
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5847 253

Cache Management for Big Data Applications:

Survey

Kiran Grover
1
, Surender Singh

2

Dept. of Computer Science and Engineering, Om Institute of Technology & Management, Hisar, India
1, 2

Abstract: Big data processing consumes resources at very large scale and its very challenging to manage the memory

for each running process. Researchers have developed the some memory management schemes which can synchronize

the data flow for each process. Processes use two memories i.e. Main memory which retains only current processing

data and cache which retains frequent required data for processes. It is very challenging to replace the cache data with

new one because, during the processing of large volume data, process may claim any data block, so due to random

block replacement, process may have to wait for a long time which may result unnecessarily delay. In this paper, we

will explore the current research work related to cache management.

Keywords: Big Data, cache, memory, resource management

I. INTRODUCTION

Big data can be referred as huge collection of data. Its

main resources are Public/Govt. data, internet, social

media, news channels, educational institutes, industries

etc. Data is stored on the disks and for analysis purpose; it

is loaded in to memory which has a limited size. So

traditional system’s memory is not suitable for big data

processing in real time environment. Traditional systems

have different types of memory i.e. volatile and non

volatile memory and volatile memory consists of main

memory and cache. Cache refers to the intermediate data

that is produced by worker nodes/processes during the

execution of a Map Reduce task. A piece of cached data is

stored in a Distributed File System (DFS). The content of

a cache item is described by the original data and the

operations applied. Formally, a cache item is described by

a 2-tuple i.e. Origin and Operation. Origin is the name of a

file in the DFS. Operation is a linear list of available

operations performed on the Origin file.[1][8][9]

Large-scale distributed systems (e.g., Google, Facebook)

operate on streams of key-value pairs with support of large

scale computer networks. Due to the huge volume of input

data, streaming is necessary, where the job arriving event

and job processing event, both are handled simultaneously.

MapReduce applications support parallel processing of

jobs. For example, caching can be viewed as computation

onal streams, where the frequency of duplicate items

determines performance (i.e., hit rate). Large-scale graph-

processing algorithms that output edges/nodes in bulk

(e.g., BFS search)can also be reduced to streams, where

performance may be determined by the size of the frontier

(i.e., pending nodes), bias in the observed degree, and/or

discovery rate of new vertices. It is common to replace

keys with their hashes and apply computation that outputs

data in random order, either by design (e.g., reversing

edges in graphs) or as by product of some previous

computation (e.g., sorting by a different key in an earlier

stage of MapReduce). This results in realworkload

consisting of randomized streams, in which keysare

shuffled in some arbitrary order. Understanding statistical

properties of these streams is an important area of research

as it leads to better characterization of MapReduce,

caching, graph exploration, and more general streaming

[1]. However, existing analysis is not just scattered across

many fields but is also lacking in its ability to accurately

model the stochastic properties of random streams.

Google’s MapReduce was a huge shift in the evolution of

big data processing tools. Since then Hadoop, the open

source version of Google MapReduce has become the

mainstream of big data processing, with many other tools

emerging to handle big data problems. Extending the

original MapReduce model to include iterative

MapReduce, tools such as Twister and Ha Loop can cache

loop invariant data in iterative algorithms locally to avoid

repeat input data loading in a MapReduce job chain. Spark

also uses caching to accelerate iterative algorithms by

abstracting computations as transformations on RDDs

instead of restricting computations to a chain of

MapReduce jobs.[1][2][3]

There are two types of cache items as the map cache and

the reduce cache. They have dissimilar complexities when

it comes to sharing under diverse scenarios. Cache items

in the map phase are simple to share because the

operations useful are generally well-formed. When

considering each file divided, the cache manager reports

the earlier file divided method used in the cache item. The

next new MapReduce activity/ job also need to be divided

into the files giving to the same division method in order

to utilize the cache items. If the new MapReduce job uses

a different file splitting order, the map outcomes cannot be

used directly. When seeing cache sharing in the reduce

phase, two general situations are identified.[16][17][18]

The first is when the several reducers complete different

jobs from the cached reduce cache items of the earlier

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5847 254

MapReduce jobs. In this case, after the mappers submit the

results gained from the cache items, the MapReduce

framework usages the partitioned provided by the new

MapReduce job to feed input to the reducers. The

protected computation is obtained by removing the

processing in the Map phase. Usually, new content is

added at the end of the input files, which requires

additional mappers to process. However, this does not

need additional processes other than those introduced

above. Another situation is when the reducers can actually

take advantage of the previously cached reduced cache

items. The reducers control how the output of the map

phase is shuffled. The cache manager routinely identifies

the best-matched cache item to feed each reducer, which is

the one with the maximum overlap in the original input

file in the Map phase. [1][2][3]

Cache management architecture

User require cache

path from NN

Figure: Cache management architecture [19]

<path> Contains cache path

<pool-name> cache pool for directives.

-force cache pool resource limits audit.

<replication> Cache Replication Factor

<time-to-live> Set Directive validation over a time.

TABLE: CACHE DIRECTIVE.

II. LITERATURE SURVEY

Yaxiong Zhao et al. This paper evaluated a data aware

cache framework that requires minimum change to the

original MapReduce programming model for provisioning

incremental processing for Bigdata applications using the

MapReduce model. Dache, a data-aware cache description

scheme, protocol and architecture. This method requires

only a slight modification in the input format processing

and task management of the MapReduce framework. As a

result, application code only requires slight changes in

order to utilize Dache. Experiments show that it can

eliminate all the duplicate tasks in incremental

MapReduce jobs and does not require substantial changes

to the application code.

S. Tamboli et al. presented an efficient one way caching

method for big data applications based on MapReduce

framework. Cache supports is provided to intermediate

data that is created by worker nodes processes during the

execution of a MapReduce task. A part of cached data is

then kept in DFS. The content of a cache item is well-

defined by the original data and the operations applied.

Formally, a cache item is described by a 2-tuple i.e. Origin

and Operation. Origin is the name of a file in the

distributed file system. The operation performed is a data

structure in the form of linear list of existing operations

done on the original file. They used cache mechanism

efficiently to optimize computational time and reduce

storage overhead for real time data over the distributed file

system.

S. T. Ahmed et al. presented stochastic model framework

to analyze LRU caching, MapReduce overhead, and

different crawl properties i.e. node-degree bias, frontier

size in random graphs. Proposed scheme is used for

characterizing applications that process random data

streams, including properties as the probability of

uniqueness for discovered keys, number of unique values

accumulated over a certain time period, the average degree

of seen nodes, and the size of the frontier during crawls on

large-scale graphs under three different strategies. These

models were applicable not just to synthetically generated

streams, such as those produced by BFS on random

graphs, but also real workloads stemming from LRU

caching and Map Reduce processing of IRLbot and

WebBase graphs.

(Bingjing Zhang et al.2015): This paper introduced a

collective communication layer for communication

optimizations required by the applications. They used Map

Collective programming model on top of collective

communication abstractions to enhance expressiveness

and performance of big data processing. Harp is an

implementation designed in a pluggable way to bridge

differences between Hadoop ecosystem and HPC system

and bring high performance to the Apache Big Data Stack

through a clear communication abstraction, which did

notexist before in the Hadoop ecosystem. Simple

modifications of Mahout library that enhances its low

parallel performance this shows that value of building new

abstractions into Hadoop rather than developing a totally

new infrastructures authors did in their prototype, called

Twister system. With three applications, the analysis

shows that with Harp these applications can scale up to

128 nodes with 4096 CPU son the Big Red II super

computer, where the speedup in most tests is close to

linear. Current work can be extended for development of

high performance communication libraries for simulation

(exascale). It will also support fault tolerance to evaluate

the current best practices in MPI, Spark and Hadoop.

USER

NameNode(NN)

DataNode (DN) DN

DFS Client

Cache
Block Report

NN translate
path to cache
queue

DFS can be scheduled

localized memory

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5847 255

Authors will also consider the data abstractions to include

those needed in pixel and spatial problems.

D. Huang et al. shows a enhanced MapReduce

implementation of FIM algorithm by developing a cache

layer and a selective online analyzer to analyze

effectiveness and efficiency of Smart Cache via extensive

experiments on four public datasets. Authors explored new

improvement space on top of the state-of-the-art solution,

and presented a new regression based method to find

optimal cache size. Analysis result shows that smart Cache

can be reduced from45.4%, to 97.0% for execution time

as compared with the state-of-the-art solution E. Park et

al.2015 investigated the memory optimization for big data

processing to reduce the energy consumption .They

developed a function called memory fast-forward (MFF)

which can process the graph computations with optimal

memory requests. Simulation results show that MFF unit

can reduce 54.6% energy consumption due to low memory

traffics. Proposed work can be extended to support large

scale systems i.e. multi-GPU.

A.D. et al. explored Hadoop framework and compared its

performance against I MapReduce and HaLoop for graph

based iterative algorithms. Ha Loop offers better

performance as it stores intermediate results in cache and

reuses those data on the next successive iteration. For

using cache invariant data (inter-iteration locality) it

schedules the tasks onto the same node that might occur in

different iterations. Hadoop has to reload the data from

HDFS in each iteration performing the same operation,

thereby wasting a huge amount of resources like CPU

jobs, I/O cycles and network bandwidth. And it requires an

additional MapReduce job for checking the termination

condition. It has been seen from the experimental results

that HaLoop offers better performance as it loads the static

data only once and by keeping those invariant data in

cache. To facilitate the caching of invariant data the

scheduler must ensure that tasks are assigned to the same

nodes across multiple iterations allowing the use of cache.

Proposed scheme can be extended to support parallel

concurrent transactions. Tak-Lon Wu et al. provided a fast

cache solution for big data processing application by using

the combination of Hadoop and PIG frameworks. They

used use K-means clustering and Page Rank that has three

components: a python control-flow script, a Pig data-

transformscript for a single iteration, and two K-means

user-defined functions written with a Pig-provided Java

interface.

During each iteration, Loader in each Mapper loads the

aggregated centroids into memory as vector objects from

the distributed cache on disk before computing the

Euclidean distances for data points in the Loader stage.

Each loader outputs assigned centroids and data points as

fields in a single bag, each field in bag is defined as string

data type which further splits into tuples for matching

Pig’s GROUP operation to collect partial centroid vectors

from mappers. It takes the average of all partitions, emits

to a final centroids file and saves it to HDFS. Results

show that proposed scheme is able to provide the fast

cache response for Mapreduce.

D. Wei et al. proposed a multi-granularity content tree

model and pay-as-you-go mode to support evolvement

data modeling. These features help to split the data model,,

position data content precisely and to expand the

dimensions of the main features that described according

to the data subject, and then gradually discover data

contained information and relationships among the

information. Considering the large size of the data

features, this paper designs data persistence mode based

on HBase, so as to achieve the purpose of data processing

by using technologies within the Hadoop system. Authors

also presented data content extraction and content tree

initial state algorithms under MapReduce framework, and

dynamic loading and local caching algorithms of content

tree, thus forming a basic extract-store-load process. This

work can be extended for geosciences information and

knowledge discovery using platform which is based on big

data technology, and construct the value chain of

geological data results; construct geosciences information

resource sharing and value-added demonstration services

to create favorable conditions for information integration,

resource sharing and knowledge innovation for the whole

society

D. Yang et al. [12] investigated the limitations and

strength of Map reduce framework using HiBench

workloads. Experimental results show that the speedup

Native Task can extend the range of HiBench upto 160%..

Current work can be extended to provide the support for

Hive or Tez tools.

III. PROBLEM FORMULATION

Big Data processing requests consume lot of resources

over system. Large scale buffer is required for data

processing because there are several input/output

operations may exists those can be executed parallel.

Frequent required data can be temporarily stored in a

buffer, called cache but it is not feasible to store huge

volume of random data n cache due to its cost although

cache can reduce the number of input and output

operations. For large scale data, it is still a major issue that

how to optimize the cache in such a way that service

consumer process should perform minimum buffer

operations by making the use of cache memory.

Common Cache management Issues:

Cache configuration

State Maintenance for the cached objects

Fault Tolerance

IV. CONCLUSION

In this survey paper, cache management issues were

investigated. Researchers have developed various

solutions to manage the cache for Big Data processing and

each has its own merit sand demerits. Now we discuss

most relevant solutions for cache management, i.e. Data

Aware Caching, Dache is a framework based on

Mapreduce MAP Reduce. It is able to identify the

duplicate tasks for elimination purpose. HiBench

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5847 256

workloads can be used to analyze the performance of Map

reduce framework, HBase Tree based data model splits the

data and data repositioning is used to process large volume

data by dynamic loading and local cache management. It

can be further enhanced to process the distributed

geological data. K-means clustering and PageRank offers

fast cache solution which works on the combination of

Hadoop and PIG frameworks and it splits data into

multiple tuples which are further processed by Mappers.

Optimization of CPU based I/O operations can reduce the

requirements of available bandwidth. Memory Fast-

Forward reduces the total memory traffic and optimizes

energy consumption. Smart cache can reduce the total

process execution time. This study can be further utilized

to develop a solution for cache management.

REFERENCES

[1] Yaxiong Zhao, Jie Wu, and Cong Liu, "Dache: A Data Aware

Caching for Big-Data Applications Using the MapReduce

Framework", TSINGHUA SCIENCE AND TECHNOLOGY,
IEEE-2014,Vol.19(1), February 2014 pp. 39-50

[2] ShakilTamboli ,Smita Shukla Patel,"Survey on innovative approach
for improvement in efficiency of caching technique for Big Data

Application", ICPC, IEEE-2015, pp.

[3] SarkerTanzir Ahmed, Dmitri Loguinov, "Modeling Randomized
Data Streams in Caching, Data Processing, and Crawling

Applications", INFOCOM, IEEEE-2015

[4] Bingjing Zhang, Yang Ruan, Judy Qiu, "Harp: Collective

Communication on Hadoop", IEEE-2015, pp.228-233

[5] Dachuan Huang, Yang Song, RamaniRoutray, Feng

Qin,"SmartCache: An Optimized MapReduceImplementation of
Frequent Itemset Mining", IEEE-2015, pp.16-25

[6] Eunhyeok Park, JunwhanAhn, Sungpack Hong, SungjooYoo, and

Sunggu Lee, "Memory Fast-Forward: A Low Cost Special Function
Unitto Enhance Energy Efficiency in GPU for Big Data

Processing", Design, Automation & Test in Europe Conference &

Exhibition (DATE), IEEE-2015, pp.1341-1346
[7] AkashdeepDebbarma, Annappa B., Ravi G. Mude, "Performance

Analysis of Graph Based Iterative Algorithms on MapReduce

Framework", International Conference for Convergence of
Technology, IEEE-2014, pp.1-6

[8] Hao Zhang, Gang Chen, Beng Chin Oo, Kian-Lee Tan,Meihui

Zhang, "In-Memory Big Data Management and Processing: A
Survey", IEEE-,pp.1-24

[9] RupaliPashte, Ritesh Thakur, "A Survey on Optimal Data Storage

of Cache Manager for Big Data Using Map Reduce Framework",

IJSR-2012, pp.1510-1513

[10] Tak-Lon Wu, Abhilash Koppula, Judy Qiu, "Integrating Pig with

Harp to Support Iterative Applications with Fast Cache and
Customized Communication", International Workshop on Data-

Intensive Computing in the Clouds, IEEE-2014, pp.33-39

[11] Dongqi Wei, Chaoling Li, WumutiNaheman, "Organizing and
Storing Method for Large-scale Unstructured Data Set with

Complex Content", International Conference on Computing for

Geospatial Research and Application, IEEE-2013, pp.70-76
[12] Dong Yang, Xiang Zhong, Dong Yan, Fangqin Dai, Xusen

Yin,"NativeTask: A Hadoop Compatible Framework for High

Performance", ICBD, IEEE-2013, pp.94-101
[13] https://en.wikipedia.org/wiki/Apache_Hadoop

[14] http://hadoop.apache.org/docs/current/

[15] https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html

[16] https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

[17] https://pig.apache.org/

[18] https://hive.apache.org/

[19] https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop

hdfs/CentralizedCacheManagement.html

http://hadoop.apache.org/docs/current/
https://h/
https://hive.apache.org/
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop

