
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56105 496

Performance Optimization of Heterogeneous

Computing Environment

Touseef Golandaz

M.Tech, CSE, HKBKCE, Bangalore, India

Abstract: The applications which are running on heterogeneous computing system (HCS) with hybrid processors

(CPU and GPU) often uses only one processor and the Other processor will be in ideal state for the rest of operations of

the application and this results in the wastage of the available computational resources and issues related to

performances. It is possible to avoid this kind of wastage of the computational resources of modern HCS by dividing

work across hybrid processors of HCS. We introduce a technique to fully utilize the hybrid processors of HCS to

provide the significant improvement in performance and usage of hybrid processors for matrix multiplication based

applications. We are using library functions like cblas (MKL) and cublas (NVidia’s CUBLAS Library function) to

divide the work across the hybrid processors of HCS.

Keywords: scale, GPGPU, hybrid processors, HCS

I. INTRODUCTION

Today HCS are mostly used in solving the scientific

computation like engineering, to perform the data

intensive computations. Due to advancement in the

technology, now HCS contains powerful hybrid processors

and can process data intensive computations in parallel

and correctly.The HCS contain hybrid processors i.e. CPU

and GPU. When we execute the application on HCS

environment, application will use either CPU to perform

all of its operation or use GPU to perform all of its

operations but these two processors never be used at the

same time by the application to perform its operations [1]

[2]. This means one processor will be in ideal state for the

rest of the operations of that application and other

processor will be utilized to perform the operations of that

application. This results in the underutilization of the

available computing resources and will significantly

reduce the performance of the HCS [3]. Even the HCS

environment has hybrid processors, still the operations of

the applications are not distributed between the processors

and not computed in simultaneously.

In today's era the matrix multiplication based applications

uses HCS to perform its operations due to the presence of

hybrid processors in HCS [1] [2] [3] and not only that

many scientists are working to find the ideal techniques to

utilize all the computational capacity of the GPU for

efficient matrix multiplication andfurthermore to

significantly decrease the time of execution for scientific

applications which are based on the matrix multiplication.

We will distribute the operations of the matrix

multiplication between the both the processors of the HCS

[5] [6][7] using library functions developed by the Intel [9]

and NVidia [11]. And identity the optimal load

distribution ratio between these two processors of HCS.

The main objective of this research work is to identify the

optimal load distribution point, fully use the computational

capacity of HCS and optimize the performance of the

HCS.

II. EXISTING SYSTEM

The existing optimization techniques for the HCS only

uses one processor to perform all the operations of the

matrix multiplication based applications. But these

techniques have ability to fully utilize the computational

capacity of the each processor to their maximum limits.

The CPU was built to perform the general purpose

operations and GPU was built to perform the graphics

related operations such as gaming. With time the

technology evolved and today the GPUs are also used to

perform the general purpose computations. This leadsto

the term called GPGPU. Today HCS with hybrid

processors are used in the field of high performance

computing (HPC) to solve the scientific problems. So we

need new techniques, which allow us to perform the

operations of the scientific computations bydistributing the

operations between the CPU and GPU in order to fully

utilize the computational ability of the HCS and provide

the significant performance improvements.

III. PROPOSED SYSTEM

We are proposing a method which allow us to perform the

matrix multiplication operations by distributing the

operations of the matrix multiplication between the hybrid

processors (CPU and GPU) [8] of the HCS and execute

these distributed operations simultaneously on the hybrid

processors(CPU and GPU). This will solve the problem of

underutilization of the computational resources of the

HCS. Our method uses the library functions developed by

the Intel and NVidia. The cblas () function of Intel MKL

is being used to execute the operations of the matrix

multiplication associated to CPU of the HCS and cublas ()

function of the NVidia’s CUBLAS is being used to

execute the operations associated to GPU of the HCS. We

are using Open MP [10] library functions to provide

parallel execution environment for the HCS. With this we

can easily accomplish our objectives of this research work.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56105 497

A. System Architecture

Fig. 1An Example of HCS Environment

The Fig. 1 shows the architecture of HCS with multicore

host (CPU) and single GPU (device). The multicore host

of the HCS is connected to single device via PCI Express

connections. Features of the HCS as follows

(1) The device and the host have different memories.

(2) Device is a co-processor to the host in the HCS and the

device is controlled by a thread running on the host.

(3) The host and device have different architecture.

(4) Device is specially optimized for throughput and host

isspecially optimized for latency.

(5) The host contains few powerful cores and the device

contains many cores but less powerful as compared to host

cores in terms of clock speed.

In this research work, we are considering all these factors

and try to accomplish our objectives, such as obtain high

performance, a high degree of parallelism, sharing of work

between the host and deviceand find optimal sharing ratio

for host and device.

B. Matrix Partition

Fig 2 First Half of the Matrix Multiplication

Fig 3 Second Half of the Matrix Multiplication

We have two input matrix i.e. matrix A and matrix B and

one output matrix i.e. matrix C. first we will partition the

matrix A into two blocks of rows and we do not partition

matrix B. Then each block of matrix A will be assigned

for multiplication with matrix B on either host or device.

In this method, we will compute one block of matrix A

with matrix B on hostby the help of MKL [9] library

function and another block of matrix A with matrix B on

deviceby the help NVidia’s CUBLAS [11] library

functionsimultaneously. The results will be stored in the

matrix C as shown in the Fig. 2 and Fig. 3.

C. System Specifications

TABLE 1

Executional Environment Specifications of HCS

No. System Host(CPU) Device(GPU)

1 Processor

Name

Intel Xeon

E5520

NVidia

Quadro FX

3800

2 Sockets 2 1

3 Cores 4 192

4 Threads Per

Sockets

8 600MHz

5 Core Speed 2.26GHz GDDR3

6 Ram Type DDR3 1GB

7 Ram Size 12GB 51.2GB/s

8 Memory

Bandwidth

25.6GB/s NVidia

Quadro FX

3800

9 L1 Bata Cache 4*32KB 1

10 L1 Instruction

Cache

4*32KB 192

11 L2 Cache 4*128KB 600MHz

12 L3 Cache 8MB GDDR3

13 Compiler GCC/NVCC 1GB

Our HCS environment contains above mentioned

specifications. We will execute our method on this

computational environment and observe the results.

D. Results

Table 2

Execution time on HCS

Size of

the

Matrix

(Host +

Device)

at the

ratio of

0.5

Least

Execution time

in Sec Only for

Host

Least Execution

time in Sec

Only for Device

1000 0.0500 0.016 0.0185

2000 0.5010 0.096 0.0925

3000 1.1500 0.351 0.02685

4000 2.1430 0.663 0.6025

5000 4.2450 1.707 1.1545

6000 7.0680 2.352 2.0220

7000 11.0340 4.163 3.1440

8000 16.7980 4.636 4.5560

8200 5.0052 18.0720 7.506

After executing our method on above mentioned HCS

environment, we can observe the results in Table 2 and

Table 3, we can say that our method provides significant

performance improvements by utilizing the computational

capacity of host and device over the methods which only

uses either host or device to perform all the operations of

the matrix multiplication. The Table 3 provide information

about the optimal execution time for matrix multiplication

using host with device for the different matrix size with

distribution ratio (scale) between the device and host. For

example if the scale value is 0.8 means the 80% of the

operation of matrix multiplication will be performed on

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56105 498

device and 20% of the operations will be performed on the

host.

Table 3

Optimal Execution Time in HCS

Size of

the

Matrix

Threads

Scale Optimal Execution

Time in Sec (Host +

Device)

1000 4 0.7 0.0125

2000 16 0.7 0.0645

3000 16 0.55 0.2435

4000 12 0.65 0.4495

5000 12 0.6 1.009

6000 8 0.75 1.7245

7000 16 0.6 2.601

8000 16 0.7 3.2505

8200 12 0.6 4.4716

Fig. 4 Graphical Representation of Table 2

The Fig. 4 show the graphical representation for execution

time given in the Table 2 and the Fig 5 shows the

graphical representation of the comparison between the

execution time given in the Table 2 and Table 3.

Fig. 5 Graphical Representation of the Table 2 and Table 3

to Compare the Execution Time.

IV. CONCLUSION

The HCS architecture isevolved with time, due to the

advancement in the technologyi.e. from multi-processor

system architecture to multicore processor architecture and

to hybrid processors. One must have very good knowledge

of the HCS architecture in order to effectively utilize all

the processing capacity of the HCS hybrid processors to

achieve maximum performance optimization for the

applications.In this research work, we present workload

distribution on the HCS architectures for the matrix

multiplication operations and computations of matrix

multiplications are performed using library functions

provided by Intel and NVidia.Our obtained results shows

that with the help of our methodology it is possible to

increase of performance of HCS,This research work is

carried out to demonstrate the comparison of the execution

time on when the operationof the matrix multiplication is

performed using only host (CPU), using only device

(GPU) and using host (CPU) with device (GPU).

ACKNOWLEDGMENT

I would like to express my regards and acknowledgement

to all who helped me in completing this project

successfully. I consider it as great privilege to

convey my sincere regards to Professor and Head

Dr. Loganathan.R., Department of CSE, HKBKCE,

Bangalore for his constant encouragement throughout the

course of the project.I would like to thank my professor

and guide Dr. Waseem Ahmed, for his support and

providing directions during my project work. At long last,

I say thanks to Almighty, all the staff individuals from

CSE Department, my relatives and companions for their

steady backing and support in doing the undertaking work.

REFERENCES

[1] Jack Dongarra, Fengguang Song and StanimireTomov: Enabling

and Scaling Matrix Computations on Heterogeneous Multi-Core

and Multi-GPU Systems. In Preceding of 26th International
Conference on Supercomputing, pp. 365-367.ACM, 2012.

[2] Song, F., S. Tomov, and J. Dongarra. Efficient Support for Matrix

Computations on Heterogeneous Multi-core and Multi-GPU
Architectures. University of Tennessee. Computer Science

Technical, Report UT-CS-11-668 (2011).

[3] Fengguang Song, and Jack Dongarra. A scalable approach to

solving dense linear algebra problems on hybrid CPU‐GPU
systems. Concurrency and Computation: Practice and Experience

27.14 (2015): 3702-3723.

[4] Fengguang Song, and Jack Dongarra. A scalable framework for
heterogeneous GPU-based clusters. Proceedings of the twenty-

fourth annual ACM symposium on Parallelism in algorithms and

architectures. ACM, 2012.
[5] Muhammed Osaman, Hassan Youness and Aiman Tarek: Load

Balancing on CPU-GPU Heterogeneous System: at researchgate.

[6] Bibhudatta Sahoo: Dynamic Load Balancing Strategies in
Heterogeneous Distributed System. 2013.

[7] Galindo, Ismael, Francisco Almeida, and José Manuel Badía-

Contelles. "Dynamic load balancing on dedicated heterogeneous
systems." Recent Advances in Parallel Virtual Machine and

Message Passing Interface. Springer Berlin Heidelberg, 2008. 64-

74.
[8] Lee, Janghaeng, MehrzadSamadi, Yongjun Park, and Scott Mahlke.

"Transparent CPU-GPU collaboration for data-parallel kernels on

heterogeneous systems." In Proceedings of the 22nd international
conference on Parallel architectures and compilation techniques, pp.

245-256. IEEE Press, 2013.

[9] INTELMKL’scblasdgemmavailableat https://software.intel.com/en-
us /node/429920.

[10] OpenMPRelatedRecoursesareavailableathttps://openmp.org/wp/res

ources.
[11] CUDADocumentationAvailableathttp://docs.nvidia.com/cuda/#axz

z47WyvqDZK.

