
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51291 398

Component Based Software Architecture

Refinement and Refactoring Method into

Extreme Programming

Mrs. Nagalambika Swamy
1
, Dr. L. Manjunath Rao

2
, Mr. Praveen K S

3

Asst. Professor, Department of MCA, East West Institute of Technology, Karnataka, India
1, 3

Professor and Head, Department of MCA, Dr. Ambedkar Institute of Technology, Karnataka, India
2

Abstract: Extreme programming is an agile methodology for software development that performs very well with

changing requirements. XP is one of the most commonly used methods among other agile methods. However, it is

implemented sequentially on all activities Moreover; classical XP suffers from an architectural design. Therefore, there

is a need for a framework that integrates the strengths of component based architecture refinement reusability into the

Extreme Programming Methodology. Which gives a clear vision about a current architectural design requirement

without any additional features that are not yet needed? And constantly redesigning through refinement and refactoring

concept. The design is simple and loosely coupled as possible, thus making future modifications easier, and achieving

the XP values i.e. simplicity and feedback. This will result in reusability of component architecture and to reduce the

development effort, time and provide quality software.

Keywords: Refinement, Refactoring, Component, architecture reuse, Agile Software Development, Extreme

Programming.

I. INTRODUCTION

Extreme Programming (XP) is an iterative and incremental

agile software development method. That aims to develop

software in environments of unclear and changing

requirements. The XP focused highly around customer

satisfaction and involvement, incremental delivery of

software and stakeholders' collaboration and cooperation.

These principles help projects with changing requirements

to succeed. In XP, programmers develop the system in

pairs. Code is well tested and reviewed. Only the current

functional requirements are focused, without any

additional features that are not yet needed extreme

programming demonstrated dynamism through four

values:

 Simplicity − achieved by a constant focus on

minimalist solutions.

 Communication − continual communication with the

customer and within the team

 Feedback − rapid feedback through mechanisms such

as unit and functional testing

 Courage − the courage to deal with problems

proactively

Although developers might use many different XP

practices, the method typically consists of 12 basic

elements:

 Planning game − quickly determine the next release’s

scope, combining business priorities and technical

estimates. The customer decides scope, priority, and

dates from a business perspective, whereas technical

people estimate and track progress.

 Small releases − Put a simple system into production

quickly. Release new versions on a very short (two-

week) cycle.

 Metaphor − Guide all development with a simple,

shared story of how the overall system works.

 Simple design: Design as simply as possible at any

given moment.

 Testing − Developers continually write unit tests that

must run flawlessly; customers write tests to

demonstrate that functions are finished. “Test, then

code” means that a failed test case is an entry criterion

for writing code.

 Refactoring − Restructure the system without changing

its behavior to remove duplication, improve

communication, simplify, or add flexibility.

 Pair programming − All production code is written by

two programmers at one machine.

 Collective ownership − anyone can improve any

system code anywhere at any time.

 Continuous integration − Integrate and build the

system many times a day (every time a task is

finished). Continual regression testing prevents

functionality regressions when requirements change.

 On-site customer − Have an actual user on the team

full-time to answer questions.

II. LITERATURE-REVIEW

Software architecture research domain is rapidly evolving

as the systems increase in size and complexity [3]. The

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51291 399

architecture of a software system can have a major impact

on system efficiency, maintainability, and evolvability.

 System development by refinement is a formal model-

driven development process. Re-finement allows us to

ensure that a refined, i.e., more elaborated, model retains

all the essential properties of its abstract counterpart. Since

refinement is transitive, the model-driven refinement-

based development process enables development of

systems correct-by construction [8].

The precise definition of refinement depends on the

chosen modelling framework and hence might have

different semantics and the degree of rigor. The

foundations of formal reasoning about correctness and

stepwise development by refinement were established by

Dijkstra [1-2], and then further developed by R.J.R .Back

[5]. The component based architecture refinement

framework, component is the most basic element of

software, first of all the system as a high level of abstract

component, describe the specification of component in

accordance with its functional requirements, and then

decompose it to generate a number components including

data, ports, behaviours’ of components[4].

Extreme programming is a methodology for software

system development that focuses on high customer

integration, extensive testing, code-centered development

and documentation, refactoring and paired programming.

In this approach every 3-4 weeks, a new fully functional

release is delivered and reviewed by the customer. The

specifications for each release are captured incrementally

using use case scenarios [6].

Stepwise refinement is a top-down design strategy used

for decomposing a system from a high level of abstraction

into a more detailed level (lower level) of abstraction. At

the highest level of abstraction, function information is

defined conceptually without providing any information

about the internal workings of the function or internal

structure of the data. As we proceed towards the lower

levels of abstraction, more and more details are available

[5].

III. PROPOSED WORK

A. Problem Identification

Despite the benefits offered by XP, several drawbacks are

noted:

 XP doesn't work with distributed development

environment. The reason is that the practices and

activities of XP require high collaboration,

involvement, and face-face meeting and customer to be

with the team. Due to the high agility of XP and

simplicity of its design

 The system is developed very quickly without taking

reusability of newly added components into account.

 XP doesn't take the advantage of component based

architecture into account.

 XP is not suitable with outsourced team. This is

because the XP needs highly competent members in

team. These members need to collaborate, trust, respect

and be self organized. Such skills are hard to find in

outsourced team members who work just for the

project that is assign to them.

 XP suffers from weak documentation

 Lack of overall design for the system.

B. Proposed Solution

The frameworks aim to keep architecture design be

constantly redesigning through refinement and refactoring.

The design is simple and loosely coupled as possible, thus

making future modifications easier, further automated

testing tries to ensure that modifications and refactoring do

not create faults in the existing code.

We combine the salient aspects of software reuse and agile

development and present an integrated approach to

promote component architecture reuse. This approach is

aimed at embedding architecture reuse as a standard

practice within Extreme Programming.

Our proposed reuse process model is shown in Figure 1.

It consists of the following steps:

Step 1 - Component search and retrieval

Step 2 - Identify components to extend and refine

Step 3 - Generate target components, and

Step 4 - Repository management.

Each of these steps is briefly described below.

Step 1 - Search and Retrieval: The objective of this step is

to search and retrieve relevant components from the reuse

repository that can meet the current requirements of the

system. Components that implement the methods that

support the functionalities desired in the target system are

searched. The output of this step is the initial set of

potential components that may be relevant to the system

requirements [6].

Step 2 - Identify Components to Extend and Refinement:

The initial set of components is further examined to select

the most appropriate components. In this step, we focus on

identifying which parts of the component are directly

relevant and which parts need to be eliminated.

Components may have to be extended with additional

functionalities to meet the requirements. The components

that directly satisfy a requirement may also have problems

as they may not have been designed properly be highly

structured or efficient. Based on the components’

goodness of fit, they are flagged as candidates for

customization, extension, or refactoring.

Step 3 - Generate Target Components: This step focuses

on creating the components that are suitable for inclusion

in the application that is currently under development.

These components are created either through extension

and customization, or through refactoring, or both.

Step 3a - Extend/Customize Component: Components that

partially support a requirement may have to be extended or

customized by adding new properties or customizing an

existing property.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51291 400

Fig. 1 Component Based Architecture Refinement and Refactoring Reusability Model for Extreme Programming cycle

The extension and customization of components changes

their behaviour and hence needs to be tested. There is a

feedback mechanism between this step and the initial step

of component identification. The modified components

may also be refinement and refactored to make them more

efficient and be suitable for the application that is being

developed.

Step 3.1 - Refinement Component: Stepwise refinement is

a top-down design strategy used for decomposing a system

from a high level of abstraction into a more detailed level

(lower level) of abstraction. At the highest level of

abstraction, function or information is defined

conceptually without providing any information about the

internal workings of the function or internal structure of

the data. As we proceed towards the lower levels of

abstraction, more and more details are available. Software

designers start the stepwise refinement process by creating

a sequence of compositions for the system being designed.

Each composition is more detailed than the previous one

and contains more components and interactions. The

earlier compositions represent the significant interactions

within the system, while the later compositions show in

detail how these interactions are achieved.

Step 3.2 - Refactor Component: Refactoring is an

important design activity that reduces the complexity of

module design keeping its behaviour or function

unchanged. Refactoring can be defined as a process of

modifying a software system to improve the internal

structure of design without changing its external

behaviour. During the refactoring process, the existing

Component

Search and

 Retrieval

 (Step 1)

 Identify

 Components

To Extend and

 Refinement

 (Step2)

 Repository

Management

 (Step 4)

 Reuse

 Repository

 Target

Components

New System

Requirements

 Candidate Components

 Generate Target Components (Step 3)

Refinement

 And

 Refactor

Components

 Extend/

Customize

Components

 Components

for Refinement

Components for

Customization

Components

for Refinement

and Refactoring

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51291 401

design is checked for any type of flaws like redundancy,

poorly constructed algorithms and data structures, etc., in

order to improve the design. For example, a design model

might yield a component which exhibits low cohesion

(like a component performs four functions that have a

limited relationship with one another). Software designers

may decide to refractor the component into four different

components, each exhibiting high cohesion. This leads to

easier integration, testing, and maintenance of the software

components.

Step 4 - Repository Management: All the components

created from the previous step along with their

relationships are stored in a repository for future use.

Consistency checking and repository management is an

essential aspect of this approach. The component

searching process should take into account these

relationships. The retrieved components are most useful if

they directly meet the requirements and are consistent with

each other. Storing the new components in the repository

takes into account feature.

IV. METHODOLOGY

 Unified modeling Language

 IBM Rational Rose Software

V. FINDINGS

 Extreme programming can be used as both code and

design centric development.

 Reusability of Component design reduces the

development effort, time, and cost and provides quality

software.

 The design is simple and loosely coupled as possible,

thus making future modifications easier, and achieving

the XP values i.e. simplicity.

 Framework gives a clear vision about a current

architectural design requirement without any additional

features that are not yet needed. This helps in rapid

development.

VI. CONCLUSION

This paper gives a clear vision about a current

architectural design requirement without any additional

features that are not yet needed. And constantly

redesigning through refinement and refactoring concept.

The design is simple and loosely coupled as possible, thus

making future modifications easier, and achieving the XP

values i.e. simplicity and feedback. It helps to reduce, the

development effort, time and provide quality software.

This framework combine the features of two important

XP practices that is

1. Simple design and

2. Refactoring

Concept into component based architecture refinement

framework.

ACKNOWLEDGEMENT

I am extremely thankful to express my sincere gratitude to

my Parents, Husband, Guide and my colleagues for their

kind co-operation and for providing valuable suggestion

and constant encouragement for the improvement and

successful comp

 REFERENCES

[1] E. W. DIJKSTRA, A constructive approach to the problem of

program correctness, Bit 8 (1968), pp. 174-86.
[2] E.W.DIJKSTRA, “A Discipline of Programming,” Prentice-Hall,

Englewood Cliffs, N.I, pp. 1976.

[3] Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., & Meedeniya, I.,
Software architecture optimization methods: A systematic literature

review. IEEE Transactions on Software Engineering, 39(5), 2013,

pp. 658-683.
 [4] Bingzhi Gao; Xiaojuan Ban; Qiang Lv; Xiaoli Li, A component-

based method for software architecture refinement, International

conference on Intelligent Control and Information Processing, pp.
574-578

[5] R.J.R Back, On Correct Refinement of Programs, Journal of

computer and system science 23, pp. 49-68, 1981.
[6] Elmuntasir Abdullah, El-Tigani, B. Abdelsatir, Extreme

programming applied in a large-scale distributed system,

International Conference on Computing, Electrical and Electronics

Engineering (ICCEEE), ISBN:978-1-4673-6231-3,pp.442-446, 2013.
 [7] M. Moriconi, X. Qian, R. A. Riemenschneider, Correct Architecture

Refinement, IEEE Transactions on Software Engineering, ISSN

:0098-5589, pp. 356-372, 1995.
 [8] Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander

Romanovsky, Patterns for Refinement Automation, ISBN: 978-3-

642-17070-6, pp. 70-88, 2010.
 [9] Gerald DeHondt et al., CODE REUSE AS A PRACTICE WITHIN

EXTREME PROGRAMMING

[10] https://www.tutorialspoint.com/software_architecturedesign/
component_based_architecture.htm

BIOGRAPHY

Mrs. Nagalambika Swamy is working

as Asst. Professor, Department of MCA,

EWIT, Bangalore. She has worked in

various Software Industry and

Educational Institutions. She has total of

10 years of experience in Software

Industry and Educational field. India

Dr. L. Manjunatha Rao is working as

Professor and Head, Department of

MCA, Dr.AIT, Bangalore. He has

awarded Ph.D from Vinayaka Mission

University, Tamil Nadu and obtained

Ph.D degree from SV University,

Tirupati, Andrapradesh. He has

published research papers in both national and

international Journals and has authored 2 textbooks.

Mr. Praveen K. S is working as Asst.

Professor, Department of MCA, EWIT,

Bangalore. He has total of 7 years of

experience in Educational field. India

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bingzhi%20Gao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiaojuan%20Ban.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Qiang%20Lv.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiaoli%20Li.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5564982&queryText=a%20component%20based%20method%20for%20software%20architecture%20rifinement&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5564982&queryText=a%20component%20based%20method%20for%20software%20architecture%20rifinement&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5557901
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5557901
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5557901
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Elmuntasir%20Abdullah.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.El-Tigani%20B.%20Abdelsatir.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6613812
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6613812
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6613812
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Moriconi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.X.%20Qian.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20A.%20Riemenschneider.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://www.tutorialspoint.com/software_architecture
https://www.tutorialspoint.com/software_architecture
https://www.tutorialspoint.com/software_architecture

