need to 

search for it. 

 Insert(p, t): inserts an event for object p into the queue  

with time stamp t. 
 

The event-based method for outliers employs an event 

queue to efficiently schedule the necessary checks that 
have to be made when objects depart. Thus, in the event 

queue there are only stored inliers since only these can be 

affected by the departure of an object. Arrival of new 

objects results in potential updates of the keys of some 

objects in the event queue. Additionally, existing outliers 

are checked as to whether they have become inliers and 

thus they should be inserted in the event queue. 

 

D. Sliding window 
The outliers in a set of objects of a stream defined by a 

sliding window. In particular, a set of outliers is 

maintained subject to arrivals of new objects from the 

stream and departures of existing objects due to the 

restricted window size (either restricted with respect to 

time or with respect to number of objects). The arrival and 

departure of objects has the effect of a continuously 

evolving set of outliers. At only certain discrete moments, 

however, this set may change and an inlier becomes an 

outlier or vice-versa. Between these discrete moments, the 

set of outliers remains as is. The idea is to focus on the 
temporal and geometric relations between objects to 

guarantee the correctness of the set of outliers for a period 

of time. 

 

The effect of arrivals of objects is to turn existing outliers 

into inliers. On the other hand, the potential affect of 

departures is to turn inliers into outliers. However, the 

exact time of the departure of each object is pre-specified 

(due to the sliding window) and thus we can plan in the 

future the exact moments in which one needs to check 

whether an inlier has turned into outlier. 

 

E. Continuous outlier detection 

Propose a methodology to mitigate this. Our methodology 

is based on the concept of evolving micro-clusters that 

correspond to regions containing inliers exclusively. The 

resulting algorithm is denoted as MCOD (Micro 

Continuous Outlier Detection). In a more complex 

scenario, multiple users could be interested in the distance-

based outliers over a data stream. However, each user 

comprehends the notion of outlier differently by varying 

values of R and k. Each pair of R and k determines a query 

q of distance-based outlier detection. Therefore D(q.R, 
q.k) denotes the outliers of query q from the set of all 

queries Q. In this section, we study the continuous 

evaluation of multiple queries. For simplicity, we discuss 

separately the case in which k varies and R remains 

constant and vice-versa. At the end, we combine trivially 

both methods into one so that both parameters can vary. 

The algorithms are similar to the ones discussed in the 

previous section (both variations). Here we only report the 

changes. We continuously evaluate the query with the 

maximum value of parameter k, as described in the 

previous section. When an object departs, if the 

examination of an object p, at p.ev time instance, reports p 
as outlier we check the other queries in Q whether p is also 

outlier in them. In particular, for each query q, if n°p + 

n+p < q.k, then p is outlier in q.  

 

Queries are examined with decreasing order of k, and this 

procedure is terminated as soon as we reach a query for 

which p is inlier. Moreover, when a new object arrives, if 

object p 2 D(R, q.kmax) and its counter n+p is increased, 
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we check all the queries for a possible move of p from 

outlier set to inlier set. Notice that p is not necessarily 

outlier in all queries. For each query q, if p 2 D(R, q.k) and 

n°p + n+p Π q.k then p should be removed from D(R, q.k). 

The queries are examined again in decreasing order of k 
and the procedure is stopped when we reach a query in 

which p is not outlier. Proceed now with the examination 

of the case of fixed k and varying R. In this case, two sets 

for each object p are maintained, the sets Pp and Sp (recall 

that we only stored the size of Sp) along with their 

distances from p, by taking into account the maximum 

distance Rmax = max{qi.R} (0 Σ i Σ |Q|). When R varies it 

is necessary to maintain Sp since the neighbors of an 

object depend on the radius of the query. 

 

This may lead to high memory requirements, since in the 
worst case the number of neighbors can reach the number 

of active objects n. In the sequel, we study a more efficient 

scheme in terms of memory requirements. Assuming the 

maximum distance Rmax, if n+p > k we can maintain the 

k neighbors with the smaller distances from p. This is 

because neighbors with larger distances will not be used in 

any query. Therefore the size of Sp is limited to k objects. 

The key idea is the observation that all the preceding 

neighbors of p, which may have an impact on whether p is 

outlier or not, belong to the answer of the k ° 1-skyband 

query in the expiration time - distance space. A k0-

skyband query reports all the objects that are dominated by 
at most k0 other objects. Therefore 0-skyband equals to 

the skyline query. In our case, the maximization of the 

expiration time and the minimization of the distance 

determine the domination relationship between objects, 

i.e., an object dominates another object if it has greater 

expiration time and smaller distance from p. The rationale 

of this observation is that at each time instance, the k 

nearest objects to p belong to the (k ° 1)- sky band of the 

preceding neighbors. The main rationale behind our 

approach is to drastically reduce the number of objects that 

are considered during the range queries when these are 
performed. The detailed steps of the modified algorithm 

after each window slide are as follows: 

 

Step 1: The expired objects are purged after having 

updated the counters mcn of corresponding micro-clusters 

(if any), accordingly. Subsequently, steps 2 and 3 are 

performed for each new data object p; new objects are 

processed in the order of their arrival.  

Step 2: For each p, we detect (i) the micro-cluster, the 

center of which is closest to that object, and (ii) all micro-

clusters, the centers of which are within a 32 R range. 

Conflicts (i.e., when there are two centers with equal 
distance) are resolved arbitrarily. Note that we can employ 

a specific structure to store the micro-cluster centers, such 

as an M-tree, to perform this task efficiently. 

Step 3: If the distance from the closest center is not 

greater than R/2, then: (3a-i) the new object is assigned to 

the corresponding micro cluster and the value of p.mc is 

updated; (3a-ii) the size of the corresponding micro-cluster 

is increased by one; (3a-iii) let MCi be the micro-cluster 

where the new object is inserted. We evaluate the distance 

between the new object and all objects in PD that contain 

MCi in their Rmc lists, to check (i) whether the number of 

succeeding neighbors of the latter should be increased and 

(ii) whether any previous reported outliers have become 
inliers; Otherwise, i.e., if the distance from the closest 

center is greater than R/2, no assignment takes place and 

the following process is applied: (3b-i) For the new object 

p that has not been assigned to a micro-cluster, we perform 

a range query taking into account only (i) the objects in 

PD and (ii) the objects in the microclusters for which the 

distance from their centers is not greater than 32 R (the 

relevant micro-clusters have been detected in Step 2). (3b-

ii) If the number of neighbors from the PD set within R/2 

distance exceeds μk, μ Π 12, then a new micro-cluster is 

created, with the new object as its center. All the 
corresponding objects are moved from PD to Imc. All 

objects still in PD that are less than 32 R apart update their 

Rmc lists with the identifier of the new micro-cluster. (3b-

iii) Otherwise, the event-based algorithm described in the 

previous sections (i.e., creation of the list of the expiration 

times of the neighbors of the new object and update of the 

number of succeeding neighbors) is applied. The objects in 

p.Rmc are the cluster identifiers for which the distance 

from their centers is not greater than 32 R. 

Step 4: If the size of a micro-cluster shrinks below k + 1, 

then this micro-cluster is dissolved, and its former objects 

are treated in a way similar to that described in Step 3b.At 
the end of these steps, additional outliers are reported with 

the help of the event queue, which in MCOD, does not 

include any object p 2 Imc. The main advantage compared 

to the algorithms in the previous sections is that the 

number of distance computations is reduced significantly.  

 

V. EXPERIMENTAL RESULTS 

 

We have conducted a series of experiments to evaluate the 

performance of the proposed algorithms. Here compare 

algorithms STROM, DBS and MCOD against the 
algorithm, which is termed sliding window. Which 

requires k and R to be fixed, since its functionality is 

covered by MCOD  algorithm. All methods have been 

implemented in java with weka and the experiments have 

been conducted on a Pentium@3.0GHz Win7 machine 

with 4GB of RAM. 

 

A. Performance Comparisons 

The performance of outlier detection algorithms can be 

evaluated based on two error rates: detection rate and false 

alarm rate. Detection rate gives information about the 

number of correctly identified outliers, while the false 
alarm rate reports the number of outliers misclassified as 

normal data records. The detection rate and the false alarm 

are computed as follows: Detection rate = TP/TP + FN, 

False alarm rate =FP/FP + TN. sThe precision and recall 

measures were employed. The precision represents the 

fraction of objects reported by the algorithm as outliers 

that are true outliers. The recall represents the fraction of 

true outliers correctly identified by the algorithm. 
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TABLE I OUTLIER DETECTION ACCURACY WITH 

DIFFERENT ALGORITHM 

 

Dataset STROM DBS MCOD 

airlines 0:17 0:25 0:47 

Cov type Norm 0:19 0:35 0:71 

kddcup99 0:20 0:36 0:69 

Reuters 0:26 0:51 0:94 

 

 
Fig 1. Outlier Detection accuracy 

 

i)  CPU Times 

First, we study the performance of the methods for varying 

values of W in the range [10K; 1000K]. Depicts the 

results. For Slide = 1, the memory requirements for 

Abstract- C are very high. More specifically, Abstract-C 

stores W¢(W¡1) 2 counters, which corresponds to 74GB 

for W = 200K and 465GB for W = 500, assuming integers 

need 4 bytes. Because of that, in Figure 1, Slide = 1 only 
for STROM, LOF, SVDD and MCOD, while we choose 

Slide = 0:001W for Abstract- C. Despite that favorable 

configuration, Abstract-C performs significantly worse 

than our algorithms in terms of running time. 

 

TABLE II CPU TIME VS DIFFERENT ALGORITHMS 

 

Window Size (K) STROM DBS MCOD 

10 10 0.7 0.1 

100 11 0.74 0.3 

200 12.5 0.8 0.4 

300 12.8 1 0.8 

400 13 1.3 1 

500 13.5 1.45 1.1 

 

 
Fig 2.CPU Time for outlier detection 

ii) Outliers (% W) 

The memory requirements, the number of distance 

computations and other qualitative measurements. Sliding 

windows have been used, whereas time-based ones are 

supported, without significant changes in the results. The 
default values for the parameters (unless explicitly 

specified otherwise) are: W = n = 200K, jQj = 1, i.e., there 

is a single query, k = 10 and the parameter R is set in a 

way that the number of outliers jDj = (0:01 0:001) n. Since 

we want to investigate the most demanding form of 

continuous queries, we set Slide = 1. All measurements 

correspond to 1000 slides, i.e., 1000 insertions/deletions in 

P. 

 

TABLE III (%) OUTLIER VS DIFFERENT 

ALGORITHMS 
 

outliers (% W) STROM DBS MCOD 

0.1 0.8 1 2 

0.5 1 1.2 2.5 

1 4 3.4 4.5 

1.5 5 3.6 5.3 

2 8 5.3 6.65 

2.5 9 6.3 8.4 

3 10 7.8 9.8 

 

Fig3.Percentage of outlier detection 

 

iii) Memory consumption 

The memory consumption of the two real data sets for the 
experiment. The consumed memory corresponds to the 

memory needed to store the information for each active 

object (i.e., preceding and succeeding neighbors), the heap 

size used for the events prioritization, the outliers of all the 

queries and the micro-cluster information for KNN. As 

can be seen, the required amount of memory is only a 

small fraction of the total memory available in modern 

machines, even for the COD method. 
 

TABLE IV MEMORY USAGE VS DIFFERENT 

ALGORITHM 
 

W STROM DBS MCOD 

10,000 0.48 4.29 0.27 

20,000 9.60 111.85 4.94 

30,000 14.47 194.28 11.04 
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40,000 19.32 280.37 15.40 

50,000 24.23 377.51 20.23 

 

 
Fig 4 Memory usage vs different algorithm 

 

VI. CONCLUSION AND FUTURE WORK 

 

Anomaly detection is an important data mining task 

aiming at the selection of some interesting objects, called 

outliers that show significantly different characteristics 

than the rest of the data set. In this project the problem of 

continuous outlier detection over data streams, by using 
sliding windows. More specifically, MCOD algorithms are 

design, aiming at efficient outlier monitoring with reduced 

storage requirements. This method do not make any 

assumptions regarding the nature of the data, excepts from 

the fact that objects are assumed to live in a metric space. 

As it is shown in the performance evaluation results, based 

on real-life and synthetic data sets, the proposed 

techniques are by factors more efficient than previously 

proposed algorithms. An interesting direction for future 

work is the design of randomized algorithms for detection, 

aiming at significant improvement of efficiency by 
sacrificing the accuracy of results.  
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