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Abstract: Big data processing consumes resources at very large scale and its very challenging to manage the memory 

for each running process. Researchers have developed the some memory management schemes which can synchronize 

the   data flow for each process. Processes use two memories i.e. Main memory which retains only current processing 

data and cache which retains frequent required data for processes. It is very challenging to replace the cache data with 

new one because, during the processing of large volume data, process may claim any data block, so due to random 

block replacement, process may have to wait for a long time which may result unnecessarily delay.  In this paper, we 

will explore the current research work related to cache management.  
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I. INTRODUCTION 

 

Big data can be referred as huge collection of data. Its 

main resources are Public/Govt. data, internet, social 

media, news channels, educational institutes, industries 

etc. Data is stored on the disks and for analysis purpose; it 

is loaded in to memory which has a limited size. So 

traditional system’s memory is not suitable for big data 

processing in real time environment. Traditional systems 

have different types of memory i.e. volatile and non 

volatile memory and volatile memory consists of main 

memory and cache. Cache refers to the intermediate data 

that is produced by worker nodes/processes during the 

execution of a Map Reduce task. A piece of cached data is 

stored in a Distributed File System (DFS). The content of 

a cache item is described by the original data and the 

operations applied. Formally, a cache item is described by 

a 2-tuple i.e. Origin and Operation. Origin is the name of a 

file in the DFS. Operation is a linear list of available 

operations performed on the Origin file.[1][8][9] 

 

Large-scale distributed systems (e.g., Google, Facebook) 

operate on streams of key-value pairs with support of large 

scale computer networks. Due to the huge volume of input 

data, streaming is necessary, where the job arriving event 

and job processing event, both are handled simultaneously. 

MapReduce applications support parallel processing of 

jobs. For example, caching can be viewed as computation 

onal streams, where the frequency of duplicate items 

determines performance (i.e., hit rate). Large-scale graph-

processing algorithms that output edges/nodes in bulk 

(e.g., BFS search)can also be reduced to streams, where 

performance may be determined by the size of the frontier 

(i.e., pending nodes), bias in the observed degree, and/or 

discovery rate of new vertices. It is common to replace 

keys with their hashes and apply computation that outputs 

data in random order, either by design (e.g., reversing 

edges in graphs) or as by product of some previous 

computation (e.g., sorting by a different key in an earlier  

 

 

stage of MapReduce). This results in realworkload 

consisting of randomized streams, in which keysare 

shuffled in some arbitrary order. Understanding statistical 

properties of these streams is an important area of research 

as it leads to better characterization of MapReduce, 

caching, graph exploration, and more general streaming 

[1]. However, existing analysis is not just scattered across 

many fields but is also lacking in its ability to accurately 

model the stochastic properties of random streams. 

Google’s MapReduce was a huge shift in the evolution of 

big data processing tools. Since then Hadoop, the open 

source version of Google MapReduce has become the 

mainstream of big data processing, with many other tools 

emerging to handle big data problems. Extending the 

original MapReduce model to include iterative 

MapReduce, tools such as Twister and Ha Loop can cache 

loop invariant data in iterative algorithms locally to avoid 

repeat input data loading in a MapReduce job chain. Spark 

also uses caching to accelerate iterative algorithms by 

abstracting computations as transformations on RDDs 

instead of restricting computations to a chain of 

MapReduce jobs.[1][2][3] 

There are two types of cache items as the map cache and 

the reduce cache. They have dissimilar complexities when 

it comes to sharing under diverse scenarios. Cache items 

in the map phase are simple to share because the 

operations useful are generally well-formed. When 

considering each file divided, the cache manager reports 

the earlier file divided method used in the cache item. The 

next new MapReduce activity/ job also need to be divided 

into the files giving to the same division method in order 

to utilize the cache items. If the new MapReduce job uses 

a different file splitting order, the map outcomes cannot be 

used directly. When seeing cache sharing in the reduce 

phase, two general situations are identified.[16][17][18] 

The first  is when the several reducers complete different 

jobs from the cached reduce cache items of the earlier 
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MapReduce jobs. In this case, after the mappers submit the 

results gained from the cache items, the MapReduce 

framework usages the partitioned provided by the new 

MapReduce job to feed input to the reducers. The 

protected computation is obtained by removing the 

processing in the Map phase. Usually, new content is 

added at the end of the input files, which requires 

additional mappers to process. However, this does not 

need additional processes other than those introduced 

above. Another situation is when the reducers can actually 

take advantage of the previously cached reduced cache 

items. The reducers control how the output of the map 

phase is shuffled. The cache manager routinely identifies 

the best-matched cache item to feed each reducer, which is 

the one with the maximum overlap in the original input 

file in the Map phase. [1][2][3] 

Cache management architecture 
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Figure: Cache management architecture [19] 

 

<path> Contains cache path 

<pool-name> cache pool for directives. 

-force cache pool resource limits audit. 

<replication> Cache Replication Factor 

<time-to-live> Set Directive validation over a time.  

TABLE: CACHE DIRECTIVE. 

 

II. LITERATURE SURVEY 

 

Yaxiong  Zhao  et al. This paper evaluated a data aware 

cache framework that requires minimum change to the 

original MapReduce programming model for provisioning 

incremental processing for Bigdata applications using the 

MapReduce model. Dache, a data-aware cache description 

scheme, protocol and architecture. This method requires 

only a slight modification in the input format processing 

and task management of the MapReduce framework. As a 

result, application code only requires slight changes in 

order to utilize Dache. Experiments show that it can 

eliminate all the duplicate tasks in incremental 

MapReduce jobs and does not require substantial changes 

to the application code.  

S. Tamboli et al. presented an efficient one way caching 

method for big data applications based on MapReduce 

framework. Cache supports is provided to intermediate 

data that is created by worker nodes processes during the 

execution of a MapReduce task. A part of cached data is 

then kept in DFS. The content of a cache item is well-

defined by the original data and the operations applied. 

Formally, a cache item is described by a 2-tuple i.e. Origin 

and Operation. Origin is the name of a file in the 

distributed file system. The operation performed is a data 

structure in the form of linear list of existing operations 

done on the original file. They used cache mechanism 

efficiently to optimize computational time and reduce 

storage overhead for real time data over the distributed file 

system. 

S. T. Ahmed et al. presented stochastic model framework 

to analyze LRU caching, MapReduce overhead, and 

different crawl properties i.e. node-degree bias, frontier 

size in random graphs. Proposed scheme is used for 

characterizing applications that process random data 

streams, including properties as the probability of 

uniqueness for discovered keys, number of unique values 

accumulated over a certain time period, the average degree 

of seen nodes, and the size of the frontier during crawls on 

large-scale graphs under three different strategies. These 

models were applicable not just to synthetically generated 

streams, such as those produced by BFS on random 

graphs, but also real workloads stemming from LRU 

caching and Map Reduce processing of IRLbot and 

WebBase graphs. 
 

(Bingjing Zhang et al.2015): This paper introduced a 

collective communication layer for communication 

optimizations required by the applications. They used Map 

Collective programming model on top of collective 

communication abstractions to enhance expressiveness 

and performance of big data processing. Harp is an 

implementation designed in a pluggable way to bridge 

differences between Hadoop ecosystem and HPC system 

and bring high performance to the Apache Big Data Stack 

through a clear communication abstraction, which did 

notexist before in the Hadoop ecosystem. Simple 

modifications of Mahout library that enhances its low 

parallel performance this shows that value of building new 

abstractions into Hadoop rather than developing a totally 

new infrastructures authors did in their prototype, called 

Twister system. With three applications, the analysis 

shows that with Harp these applications can scale up to 

128 nodes with 4096 CPU son the Big Red II super 

computer, where the speedup in most tests is close to 

linear. Current work can be extended for development of 

high performance communication libraries for simulation 

(exascale). It will also support fault tolerance to evaluate 

the current best practices in MPI, Spark and Hadoop. 
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Authors will also consider the data abstractions to include 

those needed in pixel and spatial problems.  

D. Huang et al. shows a enhanced MapReduce 

implementation of FIM algorithm by developing a cache 

layer and a selective online analyzer to analyze 

effectiveness and efficiency of Smart Cache via extensive 

experiments on four public datasets. Authors explored new 

improvement space on top of the state-of-the-art solution, 

and presented a new regression based method to find 

optimal cache size. Analysis result shows that smart Cache 

can be reduced  from45.4%, to 97.0% for execution time 

as compared with the state-of-the-art solution E. Park et 

al.2015 investigated the memory optimization for big data 

processing to reduce the energy consumption .They  

developed a function called memory fast-forward (MFF) 

which can process the graph computations with optimal 

memory requests. Simulation results show that MFF unit 

can reduce 54.6% energy consumption due to low memory 

traffics. Proposed work can be extended to support large 

scale systems i.e. multi-GPU. 

A.D. et al. explored Hadoop framework and compared its 

performance against I MapReduce and HaLoop for graph 

based iterative algorithms. Ha Loop offers better 

performance as it stores intermediate results in cache and 

reuses those data on the next successive iteration. For 

using cache invariant data (inter-iteration locality) it 

schedules the tasks onto the same node that might occur in 

different iterations. Hadoop has to reload the data from 

HDFS in each iteration performing the same operation, 

thereby wasting a huge amount of resources like CPU 

jobs, I/O cycles and network bandwidth. And it requires an 

additional MapReduce job for checking the termination 

condition. It has been seen from the experimental results 

that HaLoop offers better performance as it loads the static 

data only once and by keeping those invariant data in 

cache. To facilitate the caching of invariant data the 

scheduler must ensure that tasks are assigned to the same 

nodes across multiple iterations allowing the use of cache. 

Proposed scheme can be  extended to support parallel 

concurrent transactions.  Tak-Lon Wu et al. provided a fast 

cache solution for big data processing application by using 

the combination of Hadoop and PIG frameworks. They 

used use K-means clustering and Page Rank that has three 

components: a python control-flow script, a Pig data-

transformscript for a single iteration, and two K-means 

user-defined functions written with a Pig-provided Java 

interface.  
 

During each iteration, Loader in each Mapper loads the 

aggregated centroids into memory as vector objects from 

the distributed cache on disk before computing the 

Euclidean distances for data points in the Loader stage. 

Each loader outputs assigned centroids and data points as 

fields in a single bag, each field in bag is defined as string 

data type which further splits into tuples for matching 

Pig’s GROUP operation to collect partial centroid vectors 

from mappers. It takes the average of all partitions, emits 

to a final centroids file and saves it to HDFS.  Results 

show that proposed scheme is able to provide the fast 

cache response for Mapreduce.  

D. Wei et al. proposed a multi-granularity content tree 

model and pay-as-you-go mode to support evolvement 

data modeling. These features help to split the data model,, 

position data content precisely and to expand the 

dimensions of the main features that described according 

to the data subject, and then gradually discover data 

contained  information and relationships among the 

information. Considering the large size of the data 

features, this paper designs data persistence mode based 

on HBase, so as to achieve the purpose of data processing 

by using technologies within the Hadoop system. Authors 

also presented data content extraction and content tree 

initial state algorithms under MapReduce framework, and 

dynamic loading and local caching algorithms of content 

tree, thus forming a basic extract-store-load process. This 

work can be extended for geosciences information and 

knowledge discovery using platform which is based on big 

data technology, and construct the value chain of 

geological data results; construct geosciences information 

resource sharing and value-added demonstration services 

to create favorable conditions for information integration, 

resource sharing and knowledge innovation for the whole 

society 
 

D. Yang et al. [12] investigated the limitations and 

strength of Map reduce framework using HiBench 

workloads. Experimental results show that the speedup 

Native Task can extend the range of HiBench upto 160%.. 

Current work can be extended to provide the support for 

Hive or Tez tools. 

 

III. PROBLEM FORMULATION 

 

Big Data processing requests consume lot of resources 

over system. Large scale buffer is required for data 

processing because there are several input/output 

operations may exists those can be executed parallel. 

Frequent required data can be temporarily stored in a 

buffer, called cache but it is not feasible to store huge 

volume of random data n cache due to its cost although 

cache can reduce the number of input and output 

operations. For large scale data, it is still a major issue that 

how to optimize the cache in such a way that service 

consumer process should perform minimum buffer 

operations by making the use of cache memory. 

Common Cache management Issues: 

Cache configuration 

State Maintenance for the cached objects 

Fault Tolerance 

 

IV. CONCLUSION 

 

In this survey paper, cache management issues were 

investigated. Researchers have developed various 

solutions to manage the cache for Big Data processing and 

each has its own merit sand demerits. Now we discuss 

most relevant solutions for cache management, i.e.  Data 

Aware Caching, Dache is a framework based on 

Mapreduce MAP Reduce. It is able to identify the 

duplicate tasks for elimination purpose. HiBench 
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workloads can be used to analyze the performance of Map 

reduce framework, HBase Tree based data model splits the 

data and data repositioning is used to process large volume 

data by dynamic loading and local cache management.  It 

can be further enhanced to process the distributed 

geological data. K-means clustering and PageRank offers 

fast cache solution which works on the combination of 

Hadoop and PIG frameworks and it splits data into 

multiple tuples which are further processed by Mappers. 

Optimization of CPU based I/O operations can reduce the 

requirements of available bandwidth. Memory Fast-

Forward reduces the total memory traffic and optimizes 

energy consumption. Smart cache can reduce the total 

process execution time. This study can be further utilized 

to develop a solution for cache management. 
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